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Abstract—Constructions such as semi-simplicial and semi-
cubical sets can be defined in the “usual way” as presheaves
over respectively, the semi-simplex or semi-cube category,
which we call fibered definitions, but also defined like in
e.g. Voevodsky [1] or in previous work [2], as a dependently-
typed construction, which we call indexed.

This paper describes a uniform indexed characterization of
both augmented semi-simplicial and semi-cubical sets aris-
ing respectively as unary and binary iterated parametricity-
based constructions.

Additionally, our construction is fully formalized in Coq’s
dependent type theory.

I. INTRODUCTION

In the context of functional programming, Reynolds’
parametricity [3] interprets types as relations characteriz-
ing the observational behavior of programs of this type.
Parametricity can be iterated, and it has been noted that
iterated Reynolds’ parametricity has the structure of a
cubical set [4], [5], [6], [7], [8]. We obtain a unary variant
of Reynolds’ binary parametricity by using predicates or
families instead of relations or graphs, in which case, we
obtain a form of realizability [9], [10], [6]. It has then been
noted that iterated unary parametricity has the structure
of an augmented simplicial set a.

We exploit the connection between iterated unary
parametricity and augmented simplicial sets, and be-
tween iterated binary parametricity and cubical sets to
present a uniform construction of both augmented semi-
simplicial and semi-cubical sets, generated by iterating
the parametricity translation for type judgements. In
contrast to the standard presheaf presentation of aug-
mented semi-simplicial and semi-cubical sets [11], [12],
[13], our uniform construction, which we call ν-sets, is
indexed. That is, instead of having the set of augmented
semi-simplices or semi-cubes in dimension n + 1 fibered
over the set of augmented semi-simplices or semi-cubes
in dimension n, we consider families of augmented semi-
simplices and semi-cubes indexed over their faces.

As a result, our work can be seen as contributing
the following: it characterizes, will full details, how
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to technically define parametricity iterated in arbitrary
dimensions; it provides a new example of indexed con-
structions of semi-simplicial and semi-cubical sets [1],
[2], [14], useful in the direction of better understanding
the technicality of coherence issues in defining “semi-
simplicial types” [14], [15], [16], [17], as well as the
dialectic between reasoning in Extensional Type Theory
and Intensional Type Theory (as will be discussed in
Section IV-B); it makes a step in the direction of the
program initiated in [5] to develop parametricity-based
models of parametric type theory [18], [19], [20] and
cubical type theory [21], [22], [23] which are closer to
the syntax of type theory and thus more liable to reflect
definitional properties of type theory than presheaf-
based cubical sets would do (compare e.g. to the loss
of definitional properties when interpreting “indexed”
dependent types of type theory as “fibrations” in models
such as locally cartesian closed categories [24]).

The outline of the paper is as follows. We recall the
definition of the augmented semi-simplicial and semi-
cubical categories using a combinatorial presentation,
that directly leads to our generalization to ν-sets, in II.
We then proceed to explain the connection between the
indexed representation and parametricity in III. Before
spelling out the details of our formalization in type-
theoretic language in IV-B and IV-C, we give intuitions
in IV-A. We end with some of the finer details of our
mechanization in IV-D.

See github.com/artagnon/bonak for our mechaniza-
tion. The construction was conceived in Summer 2019,
and the mechanization began in late 2019. A sketch of
the construction was presented at the 2020 HoTT-UF
workshop and the completion of the mechanization was
reported at the TYPES 2022 conference.

II. SEMI-SIMPLICIAL AND SEMI-CUBICAL SETS

In this section, we give a uniform definition of semi-
simplicial and semi-cubical sets which we believe is
folklore. The uniformity allows the definition of a notion
of ν-sets that subsumes semi-simplicial and semi-cubical
sets.

https://github.com/artagnon/bonak


A. Augmented semi-simplicial sets

Augmented semi-simplicial sets are defined similarly
to semi-simplicial sets, except that the connected com-
ponents are additionally dependent on a “color”. Con-
versely, semi-simplicial sets can be seen as augmented
semi-simplicial sets over a singleton set of colors.

Let us associate dimension 0 to colors; then, points are
dimension 1, lines are dimension 2, and so on. There is
hence a shift by one when compared to semi-simplicial
sets. We can then draw augmented semi-simplicial sets
like semi-simplicial sets, except for this shift by one.

While ordinary semi-simplicial sets are presheaves
over the semi-simplex category, augmented semi-
simplicial sets are presheaves over, what we will define
as, ∆+. There are different ways to define ∆+, up to
equivalence, and we use a definition that will later
straightforwardly extend to semi-cubical sets.

II-A.1 Notation [Finite sequences] We denote finite se-
quences by [i1, . . . in] for ij ranging over some domain.
In particular, the empty sequence is written [] and we
define i :: [j1, . . . , jn] to be [i, j1, . . . , jn].

II-A.2 Definition [∆+] The definition of ∆+ is shown
in Fig. 1. Note that, if g ◦ f is well-defined, then the
length of f is less than that of g. It can be shown that
composition is associative and that id is neutral.

II-A.3 Definition [Set∆+ ] We define the category of aug-
mented semi-simplicial sets as the functor category:

Set∆+ := Set∆
op
+

To provide examples, we define the standard aug-
mented n-semi-simplex.

II-A.4 Definition [∆n
+] The standard augmented n-semi-

simplex ∆n
+ is defined as what is called the Yoneda

embedding of n ∈ Obj(∆+):

∆n
+ : Set∆+

∆n
+(p) := Hom(p, n)

∆n
+( f ) := λg. g ◦ f

The standard augmented 0-semi-simplex is a singleton
made of one color (in our case black). Standard aug-
mented n-semi-simplices for n ≥ 1 have a geometric
interpretation, and we illustrate them for dimensions 1,
2, and 3.

II-A.5 Example [∆1
+] The standard augmented 1-semi-

simplex can be pictured as a point, colored black, cor-
responding to the unique morphism in Hom(0, 1). This
point is the identity in Hom(1, 1); it is hence shown as a
singleton ⋆.

⋆

II-A.6 Example [∆2
+] The standard augmented 2-semi-

simplex is drawn as two points, given by Hom(1, 2),
along with a line connecting them, given by Hom(2, 2).

We use the color black to denote the unique morphisms
in Hom(0, 1) and Hom(0, 2).

⋆0 0⋆⋆⋆

II-A.7 Example [∆3
+] ∆3

+ is drawn as three points, given
by Hom(1, 3), three lines connecting them, given by
Hom(2, 3), and a triangular filler given by Hom(3, 3).

00⋆

⋆00 0⋆0

0⋆⋆

⋆⋆0

⋆0⋆
⋆⋆⋆

More generally, the standard augmented (n+ 1)-semi-
simplex can be obtained by taking a copy of the standard
augmented n-semi-simplex serving as a base and gluing
on top of it another copy lifted by one dimension. In
the second copy, the color becomes an extra point, the
points become lines connecting the points of the base to
the extra point and so on. In particular, the components
of the base are those of the standard augmented n-semi-
simplex postfixed by 0 while the components of the lifted
copy are postfixed by ⋆. Note that the components may
be oriented by letting each n-dimensional component
point to the (n− 1)-dimensional component obtained by
replacing the leftmost ⋆ of the n-dimensional component
with 0.

B. Semi-cubical sets
Semi-cubical sets are defined like augmented semi-

simplicial sets except that ∆+ is replaced by □ in which
we take sequences of L, R and ⋆, instead of sequences of
0 and ⋆. They represent ordinary semi-cubical sets, with
faces (and no augmentation).
II-B.1 Definition [□] The definition of □ is shown in
Fig. 2. The symbols L and R indicate opposite faces of a
cube.

Again, if g ◦ f is well-defined, then the length of f is
less than that of g. It can be shown that composition is
associative and that id is neutral.
II-B.2 Definition [Set□] We define the category of semi-
cubical sets as the functor category:

Set□ := Set□
op

II-B.3 Definition [□n] The standard semi-cube □n is de-
fined as the Yoneda embedding of n ∈ Obj(□):

□n : Set□
□n(p) := Hom(p, n)
□n( f ) := λg. g ◦ f

Standard n-semi-cubes have a geometric interpreta-
tion, which we illustrate for dimensions 0, 1, and 2.



Obj(∆+) := N

Hom(p, n) := {l ∈ [0, ⋆]n | number of ⋆ in l = p}

g ◦ f :=


f if g = []

0 :: (g′ ◦ f ) if g = (0 :: g′)
a :: (g′ ◦ f ′) if g = (⋆ :: g′), f = (a :: f ′), where a = 0 or ⋆

id := [⋆, . . . , ⋆] n times for id ∈ Hom(n, n)

Fig. 1: Definition of ∆+

Obj(□) := N

Hom(p, n) := {l ∈ [L, R, ⋆]n | number of ⋆ in l = p}

g ◦ f :=


f if g = []

a :: (g′ ◦ f ) if g = (a :: g′), where a = L or R
a :: (g′ ◦ f ′) if g = (⋆ :: g′), f = (a :: f ′), where a = L, R, or ⋆

id := [⋆, . . . , ⋆] n times

Fig. 2: Definition of □

II-B.4 Example [□0] □0 is Hom(0, 0), or the singleton set
of the empty sequence:

{}

II-B.5 Example [□1] □1 consists of two points, given by
Hom(0, 1) and a line, given by Hom(1, 1).

L R⋆

II-B.6 Example [□2] □2 consists of four points, given by
Hom(0, 2), four lines connecting the four points, given
by Hom(1, 2), and a filler, given by Hom(2, 2):

LR RR

LL RL

⋆R

L⋆ R⋆

⋆L

⋆⋆

More generally, the standard (n + 1)-semi-cube can be
obtained by taking two copies of the standard n-semi-
cube serving as bottom and top face and connecting
them on their border by a cylinder obtained as a third
copy stretched in the new dimension. The bottom and
top faces are obtained from the standard n-semi-cube by
postfixing with respectively L and R while the cylinder is
obtained by postfixing with ⋆. Note that the components
can this time be oriented by letting each n-dimensional
component go from the (n − 1)-dimensional component
obtained by replacing the leftmost ⋆ with L to the one
obtained by replacing the leftmost ⋆ with R.

C. Generalization to ν-sets

Let us call ν-sets, the generalization of augmented
semi-simplicial sets and semi-cubical sets. To obtain this,
we extend ∆+ and □ in a straightforward manner into
a category which we call ν-semi-shape category. The
morphisms of the ν-semi-shape category are sequences
of elements of a set ν of arbitrary cardinal, extended with
⋆, so that the following holds.

Value of ν 1 2

Interpretation Augmented
semi-simplicial
types

Semi-cubical
types

A ν-set is thus a contravariant functor ϕ from the ν-
semi-shape category to Set and we call n-ν-semi-shape
an element of ϕ(n). As in the augmented semi-simplicial
and semi-cubical cases, the standard (n + 1)-ν-semi-
shape is obtained by connecting together ν copies of the
standard n-ν-semi-shape with an extra copy stretched in
the new dimension. We clarify in the next sections how
this process of construction is similar to the parametricity
translation developed for functional programming [3]
and more generally for type theory [25], [26], [27], [18].

III. INDEXED REPRESENTATION AND PARAMETRICITY

In this section, we introduce some preliminaries on
interpreting sets in type theory, followed by a small
section on the indexed presentation, before relating it to
parametricity in III-C.



A. Preliminaries

Martin-Löf’s Type theory [28], [29] is a logical formal-
ism based on the notion of a type rather than that of a set.
It can be seen as a foundation of mathematics alternative
to set theory and is the core of several tools for the
formalization of mathematics such as Agda [30], Coq [31]
or Lean [32]. In type theory, propositions are types and
proofs are programs. A particularity of type theory is
also that types and programs, hence propositions and
proofs also, are considered modulo an equational theory
called definitional equality.

Type theory is a flexible formalism supporting dif-
ferent models. Some models are based on topological
spaces, where equality is interpreted as path, and sub-
stitutivity of equality as transport [33]. These models
support the univalence principle stating that equality
of types mimics equivalence of types, leading to the
development of Homotopy Type Theory [34]. In type
theory, types are organized in a hierarchy of universes
written Typem for m a natural number. Main types in
type theory are the types of dependent pairs, written
Σa : A. B(a), the types of dependent functions, written
Πa : A. B(a), for A a type and B(a) a type dependent
on the inhabitant a of A, and the type of propositional
equality, written t = u. We assume our type theory to
also include a distinguished singleton type, written unit,
and with inhabitant ∗, the type of boolean values, called
bool, and the type of natural numbers. We also write hd
and tl the projections of dependent pairs, and refl for
reflexivity. Logical propositions being types themselves,
we use Π to represent universal quantification and Σ to
represent existential quantification.

A notion of sets can be recovered in each universe as
HSetm, denoting the subtype of Typem for which paths
are degenerated, what can be expressed by the property
of Uniqueness of Identity Proofs (UIP). Technically, this
is expressed as a structure equipping a domain Dom with
the property UIP:

Dom : Typem

UIP : Πxy : Dom. Πpq : x = y. p = q

In HSetm, the following properties hold:

(i) UIP holds on the unit type, bool type, as well as all
types of finite cardinal ν.

(ii) UIP propagates to Σ-types.
(iii) UIP propagates to Π-types, with some additional

functional extensionality axioms.

Unless otherwise specified, we fix a universe level m
and abbreviate Typem as Type and HSetm as HSet.

B. Fibered versus indexed representation

There are different ways to represent a family of sets,
commonly known as the fibered and indexed represen-

tations. In type theory, they are equivalent, and this
equivalence can be formulated as:

(ΣS : HSet.(S → T)) ≃ (T → HSet)

Let us apply this correspondence to the case of semi-
cubical sets. A semi-cubical set can be represented as a
sequence of fibrations, together with appropriate coher-
ence conditions.

X0 : HSet X1 : HSet X2 : HSet . . .
δL
δR

δL⋆
δR⋆
δ⋆L
δ⋆R

If we think of X1 fibered over two copies of X0 in
an indexed way, we get X1 of type X0 → X0 → HSet.
Continuing the process, we can think of X2 fibered over
four copies of X1 themselves fibered over two copies of
X0 as a dependent type. We have a priori a dependency
over eight copies of X0 but these are actually four due
to the coherence conditions on the functor (e.g. that δR ◦
δR⋆ = δ(R⋆)◦(R) = δRR = δ(⋆R)◦(R) = δR ◦ δ⋆R, etc.). Based
on these coherence conditions, the types of X0, X1, X2
happen to have the form:

X0 : HSet

X1 : X0 → X0 → HSet

X2 : Πabcd. X1(a)(b) → X1(a)(c) → X1(b)(d)
→ X1(c)(d) → HSet

. . .

C. Relating to parametricity

The process of construction of the type of X1 from
that of X0, and from the type of X2 to that of X1 in the
last section, is similar to applying a binary parametricity
translation and expecting the resulting translation to be
inhabited. The parametricity which we consider inter-
prets a type A by a graph A⋆ over this type, and a
term t : A as an edge in A⋆(t)(t). In particular, HSet
is interpreted as the graph HSet⋆, which takes AL and
AR in HSet and returns the type AL → AR → HSet
of graphs over AL and AR. Also, for A interpreted by
A⋆ and B interpreted by B⋆, a dependent function type
Πa : A. B is interpreted as the graph (Πa : A. B)⋆ that
takes two functions fL and fR of type Πa : A. B, and
expresses that these functions map related arguments in
A to related arguments in B:

(Πa : A. B)⋆( fL)( fR) ≜

ΠaL : A. ΠaR : A. Πa⋆ : A⋆(aL)(aR). B⋆( fL(aL))( fR(aR))

In particular, for X : HSet, applying the parametric-
ity translation is about canonically associating to X an
inhabitant X⋆ of HSet⋆(X)(X) i.e. of X → X → HSet.
In turn, applying the parametricity translation to X⋆ :



X0 : unit︸︷︷︸
frame0,0

→ HSet

X1 : Σ∗ : unit.


X0(∗)︸ ︷︷ ︸

painting0,0

×
X0(∗)︸ ︷︷ ︸

painting0,0


︸ ︷︷ ︸

layer1,0︸ ︷︷ ︸
frame1,1

→ HSet

X2 : Σa :



Σ∗ : unit.



Σb :

X0(∗)
×

X0(∗)

 . X1 (∗, b)︸ ︷︷ ︸
restr2,0

frame,L︸ ︷︷ ︸
painting1,1︸ ︷︷ ︸

painting1,0

×

Σb :

X0(∗)
×

X0(∗)

 . X1 (∗, b)︸ ︷︷ ︸
restr2,0

frame,R︸ ︷︷ ︸
painting1,1︸ ︷︷ ︸

painting1,0


︸ ︷︷ ︸

layer2,0


︸ ︷︷ ︸

frame2,1

.



X1

(
a.hd,

(
a.tl.L.hd.L,
a.tl.R.hd.L

))
︸ ︷︷ ︸

restr2,1
frame,L︸ ︷︷ ︸

painting1,1

×

X1

(
a.hd,

(
a.tl.L.hd.R,
a.tl.R.hd.R

))
︸ ︷︷ ︸

restr2,1
frame,R︸ ︷︷ ︸

painting1,1


︸ ︷︷ ︸

layer2,1

︸ ︷︷ ︸
frame2,2

→ HSet

. . .

Fig. 3: Intuition for formal construction (ν = 2)

X → X → HSet is about canonically associating to X⋆

an inhabitant X⋆⋆ of (X → X → HSet)⋆(X⋆)(X⋆) i.e. of:

ΠxLL : X. ΠxLR : X. X⋆(xLL)(xLR)

→ ΠxRL : X. ΠxRR : X. X⋆(xRL)(xRR)

→ X⋆(xLL, xRL) → X⋆(xLR)(xRR) → HSet

which hints us at how the sequence X0, X1, X2 can
be seen as a sequence of inhabitants of the iteration of
binary parametricity applied to an initial X : HSet:

X0 ≜ X : HSet

X1 ≜ X⋆ : HSet⋆(X)(X)

X2 ≜ X⋆⋆ : (HSet⋆(X)(X))⋆(X⋆)(X⋆)
. . .

This tells us how the informal type given to X2 in the
previous section could be rephrased so that it comes as
the instance of a general recipe characterizing the type
of all Xi.

Notice, however, that the recipe obtained so far, Xn+1 :
(Sn)⋆(Xn)(Xn) for Xn : Sn, applies parametricity on the
syntax of the type of Xn. It does not directly yield a char-
acterization of Sn as a function from n. Reformulating
the recipe as an explicit recursive construction, with-
out requiring an interpretation of the syntax of types,
is the main outcome of this work, together with the
mechanization and the uniform treatment of augmented
semi-simplicial and semi-cubical sets by means of the
generalization to ν-sets.

IV. OUR CONSTRUCTION

Our construction is highly dependent, with dependen-
cies in inequality and equality proofs. It involves several
involved details, some of them being visible only in the
Coq formalization.

In Section IV-B and Tables I, II, III, IV, V, we give an in-
formal, mathematical definition in Extensional Type The-
ory, which roughly corresponds to a level of reasoning “à



la set theory” where equalities are thought as “holding
on the nose” without having to mention them explicitly
once they are justified. In Section IV-C and Tables VI, VII,
VIII, IX, X, we give the same mathematical definition
in Intensional Type Theory, where transporting along
coherence conditions is now made explicit. Adding this
level of details helps to understand the specificities of
coherence conditions.

But first, we start with a section gradually and infor-
mally explaining the intuition of the construction. It can
be read in parallel with the tables if wished.

A. Intuition for our formal construction

To assign types to X0, X1, X2, . . . in the above indexed
representation, we give a recursive definition relying on
building blocks, which we call frame, layer, and painting.
A frame is a boundary of a standard form (simplex,
cube, etc.), which we decompose into layer, and a painting
corresponds to a filled frame. Some frame are full and we
call them fullframe.

We assign every Xn the type fullframen → HSet uni-
formly, applying to the description above the isomor-
phism between A → B → C and A × B → C, or
between Πa : A. (Ba → C) and (Σa : A. Ba) → C. In
particular, fullframen is a “telescope”, i.e. a nesting of Σ-
type. Let us now illustrate how we build fullframen. To
begin, let us set fullframe0 = unit, so that the type HSet
of X0 can be equivalently formulated as unit → HSet.
Then, more generally, we let each fullframen consist of
n layers, written layern,p with p < n, that we stack in
order, starting from the unit type and writing framen,p

for the p first layers of a fullframen, so that fullframen is
framen,n. For instance, X1 is made of one layer, so that
it can be written as a Σ-type of an inhabitant of the unit
and layer1,0, as shown in Fig. 3. Fig. 3 also mentions how
the type of X2 is structured.

Let us now illustrate the construction of fullframe3,
necessary to build the type of X3.

The figure on the left is frame3,1, on the right is frame3,2,
and on the bottom is frame3,3, which is full. Further,
frame3,1 is made of one layer, layer3,0, shown in blue,
frame3,2 is made of one additional layer, layer3,1, shown
in red, frame3,3 is made of one more layer, layer3,2, shown
in green.

We illustrated here the cubical case, that is ν = 2,
but, in general, a layern,p is a product of ν paintingn−1,p.
A paintingn,0 is a n-dimensional object corresponding to
a filled fullframen. More generally, a paintingn,p is an n-
dimensional object which has the form of a paintingn−p,0,
thus of (n − p)-dimensional form, but shifted and living
in dimensions p to n. Such paintingn,p fills a space framed
by a partial framen,p so that, together, they form a filled
fullframen. For instance, in the picture, each of the two
painting2,0 of layer3,0 is a filled blue square, each of
the two painting2,1 of layer3,1 is the line shown in red,
stretched into a partial square filling the partial frames
made of respectively the left and right border of the
blue square, and each of the two painting2,2 of layer3,2

is a point shown in green, stretched into a partial square
filling the full frames made respectively of the upper and
lower borders of the blue and red squares. A paintingn,p

complements a framen,p by adding layers needed to form
a fullframen and by filling the resulting fullframen with an
inhabitant of Xn. Layers are added from dimension n to
dimension p that is opposite to the order from 0 to p the
framen,p are built, as shown below.

framen,p ≜ Σan : (. . . (Σ∗ : unit. layern,0) . . .). layern,p−1

paintingn,p ≜ Σlp : layern,p.(. . . (Σln : layern,n−1. Xn) . . .)

So far, we have not paid attention to the fact that we
have a dependent type, shown as a Σ. Let us be more
precise about this requirement. First, fullframen depends
on all Xi up to n − 1. So, we need to package up Xi, for
i < n, into a nesting of Σ-types, which we abbreviate
as νSet<n. This allows us to give the type νSet<n →
HSet to fullframen. Then, for D : νSet<n, representing
an initial prefix of X0, X1, . . . Xn−1, the indexed set Xn
has type fullframen(D) → HSet. Thus, framen,p, layern,p

and paintingn,p also depend on D. We can then refine
the previous equation by showing the dependencies on
D. In particular, Xn is just D.tl.

framen,p(D) ≜

Σan : (. . . (Σ∗ : unit. layern,0(D)) . . .). layern,p−1(D)

paintingn,p(D) ≜

Σlp : layern,p(D). (. . . (Σln : layern,n−1(D). D.tl) . . .)

An extra refinement arises from the fact that each
addition of a layer to a frame has to be glued onto
the border of the partial frame built so far. So, each
layern,p has to depend on framen,p. We also need a way
to characterize the border of the ν paintingn−1,p that
compose a layern,p, and this is restr

n,p
frame,ϵ,p, for all ϵ < ν.



framen,p(D) ≜ Σd : (. . . (Σ∗ : unit. layern,0(D)(∗)) . . .). layern,p(D)(d)

paintingn,p(D)(d) ≜ Σlp : layern,p(D)(d). (. . . (Σln : layern,n−1(D)(d, lp, . . . , ln−1). D.tl(d, lp, . . . , ln)) . . .)
where (d, lp, . . . , lq) abbreviates ((. . . (d, lp), . . .), lq)

Fig. 4: Refinement of definition of frame and painting

For instance, on the picture, the left and right painting2,1,
shown in red, are laid on respectively the left and right
borders of the blue boxes, and hence needs to depend on
frame3,1. The left and right borders of the two blue boxes
are extracted as restr2,1

frame,L(D)(d) and restr2,1
frame,R(D)(d).

We can then refine the previous equation by showing
the dependencies on d, as shown in Fig. 4.

When ν = 2, the formation of layers from paintings
amounts to:

layern,p(D)(d) ≜ paintingn−1,p(D.hd)(restrn,p
frame,L,p(d))×

paintingn−1,p(D.hd)(restrn,p
frame,R,p(d))

The operation restr
n,p
frame,ϵ,q indicates restriction on q

layers of a frame, and the induction is on p, from 0 to q.
In particular, restrn,p

frame,ϵ,p is a “full restriction”. We define
restr

n,p
frame,ϵ,p(d) by recursion on the structure of a frame

d, which necessitates definitions of restrn,p
layer,ϵ,q(d)(l) and

restr
n,p
painting,ϵ,q(d)(c), for l a layer and c a painting. The

key case is restrn,p
painting,ϵ,p(d)(c), where c, a paintingn,p, has

necessarily the form of ((cL, cR), ): restrn,p
painting,L,p picks

out cL, a paintingn−1,p, restr
n,p
painting,R,p picks out the cR,

also a paintingn−1,p, and , a paintingn,p+1, is discarded.
There is one more difficulty, which we illustrate by
writing down expected and actual types.

Given cω of type

cω : paintingn−1,p(D.hd)(restrn−1,p
frame,ω,q(d))

restr
n,p
layer,ϵ(d)(cL, cR) produces a layer, in which the ω-

component has the type

paintingn−2,p(D.hd.hd)(restrn−1,p
frame,ϵ,q(restr

n,p
frame,ω,p(d)))

while we expect a term of type

paintingn−2,p(D.hd.hd)(restrn−1,p
frame,ω,p(restr

n,p
frame,ϵ,q+1(d)))

Hence, we need a coherence condition to commute
the restrictions. Coherence conditions similar to this
necessitate, what are shown as, cohframe, cohlayer and
cohpainting in tables in the next section. These are by in-
duction on the structure of frame, layer and painting. Note
that, for the construction in IV-C, we further need a 2-
dimensional coherence condition, coh2frame, for cohlayer.

B. Formal construction in ETT

We now present the construction in extensional type
theory; i.e. in a type theory with the following reflection
rule, where = is propositional equality in some type and
≡ is definitional equality [29]:

Γ ⊢ p : t = u

Γ ⊢ t ≡ u

For the presentation corresponding to the formaliza-
tion in intensional type theory, see IV-C.

The definition is dispatched over tables I, II, III, IV
and V. Table I describes a ν-set in indexed form, as
a stream, coinductively representing the limit of n-
truncated ν-sets. The n-truncated ν-sets are themselves
described in II. In such stream, the nth component is
a type dependent over a fullframe. The type fullframe is
recursively defined in III, using the auxiliary definitions
of layer and painting. The type layer and painting are
dependent over restrframe, and these restrictions are de-
fined on IV. These restrictions are defined using auxiliary
definitions of restrlayer and restrpainting.

Notably, the definition of restrlayer relies on a def-
initional equality expressing the commutation of the
composition of restrframe. This commutation is not prov-
able by computation so we have to prove it proposi-
tionally before using the reflection rule. Proving this
itself requires an induction on the dimension, and on
the structure of frame, layer, and painting. This is what
cohframe proves, as shown in the table V, using aux-
iliary definitions cohlayer and cohpainting. Even though
it looks independent of the other tables, cohframe has
to be proved mutually with the definitions of frame,
layer, painting, and their corresponding restrictions. More
precisely, for a fixed n, the block of frame, restrframe, and
cohframe has to be mutually defined by induction on p.
Also, each of painting, restrpainting, and cohpainting is built
by induction from p to n. The painting block at n relies
on the frame block at n, but, the converse dependency is
only on lower n, so this is well-founded. Note that layer,
restrlayer and cohlayer are just abbreviations. We leave
however implicit the exact way this mutual recursion
can be formalized at this stage of the paper.

Most components of the construction takes inequality
constraints as parameters, and we have left implicit that
they are satisfied in the tables. Comparison of inequality
proofs depends on the definition of inequality, which



we leave implicit, only assuming that we can pick a
definition for which proofs of m ≤ n are provably unique
and thus definitionally equal by the reflection rule.

The construction takes benefit of various provable
equalities over proofs of equality being definitional
by the reflection rule. This includes in particular the
groupoid properties of equality. Notably, uniqueness of
identity proofs holds in extensional type theory, so that
any type is automatically an HSet. Also, we left implicit
in table V the use of the isomorphism between u = v and
Σ(p : u.hd = v.hd).(u.tl = v.tl) for u and v in a Σ-type.
In the same table, we also left implicit the use of the
isomorphism between f = g and Πa : A. f (a) = g(a) for
f and g in Πa : A. B, where it should be recalled that the
right-to-left map, that is function extensionality, holds by
default in extensional type theory.

Note that for a fixed constant n, the coherence con-
ditions evaluate to a reflexivity proof, so that the con-
struction evaluates to an effective sequence of types of
iterated relations not mentioning them anymore. For
instance, it produces Fig. 3 for n = 2 and ν = 2.

νSetm : HSetm+1
νSetm ≜ νSet≥0

m (∗)

νSet≥n
m (D : νSet<n

m ) : HSetm+1

νSet≥n
m D ≜

ΣR : νSet=n
m (D).

νSet≥n+1
m (D, R)

TABLE I: Main definition

νSet<n
m : HSetm+1

νSet<0
m ≜ unit

νSet<n′+1
m ≜ ΣD : νSet<n′

m . νSet=n′
m (D)

νSet=n
m (D : νSet<n

m ) : HSetm
νSet=n

m D ≜ fullframen
m(D) → HSetm

TABLE II: Truncated ν-sets, the core

C. Formal construction in ITT

We now present the definition in intensional type the-
ory [29], [31], making explicit the need for transport
along coherence proofs.

Tables VI, VII, and VIII are the same as tables I, II, and
III, except that, in function applications, so as to be more
informative, we make explicit all arguments, including
those that can be inferred from the context.

The need for transport along a proof of commuta-
tion of restrframe in the definition of restrlayer is made
explicit as shown in table IX, where the arrow over
cohframe indicates the direction of rewrite. The proof of
cohframe is described on X, and it requires making explicit
several rewritings which were invisible in extensional
type theory. The commutation of restrlayer lives in a type
referring to cohframe, so we need a transport along the

commutation of restrframe in the statement of cohlayer.
The proof of cohlayer is the most involved proof in
the construction. This is where the higher-dimensional
coherence condition is needed. The exact formulation of
this coherence condition is as follows.

coh
n,p
frame,ω,θ,r,p(restr

n,p
frame,ϵ,q+2(d)) •

ap restr
n,p
frame,ω,r (coh

n,p
frame,ϵ,θ,q+1,p(d)) •

coh
n,p
frame,ϵ,ω,q,r(restr

n,p
frame,θ,p(d)) =

ap restr
n,p
frame,θ,p (coh

n,p
frame,ϵ,ω,q+1,r+1(d)) •

coh
n,p
frame,ϵ,θ,q,p(restr

n,p
frame,ω,r+1(d)) •

ap restr
n,p
frame,ϵ,q (coh

n,p
frame,ω,θ,r,p(d))

where ap applies a function on two sides of an equality,
and • is transitivity of equality. This property of equality
proofs holds in HSet, and since our formalization is done
in HSet, the term is trivially discharged.

Notice that each restrlayer in the type of cohlayer is
hiding a cohframe rewrite: this makes a sum total of
three cohframe rewrites on the left-hand side, and two
cohframe rewrites on the right-hand side. In the proof
term of cohlayer, cohpainting has one cohframe rewrite on
its left-hand side and zero on the right-hand side. This
combined with the two terms of the form ap cohframe
matches our expectation of three cohframe on the left-
hand side and two cohframe on the right-hand side. Then,
coh2frame can roughly be seen as a commutation of these
cohframe terms.

Finally, let us explain cohpainting. The base case p = r is
the key case of the commutation of restrframe, when one
of the restrpainting collapses, and the remaining equation
holds trivially. The case of p < r follows the structure of
restrpainting by induction.

Like in V, we leave implicit in X, the use of the iso-
morphism between the type of equalities of dependent
pairs in a Σ-type with the Σ-type of equalities of the
components of the pair, as well as the isomorphism
between equality of functions with point-wise equality.
Contrary to the ETT case, functional extensionality does
not hold, so we assume it. However, the requirement
of functional extensionality disappears if ν is finite. As
for basic groupoid properties of equalities, which no
longer hold definitionally, we do not mention them for
simplicity.

The way recursion is implemented is still left implicit
at this stage. See IV-D for the details.

Depending on how inequality on natural numbers is
defined, different equalities may hold or not definition-
ally, such as transitivity of inequality or the compu-
tational properties of induction over inequality proofs.
Details are given in IV-D.

Remark: If we were not working in HSet, but in HGpd,
we would need to prove one more higher-dimensional
coherence, and if we were working in Type, we would



fullframen (D : νSet<n
m ) : HSetm

fullframen D ≜ framen,n(D)

framen,p,p≤n (D : νSet<n
m ) : HSetm

framen,0 D ≜ unit

framen,p′+1 D ≜ Σd : framen,p′ (D). layern,p′ (d)

layern,p,p<n {D : νSet<n
m }

(d : framen,p(D))
: HSetm

layern,p D d ≜ Πω.paintingn−1,p(D.2)(restrn,p
frame,ω,p(d))

paintingn,p,p≤n
(D : νSet<n

m )
(E : νSet=n

m (D))
(d : framen,p(D))

: HSetm

paintingn,p,p=n D E d ≜ E(d)
paintingn,p,p<n D E d ≜ Σl : layern,p(d). paintingn,p+1(E)(d, l)

TABLE III: frame, layer, and painting

restr
n,p,p≤q≤n−1
frame,ϵ,q

{D : νSet<n}
(d : framen,p(D))

: framen−1,p(D.1)

restrn,0
frame,ϵ,q D ∗ ≜ ∗

restr
n,p′+1
frame,ϵ,q D (d, l) ≜ (restr

n,p′
frame,ϵ,q(d), restr

n,p′
layer,ϵ,q−1(l))

restr
n,p,p≤q≤n−2
layer,ϵ,q

{D : νSet<n}
{d : framen,p(D)}
(l : layern,p(d))

: layern−1,p(restr
n,p
frame,ϵ,q+1(d))

restr
n,p
layer,ϵ,q D d l ≜ λω.(restrn−1,p

painting,ϵ,q(D.2)(lω))

restr
n,p,p≤q≤n−1
painting,ϵ,q

(D : νSet<n)
(E : νSet=n(D))
(d : framen,p(D))

(c : paintingn,p(E)(d))

: paintingn−1,p(D.2)(restrn,p
frame,ϵ,q+1(d))

restr
n,p,p=q
painting,ϵ,q D E d (l, ) ≜ lϵ

restr
n,p,p<q
painting,ϵ,q D E d (l, c) ≜ (restr

n,p
layer,ϵ,q(l), restr

n,p+1
painting,ϵ,q(E)(c))

TABLE IV: q-th projection of restr, or faces

coh
n,p,p≤r≤q≤n−2
frame,ϵ,ω,q,r

{D : νSet<n}
(d : frame(D))

:
restr

n−1,p
frame,ϵ,q(restr

n,p
frame,ω,r(d))

= restr
n−1,p
frame,ω,r(restr

n,p
frame,ϵ,q+1(d))

cohn,0
frame,ϵ,ω,q,r D ∗ ≜ refl(∗)

coh
n,p′+1
frame,ϵ,ω,q,r D (d, l) ≜ (coh

n,p′
frame,ϵ,ω,q,r(d), coh

n,p′
layer,ϵ,ω,q,r(l))

coh
n,p,p<r≤q≤n−2
layer,ϵ,ω,q,r

(D : νSet<n)
{d : frame(D)}
(l : layer(d))

:
restr

n−1,p
layer,ϵ,q(restr

n,p
layer,ω,r(l))

= restr
n−1,p
layer,ω,r(restr

n,p
layer,ϵ,q+1(l))

coh
n,p
layer,ϵ,ω,q,r D d l ≜ λθ. cohn−1,p

painting,ϵ,ω,q−1,r−1(D.2)(lθ)

coh
n,p,p≤r≤q≤n−2
painting,ϵ,ω,q,r

(D : νSet<n)
(E : νSet=n(D))
(d : frame(D))

(c : painting(E)(d))

:
restr

n−1,p
painting,ϵ,q(D.2)(restrn,p

painting,ω,r(E)(c))

= restr
n−1,p
painting,ω,r(D.2)(restrn,p

painting,ϵ,q+1(E)(c))

coh
n,p,p=r
painting,ϵ,ω,q,r D E d (l, ) ≜ refl(restr

n−1,p
painting,ϵ,q−1(D.2)(lϵ))

coh
n,p,p<r
painting,ϵ,ω,q,r D E d (l, c) ≜ (coh

n,p
layer,ϵ,ω,q,r(l), coh

n,p+1
painting,ϵ,ω,q,r(E)(c))

TABLE V: Commutation of q-th projection and r-th projection, or coherence conditions

need to prove arbitrarily many higher-dimensional co-
herences. Here, HGpd is the subset of types A such that
for all x and y in A, x = y is in HSet. See [2], [16],

[35] for a discussion on the need for recursive higher-
dimensional coherence conditions in formulating higher-
dimensional structures in type theory.



νSetm : HSetm+1
νSetm ≜ νSet≥0(∗)

νSet≥n (D : νSet<n) : HSetm+1

νSet≥n D ≜
ΣR : νSet=n(D).
νSet≥n+1(D, R)

TABLE VI: Main definition

νSet<n : HSetm+1
νSet<0 ≜ unit

νSet<n′+1 ≜ ΣD : νSet<n′
. νSet=n′

(D)

νSet=n (D : νSet<n) : HSetm
νSet=n D ≜ fullframen

m(D) → HSetm

TABLE VII: Truncated ν-sets, the core

D. Details on the mechanization
Since the construction shown in the previous sections

is by induction on n, and dependencies are on lower n
and p < n, one would imagine formalizing this using
well-founded induction in dependent type theory. We
initially tried this approach: we had terms dependent
on the proofs of the case distinction of n′ ≤ n implies
n′ < n or n′ = n, and these proofs did not have
definitional computational rule; it started to be necessary
to reason propositionally on the computational prop-
erty of the case distinction, and it eventually turned
out to be unmanageable. Hence, we chose a different
route: in practice, since restrn

frame depends on framen and
framen−1, while cohn

frame depends on framen, framen−1,
and framen−2, we only need to keep track of three
“levels”, and we built separate data structures for the
levels, with dependencies. More concretely, we build the
ten definitions shown in the tables by induction, and this
is part of the definition of a larger record. The other fields
of the record are frame, layer, painting at levels n − 1 and
n − 2, restrframe, restrlayer, and restrpainting at level n − 1,
and equations to recall the definitions of these objects at
lower levels.

The entire construction relies on inequalities over nat-
ural numbers, and we use two different definitions of ≤
addressing different concerns in our formalization. In or-
der to build our first variant, we present an intermediate
“recursive definition”, phrased as:

Fixpoint leR (n m : nat) : SProp :=
match n, m with
| O, _ => STrue
| S n, O => SFalse
| S n, S m => leR n m
end.

Here SProp is a definitionally proof-irrelevant impred-
icative universe at the bottom of the universe hierar-
chy [36]. By placing the definition in SProp, we have

definitional equality of all inequality proofs. For the
purpose of unification, however, this definition does not
go far enough. Consider the unification problems:

leR_trans ?p leR_refl = ?p
leR_trans leR_refl ?p = ?p

where leR_trans is transitivity, leR_refl is re-
flexivity, and ?p is an existential variable. These two
problems definitionally hold in SProp, but equalizing
them does not solve the existential. For unification to
be useful in inferring existentials, we present our first
variant of ≤, which we dub as the “Yoneda variant”:

Definition leY n m :=
forall p, leR p n -> leR p m.

This definition is an improvement over leR since
reflexivity is now definitionally the neutral element of
transitivity, and associativity of transitivity also holds
definitionally. Although it significantly eases our proof,
there are some instances where unification is unable
to solve the existentials, and we have to provide them
explicitly.

The second variant of ≤, the “inductive variant”, is
phrased as:

Inductive leI : nat -> nat -> Type :=
| leI_refl n : n <˜ n
| leI_down {n p} : p.+1 <˜ n -> p <˜ n
where "n <˜ m" := (leI n m) : nat_scope.

Compared to leY, leI has no proof-irrelevance prop-
erties. This definition is specially crafted for painting,
where we have to reason inductively from p ≤ n to
n. In our usage, we have lemmas leY_of_leI and
leI_of_leY in order to equip leY with the induction
scheme of leI. The resulting induction scheme has
computational rules holding propositionally.

V. FUTURE WORK

In the cubical case, we expect the construction to even-
tually provide a model of (some version of) parametric
type theory [19], [20] by adding degeneracies, a hierar-
chy of universes (as sketched e.g. in a talk by Herbelin
at the HoTT-UF workshop for the bridge case [37]), as
well as reasoning modulo permutations [12].

By equipping the universe construction with a struc-
ture of equivalences, as suggested along the lines of
Altenkirch and Kaposi [5], we expect the construction
to be able to serve as a basis for syntactic models of
various versions of cubical type theory [21], [22], [23],
saving the detour via the fibered approach inherent to
usual presheaf models. This would a priori preserve def-
initional properties which may be lost when detouring
via presheaves. In particular, we conjecture being able to



fullframen
m (D : νSet<n) : HSetm

fullframen
m D ≜ framen,n

m (D)

frame
n,p,p≤n
m (D : νSet<n) : HSetm

framen,0
m D ≜ unit

frame
n,p′+1
m D ≜ Σd : frame

n,p′
m (D). layern,p′

m (D)(d)

layer
n,p,p<n
m

(D : νSet<n)
(d : frame

n,p
m (D))

: HSetm

layer
n,p
m D d ≜ Πω.paintingn−1,p

m (D.1)(D.2)(restrn,p
frame,m,ω,p(D)(d))

painting
n,p,p≤n
m

(D : νSet<n)
(E : νSet=n(D))
(d : frame

n,p
m (D))

: HSetm

painting
n,p,p=n
m D E d ≜ E(d)

painting
n,p,p<n
m D E d ≜ Σl : layern,p

m (D)(d). paintingn,p+1
m (D)(E)(d, l)

TABLE VIII: frame, layer, and painting

justify univalence holding definitionally. Our approach
would also definitively ground cubical type theory in
iterated parametricity.
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Type Theory: A Constructive Interpretation of the Univalence
Axiom,” in TYPES 2015, ser. LIPIcs, T. Uustalu, Ed., vol. 69.
Schloss Dagstuhl, 2018, pp. 5:1–5:34. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2018/8475

[23] C. Angiuli, G. Brunerie, T. Coquand, R. Harper, K. H. (Favonia),
and D. R. Licata, “Syntax and models of cartesian cubical type
theory,” Math. Struct. Comput. Sci., vol. 31, no. 4, pp. 424–468, 2021.
[Online]. Available: https://doi.org/10.1017/S0960129521000347

[24] P.-L. Curien, R. Garner, and M. Hofmann, “Revisiting the
categorical interpretation of dependent type theory,” Theoretical
Computer Science, vol. 546, pp. 99–119, 2014, models of Interaction:
Essays in Honour of Glynn Winskel. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0304397514001789

[25] J. Bernardy, P. Jansson, and R. Paterson, “Parametricity and
dependent types,” in Proceeding of the 15th ACM SIGPLAN

http://arxiv.org/abs/1701.06244
https://doi.org/10.4230/LIPIcs.TYPES.2015.3
https://doi.org/10.1109/LICS52264.2021.9470728
https://doi.org/10.1109/LICS52264.2021.9470728
https://arxiv.org/abs/0809.4221v7
http://arxiv.org/abs/1506.04998
homotopytypetheory.org/2014/03/03/hott-should-eat-itself
https://doi.org/10.4230/LIPIcs.CSL.2016.21
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://drops.dagstuhl.de/opus/volltexte/2020/11656
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
http://drops.dagstuhl.de/opus/volltexte/2018/8475
http://drops.dagstuhl.de/opus/volltexte/2018/8475
https://doi.org/10.1017/S0960129521000347
https://www.sciencedirect.com/science/article/pii/S0304397514001789
https://www.sciencedirect.com/science/article/pii/S0304397514001789


re
st
rn,

p,
p≤

q≤
n−

1
fr
a
m
e,

m
,ϵ

,q
(D

:ν
S

et
<

n
)

(d
:f
ra
m
en,

p
m

(D
))

:
fr
am

en−
1,

p
m

(D
.1
)

re
st
rn,

0
fr
a
m
e,

m
,ϵ

,q
D

∗
≜

∗
re
st
rn,

p′
+

1
fr
a
m
e,

m
,ϵ

,q
D

(d
,l
)

≜
(r
es
tr

n,
p′

fr
a
m
e,

m
,ϵ

,q
(D

)(
d)

,r
es
tr

n,
p′

la
ye
r,

m
,ϵ

,q
−

1(
D
)(

d)
(l
))

re
st
rn,

p,
p≤

q≤
n−

2
la
ye
r,

m
,ϵ

,q

(D
:ν

S
et

<
n
)

(d
:f
ra
m
en,

p
m

(D
))

(l
:l
ay
er

n,
p

m
(D

)(
d)
)

:
la
ye
rn−

1,
p

m
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

1(
D
)(

d)
)

re
st
rn,

p
la
ye
r,

m
,ϵ

,q
D

d
l

≜
λ

ω
.(
−−

−−
−−

−−
−−

−−
−−

−→
co
h

n,
p

fr
a
m
e,

m
,ϵ

,ω
,q

,p
(D

)(
d)
(r
es
tr

n−
1,

p
p
a
in
ti
n
g

,m
,ϵ

,q
(D

.1
)(

D
.2
)(
re
st
rn,

p
fr
a
m
e,

m
,ω

,p
(D

)(
d)
)(

l ω
))
)

re
st
rn,

p,
p≤

q≤
n−

1
p
a
in
ti
n
g

,m
,ϵ

,q

(D
:ν

S
et

<
n
)

(E
:ν

S
et

=
n
(D

))
(d

:f
ra
m
en,

p
m

(D
))

(c
:p

ai
n
ti
n
g

n,
p

m
(D

)(
E
)(

d)
)

:
p
ai
n
ti
n
g

n−
1,

p
m

(D
.1
)(

D
.2
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

1(
D
)(

d)
)

re
st
rn,

p,
p=

q
p
a
in
ti
n
g

,m
,ϵ

,q
D

E
d
(l

,
)

≜
l ϵ

re
st
rn,

p,
p<

q
p
a
in
ti
n
g

,m
,ϵ

,q
D

E
d
(l

,c
)

≜
(r
es
tr

n,
p

la
ye
r,

m
,ϵ

,q
(D

)(
d)
(l
),
re
st
rn,

p+
1

p
a
in
ti
n
g

,m
,ϵ

,q
(D

)(
E
)(

d,
l)
(c
))

TA
BL

E
IX

:q
-t

h
pr

oj
ec

ti
on

of
re
st
r,

or
fa

ce
s

co
h

n,
p,

p≤
r≤

q≤
n−

2
fr
a
m
e,

m
,ϵ

,ω
,q

,r
(D

:ν
S

et
<

n
)

(d
:f
ra
m
en,

p
m

(D
))

:
re
st
rn−

1,
p

fr
a
m
e,

m
,ϵ

,q
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ω

,r
(D

)(
d)
)

=
re
st
rn−

1,
p

fr
a
m
e,

m
,ω

,r
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

1(
D
)(

d)
)

co
h

n,
0

fr
a
m
e,

m
,ϵ

,ω
,q

,r
D

∗
≜

re
fl
(∗
)

co
h

n,
p′
+

1
fr
a
m
e,

m
,ϵ

,ω
,q

,r
D

(d
,l
)

≜
(c
o
h

n,
p′

fr
a
m
e,

m
,ϵ

,ω
,q

,r
(D

)(
d)

,c
o
h

n,
p′

la
ye
r,

m
,ϵ

,ω
,q

,r
(D

)(
d)
(l
))

co
h

n,
p,

p<
r≤

q≤
n−

2
la
ye
r,

m
,ϵ

,ω
,q

,r

(D
:ν

S
et

<
n
)

(d
:f
ra
m
en,

p
m

(D
))

(l
:l
ay
er

n,
p

m
(D

)(
d)
)

:

−−
−−

−−
−−

−−
−−

−−
−→

co
h

n,
p

fr
a
m
e,

m
,ϵ

,ω
,q

,r
(D

)(
d)
(r
es
tr

n−
1,

p
la
ye
r,

m
,ϵ

,q
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ω

,r
(D

)(
d)
)(
re
st
rn,

p
la
ye
r,

m
,ω

,r
(D

)(
d)
(l
))
)

=
re
st
rn−

1,
p

la
ye
r,

m
,ω

,r
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

1(
D
)(

d)
)(
re
st
rn,

p
la
ye
r,

m
,ϵ

,q
+

1(
D
)(

d)
(l
))

co
h

n,
p

la
ye
r,

m
,ϵ

,ω
,q

,r
D

d
l

≜
λ

θ.
(−−

−−
−−

−−
−−

−−
−−

→
co
h
2

n,
p

fr
a
m
e,

m
,ϵ

,ω
,θ

,q
,r
(d
))
(a
p
(−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
→

co
h

n−
1,

p
fr
a
m
e,

m
,ω

,θ
,r

,p
(D

.1
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

2(
D
)(

d)
))
)

(a
p
(−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−→

re
st
rn−

1,
p

fr
a
m
e,

m
,ω

,r
(D

)(
co
h

n,
p

fr
a
m
e,

m
,ϵ

,θ
,q
+

1,
p)
))

co
h

n−
1,

p
p
a
in
ti
n
g

,m
,ϵ

,ω
,q
−

1,
r−

1(
D

.2
)(

l θ
)

co
h

n,
p,

p≤
r≤

q≤
n−

2
p
a
in
ti
n
g

,m
,ϵ

,ω
,q

,r

(D
:ν

S
et

<
n
)

(E
:ν

S
et

=
n
(D

))
(d

:f
ra
m
en,

p
m

(D
))

(c
:p

ai
n
ti
n
g

n,
p

m
(D

)(
E
)(

d)
)

:

−−
−−

−−
−−

−−
−−

−−
−→

co
h

n,
p

fr
a
m
e,

m
,ϵ

,ω
,q

,r
(D

)(
d)
(r
es
tr

n−
1,

p
p
a
in
ti
n
g

,m
,ϵ

,q
(D

.1
)(

D
.2
)(
re
st
rn,

p
fr
a
m
e,

m
,ω

,r
(D

)(
d)
)(
re
st
rn,

p
p
a
in
ti
n
g

,m
,ω

,r
(D

)(
E
)(

d)
(c
))
)

=
re
st
rn−

1,
p

p
a
in
ti
n
g

,m
,ω

,r
(D

.1
)(

D
.2
)(
re
st
rn,

p
fr
a
m
e,

m
,ϵ

,q
+

1(
D
)(

d)
)(
re
st
rn,

p
p
a
in
ti
n
g

,m
,ϵ

,q
+

1(
D
)(

E
)(

d)
(c
))

co
h

n,
p,

p=
r

p
a
in
ti
n
g

,m
,ϵ

,ω
,q

,r
D

E
d
(l

,
)

≜
re
fl
(r
es
tr

n−
1,

p
p
a
in
ti
n
g

,m
,ϵ

,q
−

1(
D

.1
)(

D
.2
)(
re
st
rn,

p
fr
a
m
e,

m
,ω

,p
(D

)(
d)
)(

l ϵ
))

co
h

n,
p,

p<
r

p
a
in
ti
n
g

,m
,ϵ

,ω
,q

,r
D

E
d
(l

,c
)

≜
(c
o
h

n,
p

la
ye
r,

m
,ϵ

,ω
,q

,r
(D

)(
d)
(l
),
co
h

n,
p+

1
p
a
in
ti
n
g

,m
,ϵ

,ω
,q

,r
(D

)(
E
)(

d,
l)
(c
))

TA
BL

E
X

:C
om

m
ut

at
io

n
of

q-
th

pr
oj

ec
ti

on
an

d
r-

th
pr

oj
ec

ti
on

,
or

co
he

re
nc

e
co

nd
it

io
ns



international conference on Functional programming, ICFP 2010,
Baltimore, Maryland, USA, September 27-29, 2010, P. Hudak and
S. Weirich, Eds. ACM, 2010, pp. 345–356. [Online]. Available:
http://doi.acm.org/10.1145/1863543.1863592

[26] J. Bernardy and M. Lasson, “Realizability and parametricity
in pure type systems,” in Foundations of Software Science and
Computational Structures - 14th International Conference, FOSSACS
2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-
April 3, 2011. Proceedings, ser. Lecture Notes in Computer Science,
vol. 6604. Springer, 2011, pp. 108–122. [Online]. Available:
https://doi.org/10.1007/978-3-642-19805-2 8

[27] R. Atkey, N. Ghani, and P. Johann, “A relationally parametric
model of dependent type theory,” in The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014., 2014.
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