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Two approaches to computing with equality

Parametric polymorphic equality

- Equality as smallest reflexive relation (Martin-L6f's type theory)
- Jpreflt =t

Ad hoc polymorphic equality
- Each type has its own equality (observational type theory, cubical type theory)

- Transport/substitutivity defined by (meta-level) induction on the type structure
example: Jyz aq.(4;x4,) P (P15 12) = (Dreng.a; Py Dreng.a, D E2)
- Supports extensionality

- Requires some techniques to deal with dependency and contravariance; better done
using equality over



Equality as path

Cubical Type Theory reinterprets equality as a path over a formal interval

- Postulate a formal interval I = “[0;1]” and treat equality as if characterised by

t=4u = {f 1A f0=tAfl=u}

- This notion of equality generalises into a (cubical) “equality over”: t =, u depends on
a proof € : A = B (i.e. itself € : T — U) stating that the type A of t is equal to the
type B of u

t=cu = {f:(Ili:Le)| fO=tAfl=u}



Our analysis of the contributions of Cubical Type Theory

- It decomposes equality as a path: abstraction/application allows to enter or conceal
dimensions and reason within these dimensions.

This provides functoriality (at all dimensions) and function extensionality which oth-
erwise would have to be expressed by proper combinators.

This can (a posteriori) be seen as iterated parametricity in direct style.
- It introduces equality over as a “consistent” heterogeneous equality (compare to Ob-
servational Type Theory which uses John Major equality).
This allows to internalise a cubical geometrical shape in type theory (which otherwise
is globular)®.
- It provides a (Kan) box composition /filling structure which extends transport/substitutivity

(together with specific definitional rules).

- An extra "‘gluing” operation provides univalence.

'This cubical structure can natively be equipped with algebraic structure echoing to logical structural rules: contraction (cartesian
structure with diagonals), exchange (symmetric group of permutation), as well as symmetry (providing inverses called reversals), connections
(for oblique commutative diagrams); this structure can be given either by term combinators or by interval combinators (e.g. one gets inverse
either by adding a term operation p~! or by adding an interval operation —i). There is also a room of manoeuvre about which properties
of this structure is definitional (for instance, one would like (p~!)~! = p, resp. — — i = 1).
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Our own approach of Cubical Type Theory

- Equality on types is defined to be equivalence

- Equivalence is enough to provide the substitutivity /transport /composition /filling struc-
ture

This structure is "minimalistic’ and we believe it is definitionally compatible with the
rule Jpreflt = ¢

- It is aimed to be iterated univalent parametricity in direct style and we inherit defini-
tional rules from it

- In particular, abstraction /application over a variable in the formal interval are seen as
operations



Core equality structure in Cubical Type Theory

Syntax
t,A,p,e i= .| t=cu| \i.t | pi
Typing rules
'Fe: A=)y, B 't A ['Fu:B
I't=.u : U,
IikFt: A 'Fov:t=.u el
[ Xt t|0/i] =54 t]1/1] I'Fwi:er

where the key steps of t[0/i] and t[1/i] are (pi)[0/i] = t and (pi)[1/i] & u whenever
p:t=cu.

Conversion rules

I'Fp:t=.u 1 fresh IiFt: A jel
'EXi(pi)=p:t=cu I'E(Nit)g =tlj/i]: Alj/i]

This is considered on top of an ambiant type theory with U,, Ya : A.B, lla : A.B, ...
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Examples

- reflexivity. t £ \i.t, for i fresh and t of type A, shall represent a proof of ¢ =4t

- functoriality: if f: A — B and p:t =3 uthen Xi.f(pi) is a proof of ft =5 fu

- dependent functoriality: it f :1la : A.B and p : t =7 u then Ai.f(p7) is a proof of
ft —M\i.Bpi/al fu

- functional extensionality trivially provable (swap term variable with direction variable):
it p:1la:A. (foa =y fra) then XNa.pai : fo =yinea s fi



Further examples

- commutation of sum with equality:

if p: t =xxaap u then Ai.snd(pi) proves
Shd(t) — \i. B[fst(pi)/a) Sﬂd(ZL).

- nestings of equality have a cubical structure, stable by permutation
t

[

t
eg. ifa: P = 9 (geometrically * v ), thena® & Nij.aji: " T 7| | N | )
v w

r=gs

é

u

where we used the abbreviation v Z¢w = \i.(vi —52 wi).

- diagonals: if a: P = 4

N (geometrically »
r=gs

:-—w

|q then Aaw & \i.«ii proves
t =AE W

- supports reasoning with equality over an equality without breaking the symmetry

U1 = Xi.vect (p i) U2 whenever p-np=5ne

- appropriate to compute with Higher Inductive Types (HITs)

case t of base = b|loopi = i end
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Cubical equality encourages to reason by pointwise transport

Let f: A — Aandp:Vaf(a) =5 a Fora: A, let us prove that f(pa) = p(fa)
where f(pa) is functorial application of f, i.e. Ai.f(pai).

We need to find a “continuous” term ¢ that evaluates into p(fa) in 0 and in f(p(a) in
1. To connect these terms, it is convenient to rephrase them into

Mi. f(p(id a)7)
and

Ai.id(p(fa)i)
(using 1 and [-expansions) so as to expose the similarity of structure. Then, for any
t, the equation ft = idt unifies along the interval if we can find a term 7¢’ such that
ft =?¢'0 and idt =?¢'1. The solution is ?¢' = pt. Similarly, id ¢ - ft unifies along the
interval by setting 7¢” = pt where € denotes a proof of v = w whenever e proves w = v.
It finally suffices to combine this into a unifier of the original problem:

q0 = M. f (p (da ) 1)
ql = M. id (p (fa ) 1)
‘qj = Xi.p (p(pa j)i)j

Hence ¢ = \j. \i.p(p(paj)i)j



A symmetric definition of equivalence
(exercise 4.2 of the HoTT Book)

We extend the theory with a record type A ~,, B (equivalence in universe U,,) defined
as follows. If € : A ~,, B, the following projections are available:

= :A—B—=U,;

I . A— B;

I - Ta:A.a=4 Ca:

53?6 :Ha:A.Hb:B.azeb%?a:Bb

C—Te_j : Ia : A.1Tb BHp a4 =¢ b:e>a :)\i.(azeco—eé(p)z’)p
€ . B— A;

T . Ib:B.EB) =pb

éo_e_e :Ha:A.Hb:B.azeb%a:A?b

i =

coe. : Ila: AIlb: B.1lp:a =c b.p =) &e iz € (D)

In particular, setting (A == B) £ (A =, B), substitutivity shall become a conse-
quence of ¢ =¢ u — P(t) =g P(u)
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Excerpt of rules defining A7. A as a proof of equivalence

Excerpt of the semantics of U,

= ~

Uu,A = A _U—:>AEA

(A=g B) = A~, B — " R
' U,B = B ?AEA

Excerpt of the semantics of Ai.Xa : A.B:

(t = \i Y AR u) = Ya: (fstt —y; A fst U) (snd t i Blfst

(ai
NiYa:ABt = (m(fstt) i B[ 4 ai/al(sndt))
Ai.Ya ABt Al A(fstt) \i. B[)\ZAaz/a](sndt))

= (
XiYa A5 t= (A (fstt), A Bhud 1 (snd1))
(

pa \i A ai/al
(sndt))

Nva ABt=ualfstt), S

’ )\z Bl i A ati/al

And similar other rules, including for A ~, B and Ila : A.B (though the design for
the latter is not yet stabilised)
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Excerpt of related works

Takeuti (1953), Gandy (1956): setoid interpretation in Church’s simple type theory
Hofmann (1995), Altenkirch (1999): setoid interpretation in type theory
Altenkirch-McBride-Swiestra (2007): setoid interpretation in direct style
Licata-Harper (2012): two-dimensional type theory

Barras-Coquand-Huber (2015): semi-simplicial interpretation
Bernardy-Coquand-Moulin (2015): iterated parametricity in direct style
Altenkirch-Kaposi (2015): towards univalent parametricity

Tabareau-Tanter-Sozeau (2018): univalent parametricity at dimension 1

More generally, a motto is that we should eventually have a “polysemy” between some

type theory in direct style, a corresponding indirect interpretation type theory by transla-
tion, a corresponding higher-dimensional presheaf interpretation.

In particular, we generalise Bernardy-Coquand-Moulin into an iterated wunivalent para-
metricity translation (in progress).
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