
J-O-Caml (1)
jean-jacques.levy@inria.fr

Qinghua, November 19

Plan of this class

• writing programs in Ocaml

• functional programming

• use of polymorphic types

• pattern-matching

• tour in the libraries

Functional programming

• Scheme, SML, Ocaml, Haskell are functional programming languages

• they manipulate functions

• and try to reduce memory states

Lisp

Scheme

ML

Haskell Ocaml

Caml

Camllight

Ocaml

JocamlSML

Installing Ocaml

• google Ocaml
• caml.inria.fr/index.en.html

• download the system (Linux, MacOS, Windows)

• results in:

- ocaml (interactive toplevel)

- ocamlc (compiler)

Phrases at toplevel

g = λx . 2 ∗ x + 1

f (x) = 2 ∗ x + 1

f ≡ g

Scopes of definitions

let, let in, let and, let and in, let rec, let rec in ...
• fine control in definition scopes

let x = M in N let x = M ; ;

let x1 = M1 and x2 = M2 in N let x1 = M1 and x2 = M2 ; ;

let rec x = M in N let rec x = M ; ;

Scopes of definitions

let, let in, let and, let and in, let rec, let rec in ...
• fine control in definition scopes

let x = M in N let x = M ; ;

let x1 = M1 and x2 = M2 in N let x1 = M1 and x2 = M2 ; ;

let rec x = M in N let rec x = M ; ;

Scopes of definitions

• fine control in definition scopes

Scopes of definitions

• fine control in definition scopes

Basic types

• int (integers) 1, 2, 3, ...

• float (real numbers) 2.3, 1.2, 0.

• char (characters) ‘a’, ‘b’, ‘c’, ...

• bool (booleans) true, false

• unit (void) ()

Compound built-in types
• string (strings) “nihao”, ...

• list (lists of any type) [1; 2], 3 :: [4; 6]

• array (arrays of any type) [| 1; 2; 3; 4 |]

No overloading in Ocaml

• 3 + 4 (on integers)

• 4.5 +. 3.0 (on real numbers)

• 3 + 2.4 (not allowed)

• (float_of_int 3) +. 2.4 (legal expression)

• this is to ease type inference

Operations on compound types
• “nihao”.[3] (character at position)

• List.hd [1; 2], List.tl [1; 2] (head and tail of list)

• [| 1; 2; 3; 4 |].(3) (element at some index in array)

Small examples on arrays

Small examples on arrays

Easy exercices

• isPalindromic s returns true if s is palindrome

• reverse s returns mirror image of s

(Use s.[i] <- c store character c at (i + 1) position in s)

More exercices

• sort a sorts array a in place

(Use a.(i) <- x store x at (i + 1) position in a)

• transpose a transposes matrix a in place

(Use a.(i).(j) <- x store x at (i + 1), (j + 1) position in a)

(also Array.make_matrix h w v creates h x w matrix filled with value v)

Objective for next classes

• a labeling algorithm for bitmap graphics

Combien d’objets
dans une image?

Jean-Jacques Lévy
INRIA

pixels

800

1200
1Mpix106

(pictures elements)

Problem and Algorithm

What is an object?

• set of similar adjacent pixels
- similar ?

• simplification
- grayscale images (255 values)

- 0 = black, 255 = white

- similar = adjacent with close values

• give a disctinct number to each object

• number of objects is max of previous numbers

Labeling

15 objects in this picture

1

1

2 3

4 5 6

7
8 9

10

11 12

13 14

Exercise for next class

• find an algorithm for the labeling algorithm

