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Two approaches to computing with equality

Parametric polymorphic equality

- Equality as smallest reflexive relation (Martin-Löf’s type theory)

- J
P

refl t ⌘ t

Ad hoc polymorphic equality

- Each type has its own equality (observational type theory, cubical type theory)

- Transport/substitutivity defined by (meta-level) induction on the type structure
example: J

�x.�q.(A1⇥A2) p (t1, t2) ⌘ (J
�x.�q.A1 p t1, J�x.�q.A2 p t2)

- Supports extensionality

- Requires some techniques to deal with dependency and contravariance; better done
using equality over
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Equality as path

Cubical Type Theory reinterprets equality as a path over a formal interval

- Postulate a formal interval I , “[0; 1]00 and treat equality as if characterised by

t =
A

u , {f : I! A | f0 ⌘ t ^ f1 ⌘ u}

- This notion of equality generalises into a (cubical) “equality over”: t =
✏

u depends on
a proof ✏ : A = B (i.e. itself ✏ : I! U) stating that the type A of t is equal to the
type B of u

t =
✏

u , {f : (⇧i : I.✏i) | f0 ⌘ t ^ f1 ⌘ u}
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Our analysis of the contributions of Cubical Type Theory

- It decomposes equality as a path: abstraction/application allows to enter or conceal
dimensions and reason within these dimensions.
This provides functoriality (at all dimensions) and function extensionality which oth-
erwise would have to be expressed by proper combinators.
This can (a posteriori) be seen as iterated parametricity in direct style.

- It introduces equality over as a “consistent” heterogeneous equality (compare to Ob-
servational Type Theory which uses John Major equality).
This allows to internalise a cubical geometrical shape in type theory (which otherwise
is globular)1.

- It provides a (Kan) box composition/filling structure which extends transport/substitutivity
(together with specific definitional rules).

- An extra “gluing” operation provides univalence.

1
This cubical structure can natively be equipped with algebraic structure echoing to logical structural rules: contraction (cartesian

structure with diagonals), exchange (symmetric group of permutation), as well as symmetry (providing inverses called reversals), connections

(for oblique commutative diagrams); this structure can be given either by term combinators or by interval combinators (e.g. one gets inverse

either by adding a term operation p

�1
or by adding an interval operation �i). There is also a room of manoeuvre about which properties

of this structure is definitional (for instance, one would like (p�1)�1 ⌘ p, resp. �� i = i).
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Our own approach of Cubical Type Theory

- Equality on types is defined to be equivalence

- Equivalence is enough to provide the substitutivity/transport/composition/filling struc-
ture
This structure is “minimalistic” and we believe it is definitionally compatible with the
rule J

P

refl t ⌘ t

- It is aimed to be iterated univalent parametricity in direct style and we inherit defini-
tional rules from it

- In particular, abstraction/application over a variable in the formal interval are seen as
operations
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Core equality structure in Cubical Type Theory

Syntax

t, A, p, ✏ ::= ... | t =
✏

u | �i.t | pi

Typing rules
� ` ✏ : A =

�i.U

n

B � ` t : A � ` u : B

� ` t =
✏

u : U

n

�, i ` t : A

� ` �i.t : t[0/i] =
�i.A

t[1/i]

� ` v : t =
✏

u i 2 �

� ` v i : ✏ i

where the key steps of t[0/i] and t[1/i] are (pi)[0/i] , t and (pi)[1/i] , u whenever
p : t =

✏

u.

Conversion rules
� ` p : t =

✏

u i fresh
� ` �i.(pi) ⌘ p : t =

✏

u

�, i ` t : A j 2 �

� ` (�i.t)j ⌘ t[j/i] : A[j/i]

This is considered on top of an ambiant type theory with U

n

, ⌃a : A.B, ⇧a : A.B, ...

6



Examples

- reflexivity: bt , �i.t, for i fresh and t of type A, shall represent a proof of t = b
A

t

- functoriality: if f : A! B and p : t = b
A

u then �i.f (pi) is a proof of ft = b
B

fu

- dependent functoriality: if f : ⇧a : A.B and p : t = b
A

u then �i.f (pi) is a proof of
ft =

�i.B[pi/a] fu

- functional extensionality trivially provable (swap term variable with direction variable):
if p : ⇧a :A. (f0 a =

�i.B

f1 a) then �ia.pai : f0 =�i.⇧a:A.B f1
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Further examples

- commutation of sum with equality: if p : t =
�i.⌃a:A.B u then �i.snd(pi) proves

snd(t) =
�i.B[fst(pi)/a] snd(u).

- nestings of equality have a cubical structure, stable by permutation

e.g. if ↵ : p = q

r e=E s

(geometrically

t

p

✏✏

r //
v

q

✏✏

↵ +3

u

s //
w

), then ↵� , �ij.↵ji : r = s

p e=E� q
(

t

r

✏✏

p //
u

s

✏✏

↵�
+3

v

q //
w

)

where we used the abbreviation v e=
⇠

w , �i.(v i =
⇠ i

w i).

- diagonals: if ↵ : p = q

r e=
E

s

(geometrically

t

p

✏✏

r //
v

q

✏✏

↵ +3

u

s //
w

) then �↵ , �i.↵ii proves

t =�E

w

- supports reasoning with equality over an equality without breaking the symmetry

v1 =
�i.vect (p i) v2 whenever p : n1 =bN n2

- appropriate to compute with Higher Inductive Types (HITs)

case t of base ) b | loop i ) l i end
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Cubical equality encourages to reason by pointwise transport

Let f : A ! A and p : 8a f (a) = b
A

a. For a : A, let us prove that f (pa) = p(fa)
where f (pa) is functorial application of f , i.e. �i.f (pai).

We need to find a “continuous” term q that evaluates into p(fa) in 0 and in f (p(a) in
1. To connect these terms, it is convenient to rephrase them into

�i.f (p(id a)i)

and
�i.id(p(fa)i)

(using ⌘ and �-expansions) so as to expose the similarity of structure. Then, for any
t, the equation ft

?
= id t unifies along the interval if we can find a term ?q0 such that

ft ⌘?q00 and id t ⌘?q01. The solution is ?q0 , pt. Similarly, id t ?
= ft unifies along the

interval by setting ?q00 , pt where e denotes a proof of v = w whenever e proves w = v.
It finally suffices to combine this into a unifier of the original problem:

?q 0 = �i. f (p (id a ) i)
?q 1 = �i. id (p (f a ) i)
?q j = �i. p (p (p a j) i) j

Hence q , �j.�i.p(p(p a j) i) j
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A symmetric definition of equivalence
(exercise 4.2 of the HoTT Book)

We extend the theory with a record type A '
n

B (equivalence in universe U

n

) defined
as follows. If ✏ : A '

n

B, the following projections are available:

=
✏

: A! B ! U

n

;
�!
✏ : A! B;
=)
✏ : ⇧a : A. a =

A

�!
✏ a;

��!
coe

✏

: ⇧a : A.⇧b : B. a =
✏

b! �!✏ a =
B

b

===)
coe

✏

: ⇧a : A.⇧b : B.⇧p : a =
✏

b.

=)
✏ a =

�i.(a=
✏

��!
coe

✏

(p)i) p �
✏ : B ! A;
(=
✏ : ⇧b : B.

 �
✏ (b) =

B

b;
 ��
coe

✏

: ⇧a : A.⇧b : B. a =
✏

b! a =
A

 �
✏ b

(===
coe

✏

: ⇧a : A.⇧b : B.⇧p : a =
✏

b. p =
�i.( ��coe

✏

(p)i=
✏

b)
(=
✏ (b)

In particular, setting (A =c
U

n

B) , (A '
n

B), substitutivity shall become a conse-
quence of t =

⇠

u! P (t) =c
U

n

P (u)
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Excerpt of rules defining �i.A as a proof of equivalence

Excerpt of the semantics of cU
n

:

(A =c
U

n

B) ⌘ A '
n

B

�!
c
U

n

A ⌘ A

==)
c
U

n

A ⌘ b
A

 �
c
U

n

B ⌘ B

(==
c
U

n

A ⌘ b
A

Excerpt of the semantics of �i.⌃a : A.B:

(t =
�i.⌃a:A.B u) ⌘ ⌃a : (fst t =

�i.A

fst u).(snd t =
�i.B[fst (ai)/a] snd u)

��������!
�i.⌃a : A.B t ⌘ (

��!
�i.A(fst t),

�����������!
�i.B[

====)
�i.A

a i/a](snd t))
 ��������
�i.⌃a : A.B t ⌘ (

 ��
�i.A(fst t),

 �����������
�i.B[

(====
�i.A

a i/a](snd t))
==========)
�i.⌃a : A.B t ⌘ (

====)
�i.A

(fst t),
==============)
�i.B[

====)
�i.A

a i/a]
(snd t))

(==========
�i.⌃a : A.B t ⌘ (

(====
�i.A

(fst t),
(==============
�i.B[

(====
�i.A

a i/a]
(snd t))

And similar other rules, including for A '
n

B and ⇧a : A.B (though the design for
the latter is not yet stabilised)
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Excerpt of related works

Takeuti (1953), Gandy (1956): setoid interpretation in Church’s simple type theory
Hofmann (1995), Altenkirch (1999): setoid interpretation in type theory
Altenkirch-McBride-Swiestra (2007): setoid interpretation in direct style
Licata-Harper (2012): two-dimensional type theory
Barras-Coquand-Huber (2015): semi-simplicial interpretation
Bernardy-Coquand-Moulin (2015): iterated parametricity in direct style
Altenkirch-Kaposi (2015): towards univalent parametricity
Tabareau-Tanter-Sozeau (2018): univalent parametricity at dimension 1

More generally, a motto is that we should eventually have a “polysemy” between some
type theory in direct style, a corresponding indirect interpretation type theory by transla-
tion, a corresponding higher-dimensional presheaf interpretation.

In particular, we generalise Bernardy-Coquand-Moulin into an iterated univalent para-
metricity translation (in progress).
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