# J-O-Caml (2) 

jean-jacques.levy@inria.fr pauillac.inria.fr/~levy/qinghua/j-o-caml

Qinghua, November 20


## Plan of this class

- compiling programs
- list processing
- pattern-matching
- new data types
- labeling algorithm


## Compiling programs



- ocamlc -o prog1 produces prog1 (executable byte code)
- ocamlc -c prog1.ml produces prog1.cmo (byte code)
- ocamlopt -c prog1.ml produces prog1.cmx (binary)
- also files prog1.cmi (compiled interfaces -- see later)


## List processing

\# let rec length $\mathrm{x}=$ match x with
| [] -> 0
| a :: x' -> 1 + length $x^{\prime}$;;
\# let rec concat $\mathrm{x} y=$ match x with
| [ ] -> y

| a :: x' -> a :: concat $x^{\prime} y$;;
\# let rec reverse $\mathrm{x}=$ match x with
| [ ] -> []
| a :: x' -> concat (reverse $x^{\prime}$ ) [a] ;;
\# let rec insert a $n \times=$
if $n=0$ then a :: $x$ else match $x$ with | [ ] -> [] | b :: x' -> b :: insert $a(n-1) x^{\prime}::$


## List processing

```
# let rec length x = match x with
    | [ ] -> 0
    | a :: x' -> 1 + length x' ;;
        val length : 'a list -> int = <fun>
# let rec concat x y = match x with
    | [ ] -> y
    | a :: x' -> a :: concat x' y ;;
        val concat : 'a list -> 'a list -> 'a list = <fun>
# let rec reverse x = match x with
    | [ ] -> [ ]
    | a :: x' -> concat (reverse x') [a] ;;
        val reverse : 'a list -> 'a list = <fun>
# let rec insert a n x =
        if n = 0 then a :: x else match }\textrm{x}\mathrm{ with
        | [ ] -> []
        | b :: x' -> b :: insert a (n-1) x' ;;
            val insert : 'a -> int -> 'a list -> 'a list = <fun>
```


## List processing

\# let rec length $\mathrm{x}=$ match x with
| [ ] -> 0
| a :: x' -> 1 + length $x^{\prime}$;; val length : 'a list -> int = <fun>
\# let rec concat $\mathrm{x} y=$ match x with
| [ ] -> y
| a :: x' -> a :: concat x ' y ;; val concat : 'a list -> 'a list -> 'a list = <fun>
\# let rec reverse $x=$ match $x$ with
| [ ] -> [ ]
| a :: x' -> concat (reverse $x^{\prime}$ ) [a] ;; val reverse : 'a list -> 'a list = <fun>
\# let rec insert a $n \times=$
if $n=0$ then a :: $x$ else match $x$ with
[] -> []
| b :: x' -> b :: insert a (n-1) $x^{\prime}$;;
val insert : 'a -> int -> 'a list -> 'a list = <fun>

- polymorphic types
- 'a list (say "alpha list") is type of list of any type, e.g. int list, bool list, ...


## Exercices on lists

## Exercices on lists

- Arbitrary precision numbers can be implemented by lists (little endian or big endian style). Write addition and multiplication algorithms.
- Conway sequence of lists starts with list [1]. Then next list in sequence is obtainte by reading previous list. Therefore $[1 ; 1],[2 ; 1],[1 ; 2$; $1 ; 1],[1 ; 1 ; 1 ; 2 ; 2 ; 1] \ldots$. Print lists of Conway sequence. Is there any unlucky number?


## New data types

- products
\# let move $(x, y)(d x, d y)=(x+. d x, y+. d y) ;$;
\# move (2.1, 3.0) (0.5, 0.5);
\# let dotProduct $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x^{*} . x^{\prime}+. y^{*} . y^{\prime}\right) ;$;
\# let crossProduct $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x^{*} . y^{\prime}-. x^{*} . y^{\prime}\right) ;$;


## New data types

- products
\# let move $(x, y)(d x, d y)=(x+. d x, y+. d y) ;$;
val move : float * float -> float * float -> float * float = <fun>
\# move (2.1, 3.0) (0.5, 0.5);;
- : float * float $=(2.6,3.5)$
\# let dotProduct $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x^{*} . x^{\prime}+. y^{*} . y^{\prime}\right) ;$;
val dotProduct : float * float -> float * float -> float = <fun>
\# let crossProduct $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x^{*} . y^{\prime}-. x^{*} . y^{\prime}\right) ;$;
val crossProduct : float * 'a -> 'b * float -> float = <fun>


## New data types

- sums
\# type complex $=$ Cartesian of float * float $\mid$ Polar of float * float ; ;
\# let polar_of_cartesian $\mathrm{c}=$ match c with
| Cartesian ( $\mathrm{x}, \mathrm{y}$ ) -> Polar (sqrt( $\mathrm{x}^{*} . \mathrm{x}+\mathrm{t}^{*} . \mathrm{y}$ ), atan ( $\mathrm{y} / . \mathrm{x}$ ))
| Polar (rho, theta) -> c ;;
\# let cartesian_of_polar c = match c with
| Polar (rho, theta) $->$ Cartesian (rho *. (cos theta), rho *. (sin theta))
| _ -> c ;
\# let add c c' =
let c1 = cartesian_of_polar c and c1' = cartesian_of_polar c' in match c1, c1' with

I Cartesian( $x, y$ ), Cartesian( $x^{\prime}, y^{\prime}$ ) -> Cartesian( $\left.x+x^{\prime}, y+. y^{\prime}\right)$
। _ -> failwith "Impossible" ;;

## New data types

## - sums

\# type complex = Cartesian of float * float | Polar of float * float ; ; type complex = Cartesian of float * float | Polar of float * float
\# let polar_of_cartesian $\mathrm{c}=$ match c with
| Cartesian ( $\mathrm{x}, \mathrm{y}$ ) -> Polar (sqrt( $\mathrm{x}^{*} . \mathrm{x}+. \mathrm{y}^{*} . \mathrm{y}$ ), atan ( $\left.\mathrm{y} / . \mathrm{x}\right)$ )
| Polar (rho, theta) -> c ;;
val polar_of_cartesian : complex -> complex = <fun>
\# let cartesian_of_polar c = match c with
| Polar (rho, theta) -> Cartesian (rho *. (cos theta), rho *. (sin theta))
| _ -> c ;;
val cartesian_of_polar : complex -> complex = <fun>
\# let add c c' =
let c1 = cartesian_of_polar c and c1' = cartesian_of_polar c' in match c1, c1' with

I Cartesian( $x, y$ ), Cartesian( $\left.x^{\prime}, y^{\prime}\right)$-> Cartesian( $\left.x+x^{\prime}, y+. y^{\prime}\right)$
| _ -> failwith "Impossible" ;;
val add : complex $->$ complex $->$ complex $=$ <fun>

## New data types

- recursive types
\# type tree $=$ Empty of unit I Node of tree ${ }^{*}$ int ${ }^{*}$ tree; ;
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> 1 + size left + size right ;;
\# size (Node(Empty(), 3, Node (Empty(), 4, Empty())));


## New data types

- recursive types
\# type tree = Empty of unit । Node of tree * int * tree; ;
type tree $=$ Empty of unit | Node of tree ${ }^{*}$ int ${ }^{*}$ tree
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> 1 + size left + size right ; ;
val size : tree -> int = <fun>
\# size (Node(Empty(), 3, Node (Empty(), 4, Empty())));
- : int = 2


## New data types

- recursive types
\# type tree $=$ Empty of unit $\mid$ Node of tree ${ }^{*}$ int * tree; ;
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> 1 + size left + size right ;;
\# size (Node(Empty(), 3, Node (Empty(), 4, Empty())));;
- recursive polymorphic types
\# type 'a tree = Empty of unit । Node of 'a tree * 'a * 'a tree ;;
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> 1 + size left + size right ;;
\# let $a=$ Node(Empty(), 3, Node (Empty(), 4, Empty()));
\# let $\mathrm{b}=\mathrm{Node}(E m p t y()$, "nihao", Node (Empty(), "bushi", Empty())); ;
\# size b; ;
- : int = 2
\# size $a ;$;
- : int = 2


## New data types

- recursive types
\# type tree = Empty of unit । Node of tree * int * tree; ;
type tree = Empty of unit | Node of tree * int * tree
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> 1 + size left + size right ; ; val size : tree -> int = <fun>
\# size (Node(Empty(), 3, Node (Empty(), 4, Empty())));
- : int = 2
- recursive polymorphic types
\# type 'a tree = Empty of unit । Node of 'a tree * 'a * 'a tree ; ;
type 'a tree = Empty of unit | Node of 'a tree * 'a * 'a tree
\# let rec size $a=$ match $a$ with
| Empty() -> 0
| Node (left, _, right) -> $1+$ size left + size right ;; val size : 'a tree -> int = <fun>
\# let $a=\operatorname{Node}(E m p t y(), ~ 3, ~ N o d e ~(E m p t y(), ~ 4, ~ E m p t y())) ; ~ ; ~$
val a : int tree $=$ Node (Empty (), 3, Node (Empty (), 4, Empty ()))
\# let b = Node(Empty(), "nihao", Node (Empty(), "bushi", Empty()));;
val $b$ : string tree =
Node (Empty (), "nihao", Node (Empty (), "bushi", Empty ()))
\# size b;;
- : int = 2
\# size $a ;$;
- : int = 2


## New data types

- recursive polymorphic types (alternative definition for binary trees)

```
# type 'a tree = Leaf of 'a | Node of 'a tree * 'a * 'a tree ;;
# let rec flatten a = match a with
    | Leaf (x) -> [ x ]
    | Node (tleft, _ , tright) -> List.append (flatten tleft) (flatten tright) ;;
# let a = Node ( Leaf (3), 5, Node (Leaf (4), 7, Leaf (6))) ;;
# flatten a ;;
# let rec flatten a = match a with
    | Leaf (x) -> [ x ]
    | Node (tleft, _ , tright) -> (flatten tleft) @ (flatten tright) ;;
```


## New data types

- recursive polymorphic types (alternative definition for binary trees)

```
# type 'a tree = Leaf of 'a | Node of 'a tree * 'a * 'a tree ;;
type 'a tree = Leaf of 'a | Node of 'a tree * 'a * 'a tree
# let rec flatten a = match a with
    | Leaf (x) -> [ x ]
    | Node (tleft, _ , tright) -> List.append (flatten tleft) (flatten tright) ;;
        val flatten : 'a tree -> 'a list = <fun>
# let a = Node (Leaf (3), 5, Node (Leaf (4), 7, Leaf (6))) ;;
val a : int tree = Node (Leaf 3, 5, Node (Leaf 4, 7, Leaf 6))
# flatten a ;;
- : int list = [3; 4; 6]
# let rec flatten a = match a with
    | Leaf (x) -> [ x ]
    | Node (tleft, _ , tright) -> (flatten tleft) @ (flatten tright) ;;
        val flatten : 'a tree -> 'a list = <fun>
# flatten a;;
- : int list = [3; 4; 6]
```


## Caring about space

- with an extra argument as an accumulator of the result

```
# let flatten a =
    let rec flatten1 a res = match a with
        | Leaf (x) -> x :: res
        | Node (tleft, _, tright) -> flatten1 tleft (flatten1 tright res)
    in flatten1 a [ ] ;;
        val flatten : 'a tree -> 'a list = <fun>
# flatten a;;
- : int list = [3; 4; 6]
```


## Caring about space

- with an extra argument as an accumulator of the result
\# let flatten $a=$
let rec flatten1 a res = match a with
| Leaf ( x ) -> x :: res
| Node (tleft, _, tright) -> flatten1 tleft (flatten1 tright res)
in flatten1 a [ ] ;;
val flatten : 'a tree -> 'a list = <fun>
\# flatten $a ;$;
- : int list $=[3 ; 4 ; 6]$



## Labeling



16 objects in this picture

## Naive algorithm

1) choose an unvisited pixel
2) traverse all similar connected pixels
3) and restart until all pixel are visited

## Very high complexity:

- how to find an unvisited pixel ?
- how organizing exploration of connected pixels (which direction?)


## Algorithm

1) first pass

- scan pixels left-to-right, top-to-bottom giving a new object id each time a new object is met

2) second pass

- generate equivalences between ids due to new adjacent relations met during scan of pixels.

3) third pass

- compute the number of equivalence classes


## Complexity:

- scan twice full image (linear cost)
- try to efficiently manage equivalence classes (Union-Find by Tarjan)


## Animation

with Polka system for animated algorithms

## Exercise for next class

- find an algorithm for the labeling algorithm



## Equivalence classes <br> "Union-Find"

- objects $x_{1}, x_{2}, \ldots, x_{n}$
- equivalences
- find the equivalence class of $x_{p}$
- 3 operations:
- $\operatorname{NEW}(x)$ new object
- $\operatorname{FIND}(x) \quad$ find canonical representative
- $\operatorname{UNION}(x, y)$ merge 2 equivalence classes


## Equivalence classes <br> "Union-Find"

- with tree-like structure

- given by the array of direct ancestors



## Equivalence classes <br> "Union-Find"

- unbalanced trees because of merges
- $\operatorname{UNION}(x, y)$ merge 2 equivalence classes



## Equivalence classes <br> "Union-Find"

## - try to balance

- $\operatorname{UNION}(x, y)$ merge 2 equivalence classes

therefore keep height at each node
$O(\log n)$ opérations pour $\operatorname{FIND}(x)$


## Equivalence classes <br> "Union-Find"

- compression of path toward canonical representative
- $\operatorname{FIND}(x)$ with side-effect on tree structure



## Exercice for next class

- find good primitives for graphics in Ocaml library
- design the overall structure of the labeling program

