On the logical structure of choice and bar induction principles

Hugo Herbelin

joint work with Nuria Brede

Proof Theory Virtual Seminar

16 June 2021

(includes post-seminar errata)

Talk based on the paper *On the logical structure of choice and bar induction principles, LICS'21*, with a few refinements

Standard results about the axiom of choice

WKL = Weak Kőnig's Lemma

Compl = Gödel's Completeness Theorem

Use **logical duality** as guiding classification principle:

choice principles ill-foundedness properties bar induction principles barredness properties

considered as **extensionality schemes**

effective \Rightarrow observational observational \Rightarrow effective

Different definitions of well-founded tree

An intrinsically well-founded definition of tree

A simple "effective" definition: well-founded tree as an inductive type

Inductive wftree := | leaf : wftree | $| \text{node} : (B \rightarrow \text{wftree}) \rightarrow \text{wftree} |$

Trees (and their negative) as predicates

Let B be a domain and u ranges over the set B^* of finite sequences of elements of B. We write $\langle \rangle$ for the empty sequence and $u \star b$ for the extension with one element. We define:

T is a tree	T is monotone	
(closure under restriction)	(closure under extension)	
$\forall u \forall a (u \star a \in T \Rightarrow u \in T)$	$\forall u \forall a (u \in T \Rightarrow u \star a \in T)$	

From trees as inductive types to trees as predicates

To any inductively-defined tree t, we can associate a tree-as-predicate $t^{\#}$ by recursion on t as follows:

Two characterisations of a well-founded tree-as-predicate

Effective characterisation of a well-founded tree-as-predicate

T has an inductive skeleton

 $\exists t: \texttt{wftree}\,(T=t^\#)$

Effective characterisation of a well-founded tree-as-predicate

T has an inductive skeleton

 $\exists t: \texttt{wftree}\,(T=t^\#)$

which can be equivalently bundled into

T inductively well-founded is short for inductively well-founded at $\langle \rangle \in A^*$ T inductively well-founded at u holds when:

 $\bullet \ u \notin T$

• or, recursively, for all a, T is inductively well-founded at $u \star a$

Observational characterisation of a well-founded tree-as-predicate

T observationally well-founded

 $\forall \beta \in \mathbb{N} \to B. \ \exists n \in \mathbb{N}. \ \neg T(\beta_{|n})$

Two characterisations of a well-founded tree-as-predicate

- From the **'effective''** representation of a well-founded tree we can always construct a predicate that is an **'observational''** representation of the tree
- To conversely obtain an effective representation of a tree T from its observational representation requires an axiom:

 $Tobservationally well-founded \implies T inductively well-founded$

Bar Induction

If instead we build the *negative* of a tree-as-predicate and restate well-foundedness on the negative tree, one obtain bar induction:

- T inductively well-founded is the same as $\neg T$ inductively barred
- T observationally well-founded is the same $\neg T$ barred
- \bullet Bar Induction says that for a type B and a tree T,

$$\underbrace{T \text{ barred}}_{observational} \implies \underbrace{T \text{ inductively barred}}_{effective}$$

Dually: ill-foundedness

Dually, ill-foundedness of a tree T can be defined in different ways. Let us concentrate on the finite-branching case. We have:

Effective view

$$T$$
 is staged infinite $\triangleq \forall n \exists u | u | = n \land u \in T$

Observational view

$$T$$
 has an infinite branch $\triangleq \exists \alpha \forall u \leq \alpha T(u)$

Weak Kőnig's Lemma connects the two views (when B is \mathbb{B} ool):

 $\mathsf{WKL}_T \triangleq T$ is staged infinite $\Rightarrow T$ has an infinite branch

Observation: a diversity of definitions for the "effective" versions of "barred"/"well-founded" and "ill-founded"

Kőnig's Lemma:T is staged infinite \Rightarrow T has an infinite branch(B finite) C_{WKL} :T is a spread \Rightarrow T has an infinite branch(J. Berger, $B = \mathbb{B}ool)$

Fan Theorem:	$T \text{ barred} \Rightarrow T \text{ uniformly barred}$	(B finite, Brouwer)
Fan Theorem:	T barred $\Rightarrow T$ staged barred	$(B { m \ finite, \ lshihara})$

- having an infinite branch is the exact dual to barred
- the dual of *inductively barred* is equivalent to the existence of a *spread* subset
- being staged infinite is dual to uniformly barred up to asking for T to be a tree
- *uniformly barred* and *having unbounded paths* are respectively intuitionistically and cointuitionistically equivalent to *inductively barred* and its dual productive for finitely-branching trees

Giving a name to these definitions

T is progressing ¹ at u	T is hereditary at u
$u \in T \Rightarrow (\exists a u \star a \in T)$	$(\forall a u \star a \in T) \Rightarrow u \in T$
T is progressing ¹	T is hereditary
$\forall u (T \text{ is progressing at } u)$	$\forall u (T \text{ is hereditary at } u)$

	Dual concepts on dual predicates		
	ill-foundedness	barredness-style	
	Effective concepts (finite-branching only)		
	T has unbounded paths	T is uniformly barred	used in Ean Theorem
	$\forall n \exists u (u = n \land \forall v (v \le u \Rightarrow v \in T))$	$\exists n \forall u (u = n \Rightarrow \exists v (v \le u \land v \in T))$	used in ran Theorem
	T is staged infinite ¹	T is staged barred ¹	alt used in Ean Theorem
used in Kőnig's Lemma	$\forall n \exists u (u = n \land u \in T)$	$\exists n \forall u (u = n \Rightarrow u \in T)$	alt. used in Fan Theorem
	Effective concepts (
	T is a spread	T is barricaded ¹	
used in C_{WKL}	$\langle \rangle \in T \wedge T$ progressing	$T \text{ hereditary} \Rightarrow \langle \rangle \in T$	
	T is productive	T is inductively barred	
	$\langle \rangle \in \nu X. \lambda u. (u \in T \land \exists b u \star b \in X)$	$\langle\rangle\in\mu X.\lambda u.(u\in T\vee\forall bu\star b\in X)$	used in Bar Induction
	Observational concepts		
	T has an infinite branch	T is barred	
	$\exists \alpha \forall u (u \text{ initial segment of } \alpha \; \Rightarrow \; u \; \in \;$	$\forall \alpha \exists u (u \text{ initial segment of } \alpha \wedge u \in T)$	
	T)		

¹Not being aware of an established terminology for this concept, we use here our own terminology.

Giving the central rôle to *inductively barred* and its dual

We focus on the definition of the dual of inductively barred and on its dual productive. In full:

T is productive (short for productive from $\langle \rangle \in B^*$)

T productive from $u \in B^*$ holds when:

- $\bullet \; u \; {\rm is \; in \;} T$
- \bullet and, recursively, there is $b \in B$ such that T productive from $u \star b$

Giving the central rôle to inductively barred and its dual

Bar induction (BI_{BT}) T barred \Rightarrow T inductively barred

Tree-Based Dependent Choice (DC_{BT}^{prod}) T productive $\Rightarrow T$ has an infinite branch

Recovering standard principles

 $\mathsf{WKL}_T \iff \mathsf{DC}^{prod}_{\mathbb{B}oolT}$ up to classical (actually co-intuitionistic) reasoning

 $WFT_T \iff BI_{BoolT}$ up to intuitionistic reasoning

 $\mathsf{DC}^{serial}_{BRb_0} \iff \mathsf{DC}^{prod}_{BR^{\triangleright}(b_0)}$

where

$$u \in R^{\triangleright}(b_0) \triangleq \text{ case } u \text{ of } \begin{bmatrix} \langle \rangle & \mapsto \top \\ b & \mapsto R(b_0, b) \\ u' \star b \star b' & \mapsto R(b, b') \end{bmatrix}$$

 $\mathsf{DC}_{BRb_0}^{serial} \triangleq \forall b \exists b' R(b, b') \Rightarrow \exists \alpha \left(\alpha(0) = b_0 \land \forall n \ R(\alpha(n), \alpha(n+1)) \right)$

Relaxing the sequentiality

Let A and B be domains. Let now use v to range over the set $(A \times B)^*$ of finite sequences of pairs of elements in A and B.

We say $(a,b) \in v$ if (a,b) is one of the components of v.

We write $v \leq v'$ is v is included in v' when seen as sets.

For $v \in (A \times B)^*$, we write dom(v) for the set of a such that there is some b such that $(a, b) \in v$.

If $\alpha \in A \to B$, we write $v \prec \alpha$ and say that v is a finite approximation of α if $\alpha(a) = b$ for all $(a, b) \in v$.

Let T be a predicate on $(A \times B)^*$. We write $\downarrow T$ and $\uparrow T$ to mean the following inner and outer closures with respect to \leq :

$$v \in \downarrow T \triangleq \forall v' \le v \ (v' \in T)$$
$$v \in \uparrow T \triangleq \exists v' \le v \ (v' \in T)$$

Relaxing the sequentiality (effective view)

T inductively A-B-barred from $v \in (A \times B)^*$ holds when:

- $\bullet \; v$ is in the outer closure of T
- or, recursively, there exists $a \notin dom(v)$ such that for all $b \in B$, T is inductively A-B-barred from $v \star (a, b)$

T coinductively A-B-approximable from $v \in (A \times B)^*$ holds when:

- $\bullet \; v$ is in the inner closure of T
- and, recursively, for all $a \notin dom(v)$, there is $b \in B$ such that T is coinductively A-B-approximable from $v \star (a, b)$

Relaxing the sequentiality (observational view)

T A-B-barred if $\forall \alpha \in A \rightarrow B \exists v \prec \alpha \ (v \in T)$

T has an A-B-choice function if $\exists \alpha \in A \to B \; \forall v \prec \alpha \; (v \in T)$

This leads to the following generalisation

Generalised Bar Induction (GBI_{ABT})

 $\underbrace{\underline{T \ A-B-barred}}_{observational} \implies \underbrace{\underline{T \ A-B-inductively \ barred}}_{effective}$

Generalised Dependent Choice (GDC_{ABT})

 $\underbrace{T \text{ coinductively } A\text{-}B\text{-}approximable}_{effective} \implies \underbrace{T \text{ has an } A\text{-}B\text{-}choice \text{ function}}_{observational}$

Results justifying the generalisation

$\mathsf{GBI}_{\mathbb{N}BT}\iff\mathsf{BI}_{BT}$

 $\mathsf{GDC}_{\mathbb{N}BT} \iff \mathsf{DC}_{BT}^{prod}$

Actually, GBI_{ABT} and GDC_{ABT} could be further generalised into schemes $GBI_{ABT\leq}$ and $GDC_{ABT\leq}$ such that instantiating the order with the prefix order on approximations of $\mathbb{N} \to B$ gives BI_{BT} and DC_{BT}^{prod} while instantiating the order with the inclusion order gives GBI_{ABT} and GDC_{ABT} .

The Boolean Prime Ideal Theorem

The specialisation to \mathbb{B} ool of the generalisation also captures the Boolean Prime Ideal Theorem.

Let $(\mathcal{B}, \lor, \land, \bot, \top, \neg, \vdash)$ be a Boolean algebra and I an ideal on \mathcal{B} . We extend I on $(\mathcal{B} \times \mathbb{B}ool)^*$ by setting $u \in I^+$ if $(\bigvee_{(b,0) \in u} \neg b) \lor (\bigvee_{(b,1) \in u} b) \in I$. We have:

 $\mathsf{GDC}_{\mathcal{B}\mathbb{B}\mathrm{ool}I^+}\iff \mathsf{BPI}_{\mathcal{B},I}$

The full axiom of choice

Let AC_{ABR} be $\forall a^A \exists b^B R(a, b) \Rightarrow \exists \alpha^{A \to B} \forall a^A R(a, \alpha(a))$

Define the *positive alignment* R_{\top} of R by

$$R_{\top} \triangleq \lambda u. \, \forall (a, b) \in u \, R(a, b)$$

Then, AC_{ABR} arrives as the instance $GDC_{ABR_{\top}}$

Strength of the generalisation

Without further restrictions, GDC and GBI are inconsistent:

- Take $A \triangleq \mathbb{N} \to \mathbb{B}$ ool
- Take $B \triangleq \mathbb{N}$
- Define T so that it constrains a choice function to be injective:

$$v \in T \triangleq \forall ff'n, ((f,n) \in v) \land ((f',n) \in v) \Rightarrow f = f'$$

Then, in the case of GDC, a coinductive A-B-approximation can always be found but an A-B-choice function would be an injective function from $\mathbb{N} \to \mathbb{B}$ ool to \mathbb{N} , what is inconsistent.

A consistent restriction

A naive restriction is to require that:

- \bullet either A is countable
- $\bullet \mbox{ or } B$ is finite
- or T is atomic (or unary), meaning for all u and v:
 - in the ill-founded case $u \in T \land v \in T \Rightarrow u \cup v \in T$
 - in the barred case $u \cup v \in T \Rightarrow u \in T \lor v \in T$

The restriction preserves the previous instantiations and makes GDC equivalent to AC since it implies AC, and, conversely, each of its three restrictions is implied by a consequence of AC.

Dually for **GBI**.

Summary of main results

Remarks and perspectives

Studying the principles together with their dual allow to see where non-linear reasoning is used. For instance, that the equivalence between WKL_T^{staged} and $\mathsf{GDC}_{\mathbb{NBool}T}$ is essentially classical means that the equivalence between $\mathsf{WFT}^{uniform}$ and $\mathsf{GBI}_{\mathbb{NBool}T}$ is essentially non-linear. And conversely, that the latter is intuitionistic says that the former only requires the co-intuitionistic reasoning part of classical logic.

Other variants of choice can probably be added to the picture:

- U. Berger's update induction on functions in N → B for open predicates seems to directly generalize to updates of functions on A → B for predicates of finite character (i.e. of the form ∀v ≺ α (v ∈ T) or ∃v ≺ α (v ∈ T)), giving a well-founded induction principle, or dually, maximal approximations.
- generalisations of hybrid forms such as J. Berger's C_{Fan} seem also to be rather canonical:

T coinductively approximable $\land U$ barred $\Rightarrow \exists u (u \in T \land u \in U)$ T has a choice function $\land U$ inductively barred $\Rightarrow \exists u (u \in T \land u \in U)$