On the logical structure of some choice, bar induction, maximality and well-foundedness principles equivalent to choice principles

Hugo Herbelin

based on joint work with Nuria Brede and Jad Koleilat

Verona

19 March 2024

Standard reverse mathematics of the axiom of choice in set theory

Three well-known equivalent presentations in set theory:

- axiom of choice (AC): any family of non-empty sets has a choice function
- Zorn's lemma (ZL): if all chains of a non-empty partially ordered set are bounded upwards, the set has a maximal belement
- the well-ordering principle: every set can be well-ordered

and many others:

• e.g. Teichmüller-Tukey lemma

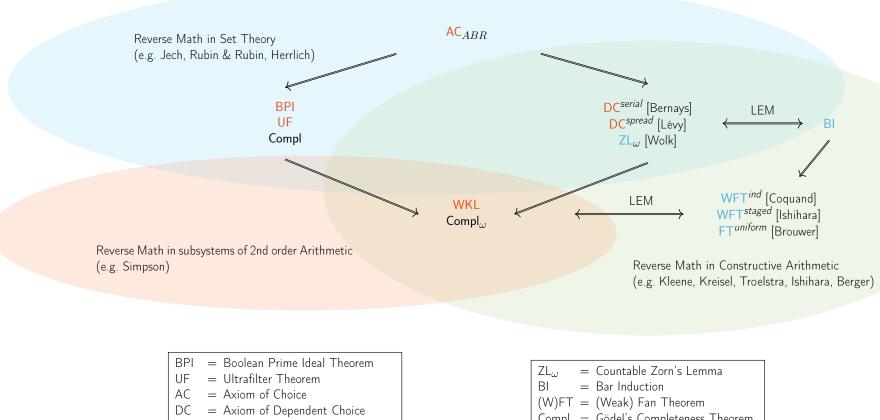
sometimes strictly weaker:

axiom of dependent choice (DC), axiom of countable choice (AC_ω), Boolean prime ideal theorem (BPI), ultrafilter lemma (UF)

as well as variants in constructive mathematics, classically equivalent to choice or maximality principles:

• bar induction, its finite-branch version fan theorem, update induction, ...

Some standard results about the axiom of choice



WKL = Weak Kőnig's Lemma

Compl = Gödel's Completeness Theorem

Long-term objective: Look at the axiom of choice and its variants from a **logical** and **computational** perspective

The logical perspective:

- The axiom of choice and their variants assert the existence of **ideal** objects from intensional properties of these objects
- See e.g. Coquand's program of reformulating standard mathematical statements using equivalent **inductive** properties to avoid the axiom of choice
- \hookrightarrow some variants can indeed be seen as **extensionality** principles
- \hookrightarrow other variants as **well-foundedness** of processes producing arbitrarily precise approximations of ideal objects

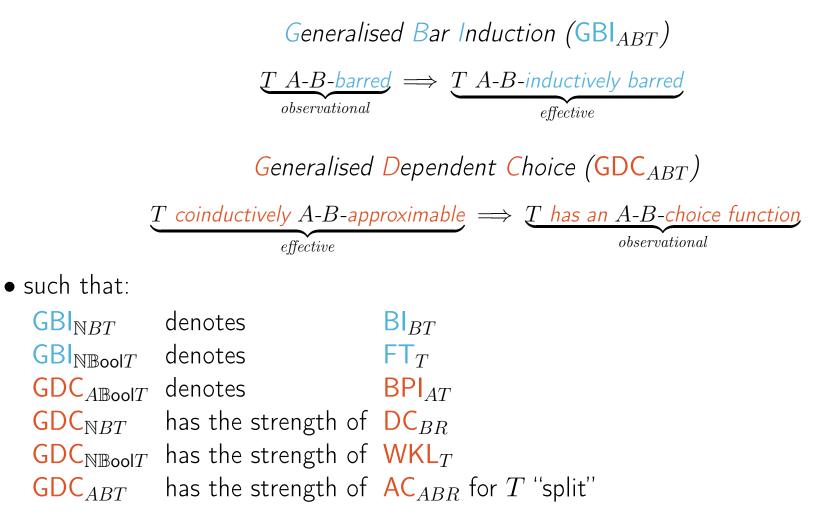
Long-term objective: Look at the axiom of choice and its variants from a **logical** and **computational** perspective

The computational perspective:

- Following Brouwer, we know from Kolmogorov, Kleene, Curry, Howard, and many other that **intuitionistic proofs** are **programs**
- We know from Griffin 1990 that also **classical** proofs are **programs**, though they use "goto"-like side effects
- We know from works in Paris that proofs by **forcing** are **programs**, using a memory
- Other effects such as Lisp's **quote** are also useful to compute with some axioms (see Krivine, Pédrot, ...)
- More generally, it can be shown (by abstract reasoning) that any consistent mathematical axiom has an underlying computational content
- What is the **computational** content of the axiom of choice and its variants (Krivine's research programme)?

Contribution I

• A classification of choice and bar induction principles by means of two **dual** forms, seen as **extensionality principles**, for T a predicate filtering the finite approximations of functions from A to B:



Contribution II

• A pair of **dual** maximality and well-foundedness principles, for T a predicate filtering the finite approximations of functions from A to B:

Generalised Update Induction (\mathbf{GUI}_{ABT})

(generalising Berger's update induction to arbitrary cardinals)

if the upwards monotone closure of T is \prec -inductive, it contains all functions from A to B

 \exists Maximal Partial Choice Function ($\exists MPCF_{ABT}$)

(a functional variant of Teichmüller-Tukey's lemma)

if the downwards closure by restriction of T is non empty, it has a \prec -maximal partial choice function from A to B

where $\alpha \prec \beta$ is the approximation order on partial functions from A to B.

- such that: when A is \mathbb{N} , or B is \mathbb{B} ool, or T is split, coinductive approximability implies the totality of the choice function, recovering the previous statements, and dually for barredness.
- and such that: Zorn's Lemma, Teichmüller-Tukey's lemma, and other maximality principles are particular instances of ∃MPCF.

Outline

Part A is organised around the following oppositions

- ill-founded (choice axioms) / well-founded (bar induction axioms)
- extensional (ideal object) / intensional (processus)
- closed by sequential restriction (= tree) / closed by sequential extension (= monotony)
- binary branching (B is Bool) / finite branching (B is finite) / arbitrary branching (B is arbitrary)
- $\ensuremath{\mathsf{Part}}\xspace$ B moves to arbitrary cardinals, so as to capture $\ensuremath{\mathsf{BPI}}\xspace$ and full $\ensuremath{\mathsf{AC}}\xspace$
 - sequential (A countable) / unordered (A arbitrary)
 - closed by unordered restriction (= ideal) / closed by unordered extension (= filter)

Part C moves to maximality and well-foundedness principles

Part A

The sequential case: Kőnig's lemma, fan theorem, dependent choice, bar induction

What is bar induction?

Let's consider first different ways to define well-foundedness

Trees (and their negative) as predicates

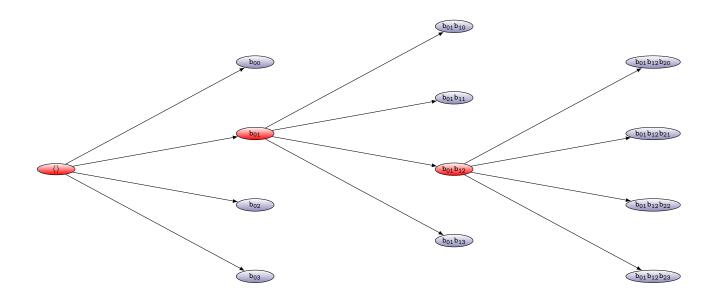
Let B be a domain and u ranges over the set B^* of finite sequences of elements of B. We write $\langle \rangle$ for the empty sequence and $u \star b$ for the extension with one element. For T a **predicate** on B^* , we define:

T is a tree	T is monotone
(closure under restriction)	(closure under extension)
$\forall u \forall a (u \star a \in T \Rightarrow u \in T)$	$\forall u \forall a (u \in T \Rightarrow u \star a \in T)$

Inductive characterisation of a well-founded tree-as-predicate

T inductively well-founded is short for inductively well-founded at $\langle \rangle \in A^*$ T inductively well-founded at u holds when:

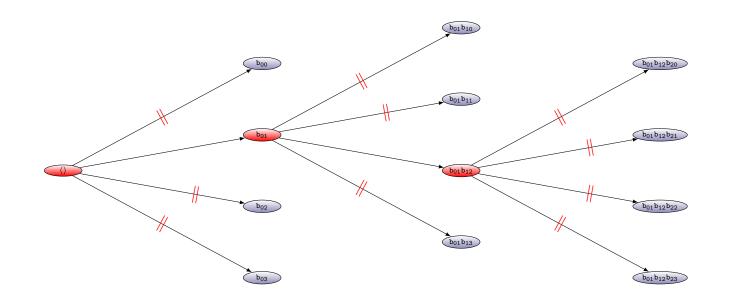
- $\bullet \ u \notin T$
- \bullet or, recursively, for all a,~T is inductively well-founded at $u\star a$



Observational characterisation of a well-founded tree-as-predicate

T observationally well-founded

 $\forall \beta \in \mathbb{N} \to B. \ \exists n \in \mathbb{N}. \ \neg T(\beta_{|n})$



Two characterisations of a well-founded tree-as-predicate

- From the **'effective''** representation of a well-founded tree we can always construct a predicate that is an **'observational''** representation of the tree
- To conversely obtain an effective representation of a tree T from its observational representation requires an axiom:

 $Tobservationally well-founded \implies T inductively well-founded$

Bar Induction

If instead we build the **negative** of a tree-as-predicate and restate well-foundedness on the negative tree, one obtains bar induction:

- T inductively well-founded is the same as $\neg T$ inductively barred
- T observationally well-founded is the same $\neg T$ barred
- \bullet Bar Induction says that for a type B and a tree T,

$$\underbrace{T \text{ barred}}_{observational} \implies \underbrace{T \text{ inductively barred}}_{effective}$$

Dually: ill-foundedness

Dually, ill-foundedness of a tree T can be defined in different ways. Let us concentrate on the finite-branching case. We have:

Effective view

$$T$$
 is staged infinite $\triangleq \forall n \exists u | u | = n \land u \in T$

Observational view

T has an infinite branch
$$\triangleq \exists \alpha \forall u \leq \alpha T(u)$$

Kőnig's Lemma is a lemma that connects the two views when B is finite:

 $\mathsf{KL}_T \triangleq T$ is staged infinite $\Rightarrow T$ has an infinite branch

III-foundedness, coinductively

Alternatively, by dualising the notion of inductively barred we get another **coinductive** definition of ill-foundedness, which we call productive. In full:

T productive is short for productive from $\langle\rangle\in B^*$

T productive from $u \in B^*$ holds when:

- $\bullet \ u$ is in T
- \bullet and, recursively, there is $b \in B$ such that T is productive from $u \star b$

Relying on the notion of *inductively barred* and its dual, we obtain the following dual pair of choice and bar induction principles

Bar induction (BI_{BT}) T barred \Rightarrow T inductively barred

Tree-Based Dependent Choice (DC_{BT}^{prod}) T productive $\Rightarrow T$ has an infinite branch

Recovering standard principles

 $\mathsf{WKL}_T \iff \mathsf{DC}^{prod}_{\mathbb{B}oolT}$ up to classical (actually co-intuitionistic) reasoning

 $WFT_T \iff BI_{BoolT}$ up to intuitionistic reasoning

 $\mathsf{DC}^{serial}_{BRb_0} \iff \mathsf{DC}^{prod}_{BR^{\triangleright}(b_0)}$

where

$$u \in R^{\triangleright}(b_0) \triangleq \text{ case } u \text{ of } \begin{bmatrix} \langle \rangle & \mapsto \top \\ b & \mapsto R(b_0, b) \\ u' \star b \star b' & \mapsto R(b, b') \end{bmatrix}$$

 $\mathsf{DC}_{BRb_0}^{serial} \triangleq \forall b \exists b' R(b, b') \Rightarrow \exists \alpha \left(\alpha(0) = b_0 \land \forall n \ R(\alpha(n), \alpha(n+1)) \right)$

(one of the most standard statement of dependent choice)

Part B

Relaxing the sequentiality

Relaxing the sequentiality

Let A and B be domains. Let now use v to range over the set $(A \times B)^*$ of finite sequences of pairs of elements in A and B.

We say $(a,b) \in v$ if (a,b) is one of the components of v.

We write $v \leq v'$ is v is included in v' when seen as sets.

For $v \in (A \times B)^*$, we write dom(v) for the set of a such that there is some b such that $(a, b) \in v$.

If $\alpha \in A \to B$, we write $v \subset \alpha$ and say that v is a finite approximation of α if $\alpha(a) = b$ for all $(a, b) \in v$.

Let T be a predicate on $(A \times B)^*$. We write $\downarrow T$ and $\uparrow T$ to mean the following inner and outer closures with respect to \leq :

$$v \in \downarrow T \triangleq \forall v' \le v \ (v' \in T)$$
$$v \in \uparrow T \triangleq \exists v' \le v \ (v' \in T)$$

Relaxing the sequentiality (effective view)

T inductively A-B-barred from $v \in (A \times B)^*$ holds when:

- $\bullet \; v$ is in the outer closure of T
- or, recursively, there exists $a \notin dom(v)$ such that for all $b \in B$, T is inductively A-B-barred from $v \star (a, b)$

T coinductively A-B-approximable from $v \in (A \times B)^*$ holds when:

- $\bullet \; v$ is in the inner closure of T
- and, recursively, for all $a \notin dom(v)$, there is $b \in B$ such that T is coinductively A-B-approximable from $v \star (a, b)$

Relaxing the sequentiality (observational view)

T A-B-barred if $\forall \alpha \in A \rightarrow B \exists v \subset \alpha \ (v \in T)$

T has an A-B-choice function if $\exists \alpha \in A \to B \ \forall v \subset \alpha \ (v \in T)$

This leads to the following generalisation

Generalised Bar Induction (GBI_{ABT})

 $\underbrace{\underline{T \ A-B-barred}}_{observational} \implies \underbrace{\underline{T \ A-B-inductively \ barred}}_{effective}$

Generalised Dependent Choice (GDC_{ABT})

 $\underbrace{T \text{ coinductively A-B-approximable}}_{effective} \implies \underbrace{T \text{ has an A-B-choice function}}_{observational}$

Results justifying the generalisation

$\mathsf{GBI}_{\mathbb{N}BT}\iff\mathsf{BI}_{BT}$

$$\mathsf{GDC}_{\mathbb{N}BT} \iff \mathsf{DC}_{BT}^{prod}$$

The Boolean Prime Ideal Theorem

The specialisation to \mathbb{B} ool of the generalisation also captures the Boolean Prime Ideal Theorem.

Let $(\mathcal{B}, \lor, \land, \bot, \top, \neg, \vdash)$ be a Boolean algebra and I an ideal on \mathcal{B} . We extend I on $(\mathcal{B} \times \mathbb{B}ool)^*$ by setting $u \in I^+$ if $(\bigvee_{(b,0) \in u} \neg b) \lor (\bigvee_{(b,1) \in u} b) \in I$. We have:

 $\mathsf{GDC}_{\mathcal{B}\mathbb{B}\mathrm{ool}I^+}\iff \mathsf{BPI}_{\mathcal{B},I}$

The full axiom of choice

Let AC_{ABR} be $\forall a^A \exists b^B R(a, b) \Rightarrow \exists \alpha^{A \to B} \forall a^A R(a, \alpha(a))$

Define the *positive alignment* R_{\top} of R by

$$R_{\top} \triangleq \lambda u. \, \forall (a, b) \in u \, R(a, b)$$

Then, AC_{ABR} arrives as the instance $GDC_{ABR_{\top}}$

Strength of the generalisation

Without further restrictions, GDC and GBI are inconsistent:

- Take $A \triangleq \mathbb{N} \to \mathbb{B}$ ool
- Take $B \triangleq \mathbb{N}$
- Define T so that it constrains a choice function to be injective:

$$v \in T \triangleq \forall ff'n, ((f,n) \in v) \land ((f',n) \in v) \Rightarrow f = f'$$

Then, in the case of GDC, a coinductive A-B-approximation can always be found but an A-B-choice function would be an injective function from $\mathbb{N} \to \mathbb{B}$ ool to \mathbb{N} , what is inconsistent.

A consistent restriction

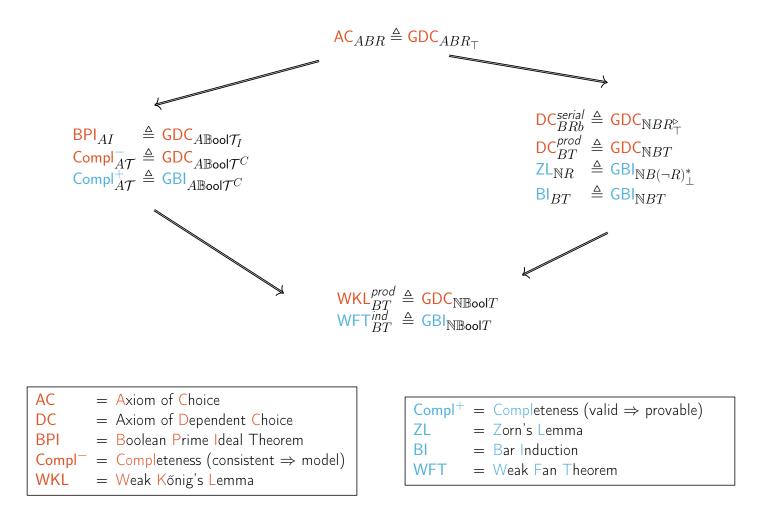
A naive restriction is to require that:

- \bullet either A is countable
- $\bullet \mbox{ or } B$ is finite
- or T is **split** (or atomic, or unary), meaning for all u and v:
 - in the ill-founded case $u \in T \land v \in T \Rightarrow u \cup v \in T$
 - in the barred case $u \cup v \in T \Rightarrow u \in T \lor v \in T$

The restriction preserves the previous instantiations and makes GDC equivalent to AC since it implies AC, and, conversely, each of its three restrictions is implied by a consequence of AC.

Dually for **GBI**.

Summary of main results regarding choice and bar induction



Part C

Maximality and well-foundedness principles

A first solution to the inconsistency of the general form of GDC: requiring only a partial function

Generalised Partial Dependent Choice

T coinductively A-B-approximable $\implies T$ has a **partial** A-B-choice function

effective

observational

However, approximability happens to become a useless hypothesis, so such approach is not worth.

Teichmüller-Tukey Lemma

Let T be a predicate over $A^*.$ We define its powerset closure by downwards restriction $\langle T \rangle$ as:

$$\langle T \rangle \quad \triangleq \quad \lambda \alpha^{\mathcal{P}(A)} . \forall u^{A^*} (u \subset \alpha \to u \in T)$$

Then, we say that a predicate P over predicates over A is of **finite character** if there is T such that $P = \langle T \rangle$.

Then, we can conversely rebuild T from $\langle T\rangle$ by setting

$$\hat{u} \triangleq \lambda x^{A} \, x \in u \\
\lfloor P \rfloor \triangleq \lambda u^{A^{*}} \, \hat{u} \in P$$

so that $T = \lfloor \langle T \rangle \rfloor$ and so that P is of finite character iff $P = \langle \lfloor P \rfloor \rangle$.

Teichmüller-Tukey Lemma

Teichmüller-Tukey is the statement that any non-empty predicate P of finite character has a maximal element with respect to inclusion.

\exists Maximal Partial Choice Function (\exists **MPCF**_{ABT})

To make a connection with choice axioms, we introduce of variant of Teichmüller-Tukey lemma on functions: we consider now predicates over partial functions seen as predicates of finite character over the graph $\mathcal{G}(\alpha)$ of the function α , that is, as predicates over predicates over $A \times B$. Such predicates of finite character are generated by predicates T over $(A \times B)^*$. We can now state:

 \exists Maximal Partial Choice Function (\exists **MPCF**_{ABT})

if $\langle T \rangle$ is non empty, it has a \prec -maximal partial choice function from A to B

Or, fully formally:

$$(\exists \alpha(\mathcal{G}(\alpha) \in \langle T \rangle) \Rightarrow \exists \alpha^{A \to B}(\mathcal{G}(\alpha) \in \langle T \rangle \land \forall \beta \prec \alpha(\mathcal{G}(\beta) \notin \langle T \rangle))$$

where

$$\beta \prec \alpha \triangleq \begin{array}{c} \exists a^A(\alpha(a) = \bot \land \beta(a) \neq \bot) \\ \land \forall a(\alpha(a) \neq \bot \Rightarrow \beta(a) = \alpha(a)) \end{array}$$

 $\exists \mathbf{MPCF}_{\mathbb{N}BT} \text{ is the contrapositive of Berger's update induction, and conversely, update induction can be generalised to arbitrary domains$

P is of **finite character** over partial functions from \mathbb{N} to *B* is the same as $\neg P$ **open predicate** in Berger's sense. This leads to the following:

Generalised Update Induction (GUI_{ABT})

if the upwards monotone closure of T is \prec -inductive, it contains all partial functions from A to B

Or, fully formally:

$$(\forall^{A \to B} \alpha (\forall \beta \prec \alpha (\mathcal{G}(\beta) \in \langle T \rangle^{\circ})) \Rightarrow (\mathcal{G}(\alpha) \in \langle T \rangle^{\circ})) \Rightarrow \forall \alpha (\mathcal{G}(\alpha) \in \langle T \rangle^{\circ})$$

where $\langle T \rangle^{\circ}$, an upwards monotone closure, is:

$$\langle T \rangle^{\circ} \triangleq \lambda \alpha^{\mathcal{P}(A \times B)} . \exists u^{(A \times B)^*} (u \subset \alpha \land u \in T)$$

We left implicit the definition of $A \rightarrow B$. It might typically be defined as $A \rightarrow B_{\perp}$ or as predicates over $A \times B$ that are functional. But both definitions are equivalent only up to classical reasoning...