
Under consideration for publication in Math. Struct. in Comp. Science

A dependently-typed construction of

semi-simplicial types

Hugo Herbelin†

INRIA, PPS, Universit�e Paris-Diderot

Received 20 January 2014

This paper presents a dependently-typed construction of semi-simplicial sets in type

theory where sets are taken to be types. This addresses an open question raised on the

wiki of the special year on Univalent Foundations at the Institute of Advanced Study

(2012-2013).

1. Introduction

A semi-simplicial set (or Delta-set) is a family of sets

X0 (points)

X1 (line segments)

X2 (triangles)

X3 (tetrahedra)
...

Xn (n-simplices)
...

equipped with face operators dni : Xn → Xn−1 for n ≥ 1 and 0 ≤ i ≤ n satisfying

dni ◦ d
n+1
j = dnj ◦ d

n+1
i+1 for n ≥ i ≥ j ≥ 0. See e.g. (Friedman, 2012) for more on the ideas

underlying semi-simplicial and simplicial sets.

Each element x ∈ Xn+1 can be canonically associated to the set of its faces {dni (x)|0 ≤
i ≤ n}, the set of the faces of its faces {dn−1i (dnj (x))|0 ≤ j ≤ i ≤ n − 1}, etc. Hence, a

† This research has been supported by a grant from the Fund for Math while staying at the Institute
of Advanced Study in Fall 2012.



Hugo Herbelin 2

semi-simplicial set can equivalently be represented as the following family of sets:

X0

Σa, b : X0. {x : X1|d11(x) = a, d10(x) = b}

Σa, b, c : X0.


Σx : {x : X1|d11(x) = a, d10(x) = b}
Σy : {x : X1|d11(x) = a, d10(x) = c}
Σz : {x : X1|d11(x) = b, d10(x) = c}

 . {t : X2|


d22(t) = x

d21(t) = y

d20(t) = z

}
...

i.e. as:

Y0
Σa, b : Y0. Y1(a, b)

Σa, b, c : Y0.


Σx : Y1(a, b)

Σy : Y1(a, c)

Σz : Y1(b, c)}

 . Y2(a, b, c, x, y, z)

...

where we have set:

Y0 , X0

Y1(a, b) , {x : X1|d11(x) = a, d10(x) = b} for a, b : Y0
Y2(a, b, c, x, y, z) , {t : X2|d22(t) = x, d21(t) = y, d20(t) = z} for a, b, c : Y0, x : Y1(a, b)

y : Y1(a, c), z : Y1(b, c)
...

Under this representation, each Xn is tupled with its �skeleton� of faces at all levels

p < n. Faces are now part of the structure of the sets of simplices and they can be retrieved

by mere projection. In particular, for �xed n, i and j, the equation dni ◦d
n+1
j = dnj ◦d

n+1
i+1

for n ≥ i ≥ j holds by construction.

Obviously, knowing the Yn's allows to reconstruct the Xn's. Now, by taking the Yn's

as the primitive objects, it becomes possible to de�ne semi-simplicial sets without hav-

ing to axiomatize the equational properties of faces, what is interesting in the context

of homotopy type theory. Indeed, homotopy type theory is able to talk about types

whose homotopic structure, in contrast to the homotopic structure of sets, is non de-

generated and it is then natural to expect in this context a notion of �semi-simplicial

types�. Additionally, the default equality of homotopy type theory is not strict, so that

axiomatizing the equational properties of faces would automatically imply having to ax-

iomatize also coherence diagrams (e.g. one has to assert that the two ways to prove

dnk ◦ d
n+1
j ◦ dn+2

i = dni ◦ d
n+1
j+1 ◦ d

n+2
k+2 for 0 ≤ i ≤ j ≤ k ≤ n are themselves equal, and,

further, the same for arbitrary larger new such diagrams).

The idea to construct semi-simplicial types as dependently-typed families of sets of the

form of the Yn's above started to circulate in between Carnegie-Mellon University and

the Institute of Advanced Study (IAS), with Steve Awodey, Peter LeFanu Lumsdaine

and others. Then, at the time the special year on Univalent Foundations started at the

IAS, this was raised as an open problem by Peter LeFanu Lumsdaine on the wiki of the

program (LeFanu Lumsdaine, 2012): How to de�ne Yn as a formula of n? Can we de�ne



A dependently-typed construction of semi-simplicial types 3

a type of semi-simplicial types with n semi-simplices for all n? Would this solve the need

for arbitrary large coherence problems? Would it scale to simplicial types?

The current paper provides the following contributions to these questions:

� We propose a generic de�nition of the Yn's (Sections 2 to 5) which provides with a

precise coinductive de�nition of a dependently-typed presentation of semi-simplicial

types (Section 7). Actually, so as to have a slightly smoother de�nition, what we

de�ne in practice are semi-simplicial types augmented with a type Y−1 of (−1)-semi-

simplices. Then, semi-simplicial types come by taking Y−1 to be a singleton.

� We do not give a positive answer to the hope of bypassing the need for coherence

diagrams while de�ning semi-simplicial types in core homotopy type theory such as

the one considered in (The Univalent Foundations Program, 2013). Even if for �xed

n, i and j, the equation dni ◦ d
n+1
j = dnj ◦ d

n+1
i+1 for n ≥ i ≥ j has a closed proof and

hence holds by construction, it only holds up to a proof of the family of equations

dn
′

k′ ◦d
n′+1
j′ ◦dn

′+2
i′ = dn

′

i′ ◦d
n′+1
j′+1 ◦d

n′+2
k′+2 when one of n, i or j is not �xed and n ≥ 1 and

the types have h-level ≥ 3. This equation itself requires a higher-dimension coherence

condition if n ≥ 2 and the types have h-level ≥ 4, and so on. As a consequence:

� Our de�nition is not applicable, in the context of core homotopy type theory, for

de�ning semi-simplicial types with types of unbounded homotopy level.

� Our de�nition is applicable to the de�nition of semi-simplicial types over types

of bounded homotopy level, say n + 2, but this requires proving n + 1 coherence

diagrams of increasing complexity about how to equate the di�erent ways of com-

posing n + 2 faces. In practice, we only considered the cases n = 0 and n = 1

(Section 5)†.

� However, in an idealistic situation where it is possible to have a strict equality co-

existing with the default univalent equality (Voevodsky, 2011; Voevodsky, 2012b) of

homotopy type theory, our de�nition becomes applicable for de�ning semi-simplicial

types made of types of unbounded homotopy level (Section 4): indeed, by expressing

the face equations using a strict equality, the coherence conditions hold on the �y.

In particular, we fully formalized our construction in the Coq proof assistant (Coq

Development Team, 2012) extended with an axiom expressing strictness of equality‡.

We did not (essentially) use the Prop universe of Coq and the question of whether a

distinct univalent equality with (necessarily) limited transport abilities can be added

in a consistent way on top of the resulting type theory is open.

� As concrete examples, we give the construction of the standard semi-simplices and

of the product of semi-simplicial types, as well as a sketch of the construction of the

exponential of semi-simplicial types (Section 6).

Moreover, we will show in future work that the construction needs not be restricted to

semi-simplicial types and that it can instead be done for simplicial types as well as for

any functor over Reedy categories (with ordinal ω), by �rst building types dependent

† The case n = −2 and n = −1 are trivial and uninteresting.
‡ Coq does not natively interpret this axiom computationally. If it had, we would have gotten dni ◦d

n+1
j =

dnj ◦ dn+1
i+1 holding de�nitionally for n, i and j �xed.



Hugo Herbelin 4

over the negative �skeleton� of objects (faces), and by injecting the positive morphisms

(degeneracies) afterwards. Such a dependently-typed de�nition is constructive in the

sense that, for simplicial types, whether a n-simplex is degenerated or not is decidable.

In particular, in the case of sets, this de�nition will only be classically equivalent to the

presheaf de�nition.

Note that a partial but similar generic de�nition of semi-simplicial types has been

provided independently by Voevodsky (Voevodsky, 2012a). A comparison is done in Sec-

tion 8.

2. Towards a dependently-typed construction of (augmented)

semi-simplicial types

As initially described on the wiki of the special year on Univalent Foundations at the

Institute of Advanced Study (LeFanu Lumsdaine, 2012), a (dependently-typed) semi-

simplicial type is given by a family of dependent types:

Y0 : Type

Y1 : Πab : Y0. Type

Y2 : Πabc : Y0. Πx : Y1(a, b). Πy : Y1(a, c). Πz : Y1(b, c). Type
...

For the only sake of regularity at the start of the sequence, we shall instead consider

the augmented semi-simplicial variant of this de�nition and add an extra type Y−1 on

which all Yn's for n ≥ 0 depend exactly once. This change is not critical since we fall

back on semi-simpliciality by taking Y−1 to be a singleton type.

Y−1 : Type1
Y0 : Πu : Y−1. Type

Y1 : Πu : Y−1. Πab : Y0(u). Type

Y2 : Πu : Y−1. Πabc : Y0(u). Πx : Y1(u, a, b). Πy : Y1(u, a, c). Πz : Y1(u, b, c). Type
...

Let us �x some type universe Type1. The �rst step to de�ne the augmented Yn's

generically is to rephrase them using nested Σ-types over blocks of simplices of the same

dimension:



A dependently-typed construction of semi-simplicial types 5

Y−1 : Type1
Y0 : (Σx :

∧
{Y−1})→ Type1

Y1 : (Σx :
∧
{Y−1} .

∧{Y0(π0
0(x))

Y0(π0
0(x))

}
)→ Type1

Y2 : (Σx′ :

Σx :
∧
{Y−1} .

∧
Y0(π0

0(x))

Y0(π0
0(x))

Y0(π0
0(x))


 .

∧
Y1(π0

0(fstx′), (π2
0(sndx′), π2

1(sndx′)))

Y1(π0
0(fstx′), (π2

0(sndx′), π2
2(sndx′)))

Y1(π0
0(fstx′), (π2

1(sndx′), π2
2(sndx′)))

)→ Type1

...

where πn
i is the ith projection, starting from 0, out of a tuple of n + 1 elements, while

fstx and sndx denote the �rst and (dependent) second projection of the inhabitant of a

Σ-type.

Let Unit denote the unit type with unit being its unique inhabitant. We go one step

further in treating the base cases uniformly by ensuring that each Yn has a functional

type and that nested Σ-type have Unit as common initial pre�x. We thus obtain:

Y−1 : Unit→ Type1
Y0 : (Σx : Unit.

∧
{Y−1(unit)})→ Type1

Y1 : (Σx′ : (Σx : Unit.
∧
{Y−1(unit)}) .

∧{Y0(unit, π0
0(sndx′))

Y0(unit, π0
0(sndx′))

}
)→ Type1

Y2 : (Σx′′ :

Σx′ : (Σx : Unit.
∧
{Y−1(unit)}) .

∧
Y0(unit, π0

0(sndx′))

Y0(unit, π0
0(sndx′))

Y0(unit, π0
0(sndx′))


 .

∧
Y1(unit, π0

0(snd fstx′′), (π2
0(sndx′′), π2

1(sndx′′)))

Y1(unit, π0
0(snd fstx′′), (π2

0(sndx′′), π2
2(sndx′′)))

Y1(unit, π0
0(snd fstx′′), (π2

1(sndx′′), π2
2(sndx′′)))

)→ Type1

...

Each block of Yi's in the type of Yn, for i < n, is a block of iterated faces and the

number of component in a block is the number of ways to choose n− i elements among

n+ 1 elements. For instance, the three Y1 components in the de�nition of the type of Y2

can be seen as the combination

(
3

1

)
obtained by removing one element out of a triple,

while the three Y0 components can be seen as the combination

(
3

2

)
obtained by removing

two elements out of a triple. To simplify notations, let us set:

p3,1
2 (x′′) , (unit, π0

0(snd fstx′′), (π2
0(sndx′′), π2

1(sndx′′)))

p3,1
1 (x′′) , (unit, π0

0(snd fstx′′), (π2
0(sndx′′), π2

2(sndx′′)))

p3,1
0 (x′′) , (unit, π0

0(snd fstx′′), (π2
1(sndx′′), π2

2(sndx′′)))



Hugo Herbelin 6

meaning that we removed 1 element respectively numbered 2, 1 and 0 out of a block of

3 elements. We can then abbreviate the block of Y1's in Y2 as
∧

i∈
(
3
1

) Y2(p3,1
i (x)).

Similarly, the three Y0's in the de�nition of the type Y2 of triangles correspond to the

two iterations of the face maps in a triangle. This suggests to set:

p3,2
12 (x) , (unit, π0

0(sndx))

p3,2
02 (x) , (unit, π0

0(sndx))

p3,2
01 (x) , (unit, π0

0(sndx))

meaning that we removed 2 elements respectively numbered 2 and 1, 2 and 0, and 1 and

0. We can then abbreviate the block of Y0's in Y2 as
∧

i0i1∈
(
3
2

) Y1(p3,2
i0i1

(x)).

Our next step, using new such pq,p
i0..ip−1

abbreviations, is to rephrase the nested Σ-types

involved in the de�nition of the domains of the Yn's into elementary Σ-types:

F 0,0 , Unit

Y−1 : F 0,0 → Type1

F 0,1 , Unit

F 1,0(Y−1) , Σx : F 0,1.
∧

i∈
(
1
1

) Y−1(p1,1
i (x))

Y0 : F 1,0(Y−1)→ Type1

F 0,2 , Unit

F 1,1(Y−1) , Σx : F 0,2.
∧

i0i1∈
(
2
2

) Y−1(p2,2
i0i1

(x))

F 2,0(Y−1, Y0) , Σx : F 1,1(Y−1).
∧

i∈
(
2
1

) Y0(p2,1
i (x))

Y1 : F 2,0(Y−1, Y0)→ Type1

F 0,3 , Unit

F 1,2(Y−1) , Σx : F 0,3.
∧

i0i1i2∈
(
3
3

) Y−1(p3,3
i0i1i2

(x))

F 2,1(Y−1, Y0) , Σx : F 1,2(Y−1).
∧

i0i1∈
(
3
2

) Y0(p3,2
i0i1

(x))

F 3,0(Y−1, Y0, Y1) , Σx : F 2,1(Y−1, Y0).
∧

i∈
(
3
1

) Y1(p3,1
i (x))

Y2 : F 3,0(Y−1, Y0, Y1)→ Type1
...

which directly suggests to inductively de�ne Fn,p(Y−1, Y0, ..., Yn−1) mutually with some

Σ-type, say sstn, packing the types of the sequence Y0, ..., Yn−1 (see Section 4).

Each Fn,p is a type for the collection of sub-semi-simplices of dimension less or equal

than n − 2 starting from an initial simplex of dimension n + p − 1, where 0 is the

dimension of points, 1 of lines, etc. The next di�culty is to de�ne the family of pq,p
i0..ip−1

whose purpose is to select, out of the collection of sub-semi-simplices of dimension at



A dependently-typed construction of semi-simplicial types 7

most q − p − 2 of an initial (q − 1)-semi-simplex z, the sub-collection of all sub-semi-

simplices of the (q − p− 1)-sub-semi-simplex obtained by applying the face maps dip−1
,

..., di0 to z. Each pq,p
i0..ip−1

has type F q−p,p(Y−1, ..., Yq−p−2) → F q−p,0(Y−1, ..., Yq−p−2)

and our solution is to decompose each pq,p
i0..ip−1

into elementary �ltering operators of type

Fn,p(Y−1, ..., Yn−2) → Fn,p−1(Y−1, ..., Yn−2), with n being q − p, each of them selecting

the corresponding sub-simplices obtained by removing one of the initial n+ p points.

Each such elementary �ltering operator has to be dependent over an index i ≤ n in-

dicating the number of the point to remove. We write dn,pi for the elementary �ltering

operator that extracts, out of the collection of sub-semi-simplices of dimension at most

n − 2 of an initial (n + p − 1)-simplex z, the sub-collection of those semi-simplices that

are sub-semi-simplices of the face i of z. We can then de�ne pq,p
i0..ip−1

to be dn,0i0
◦ ... ◦

dn,p−1ip−1
and �nally take Σx : Fn,p+1(Y−1, ..., Yn−1).

∧
i0...ip∈

(
n + p + 1

p + 1

) Yn(dn,0i0
...dn,pip

(x))

for Fn+1,p(Y−1, ..., Yn). For instance, F 2,1(Y−1, Y0) consists of triples of points supposed

to be the points of an initial triangle (together with a (−1)-simplex they all depend

on) and d2,0i extracts from each triple the pair of end points of side i of the initial

triangle (together with the same (−1)-simplex they all depend on). More speci�cally,

if u is a (−1)-simplex and a, b and c points over u, i.e. points in Y0(unit, u), then

((unit, u), (a, b, c))) ∈ F 2,1(Y−1, Y0) is mapped to ((unit, u), (b, c))) ∈ F 2,0(Y−1, Y0) by

d2,00 , to ((unit, u), (a, c))) ∈ F 2,0(Y−1, Y0) by d2,01 and to ((unit, u), (a, b))) ∈ F 2,0(Y−1, Y0)

by d2,02 .

The question is now to de�ne such combinations.

3. Combinations

Let n be given as well as a family of types F p : Type1, a predicate Y : F 0 → Type1 and

a family of operators dpi : F p+1 → F p, with i ≤ n+ p in dpi . Let p an integer and x : F p.

We can de�ne by induction on p a combination type∧
i0...ip−1∈

(
n + p

p

)Y (d0i0 ...d
p−1
ip−1

(x))

denoting the Cartesian product of elements in the instantiation of Y on d0i0 ..d
p−1
ip−1

(x),

over all combinations of i0..ip−1 satisfying n ≥ i0 ≥ ... ≥ ip−1 ≥ 0 (this latter ordering

uniquely characterizes combinations and this is what we chose for the formalization in

Coq; there is another canonical ordering obtained by expecting n+ p > ip−1 > ... > i0 ≥
0, which incidentally is the choice we used to characterize the p3,2

i0i1
on page 6).

Let us make the additional assumption that, for all k ≥ j, we have proofs dp
k≥j of the

identities dpk ◦ d
p+1
j = dpj ◦ d

p+1
k+1. Then, we can, for each i ≤ n + p and x : F p+1, de�ne

by induction on p a �ltering operator d
n,F,Y,d,d,p

i (x), shortly d
p

i , which extracts, out of

a combination of choices of p + 1 elements among n + p + 1, those combinations which

include the selection of the ith element. There are

(
n+ p

n

)
such choices and i can be

considered to be chosen �rst in each of these, so that d
p

i can be given the following type:



Hugo Herbelin 8

d
p

i :
∧

i0...ip∈
(
n + p + 1

p + 1

)Y (d0i0 ...d
p
ip

(x)) →
∧

i0...ip−1∈
(
n + p

p

)Y (d0i0 ...d
p−1
ip−1

(dpi (x)))

.

However, if i can be chosen �rst, it does not mean that i was e�ectively chosen �rst in

the particular choices of i0 ≥ ... ≥ ip used for enumerating

(
n+ p+ 1

p+ 1

)
. When i > ip,

d
i−1≥ip

is needed, using the induction hypothesis on i− 1.

By dpi (dp+1

k≥j) we mean the proof of dpi ◦ d
p+1
k ◦ dp+2

j = dpi ◦ d
p+1
j ◦ dp+2

k+1 obtained by

applying the congruence over dpi to dp+1

k≥j . By d
p

k≥j(d
p+2
i ) we mean the specialization of

dp
k≥j to d

p+2
i which is a proof of dpk ◦ d

p+1
j ◦ dp+2

i = dpj ◦ d
p+1
k+1 ◦ d

p+2
i . Then, we assume for

k ≥ j ≥ i that the following coherence property dp
k≥j≥i

of d holds, where · denotes the
composition of equalities by transitivity:

dp
k≥j≥i

: [dpk(dp+1

j≥i ) · dp
k≥i(d

p+2
j+1) · dpi (dp+1

k+1≥j+1
) = dp

k≥j(d
p+2
i ) · dpj (dp+1

k+1≥i) · d
p

j≥i(d
p+2
k+2)]

Note that both sides of the equation are proofs of dpk ◦d
p+1
j ◦dp+2

i = dpi ◦d
p+1
j+1 ◦d

p+2
k+2. If

equality were a strict equality, uniqueness of equality proofs would hold and the assump-

tion above would directly hold by default. However, if equality is taken to be relevant, as

it is the case e.g. in homotopy type theory (The Univalent Foundations Program, 2013),

there is no reason a priori it holds. This is why we take it as an assumption. Under this

assumption, we can build by induction on p and case analysis on k, j and ip a proof

d
n,F,Y,d,d,d,p

k≥j (x), shortly d
p

k≥j , that the following holds for x : F p+2 and k ≥ j:

d
p

k≥j : [d
p

k ◦ d
p+1

j =dp

k≥j
d
p

j ◦ d
p+1

k+1]

where the notation =dp

k≤j
means that both sides of the equation are pointwise in the

same type up to transport along the equality proof dp
k≥j (pointwise here means for each

y :
∧

i0...ip+1∈
(
n + p + 2

p + 2

) Y (d0i0 ...d
p+1
ip+1

(x)) to which each side of the equation is applicable).

Note that d
k−1≥j−1≥ip+1

is needed when j > ip+1 since then, all the de�nitions of dk,

dj and dk+1 reveal a use of d, which, combined with an extra use of d coming from the

induction hypothesis, requires d.

The products over combination above can be de�ned as tuples. Note however that if

these products were de�ned as functions, functional extensionality of equality would be

needed to build the proof d.

4. The initial segments of dependently-typed augmented semi-simplicial

types in the presence of a strict equality

In this section, we assume strict equality to be a connective of the underlying logical

theory. What happens if no strict equality is available is discussed in the next section.



A dependently-typed construction of semi-simplicial types 9

We recursively de�ne:

� the signature sstn of the n �rst dependently-typed augmented semi-simplicial types

(i.e. from the (−1)-semi-simplicial type to the (n− 2)-semi-simplicial type);

� the family of signatures Fn,0 of the parameters of the (n − 1)-semi-simplicial type:

this corresponds to the type of all strict sub-semi-simplices of such a (n − 1)-semi-

simplicial type; each of Fn,0 is de�ned from Fn,p which corresponds to the type of

all sub-semi-simplices of dimension less than n− 2 of a (n+ p− 1)-semi-simplex;

� the ��lter-through-face� dn,pi from Fn,p+1 to Fn,p which extracts from the collection

of sub-semi-simplicial types at depth less than n−2 of some r (n+p)-semi-simplex the

sub-collection of sub-semi-simplicial types at depth less than n− 2 of the (n+ p− 1)-

semi-simplex which is the ith-face of the original simplex (i ranges from 0 to n+ p);

� an identity over �lters, reminiscent of the face identity, asserting dn,pk ◦ dn,p+1
j =

dn,pj ◦ dn,p+1
k+1 for k ≥ j.

Below, we generally let i range over values below n+ p. We sometimes omit the argu-

ment X of d, d.

sstn : Type2
sst0 , Unit

sstn+1 , ΣX : sstn.(F
n,0(X)→ Type1)

Fn,p (X : sstn) : Type1
F 0,p unit , Unit

Fn+1,p (X,Y ) , Σx : Fn,p+1(X).∧
i0...ip∈

(
n + p + 1

p + 1

) Y (dn,0i0
...dn,pip

(x))

dn,pi (X : sstn)(x : Fn,p+1(X)) : Fn,p(X)

d0,pi unit unit , unit

dn+1,p
i (X,Y ) (x, y) , (dn,p+1

i (x), d
n,Fn,Y,dn,dn,p+1

i (x)(y))

dn,p
k≥j (X : sstn)(x : Fn,p+2(X)) : dn,pk dn,p+1

j (x) = dn,pj dn,p+1
k+1 (x)

d0,p
k≥j unit unit : refl

dn+1,p

k≥j (X,Y ) (x, y) : (dn,p+1

k≥j (x), d
n,Fn,Y,dn,dn,dn,p+1

k≥j (x)(y))

where, in the last line,

dn : [dpk(dp+1

j≥i )(x) · dp
k≥i(d

p+2
j+1)(x) · dpi (dp+1

k+1≥j+1
)(x)

= dp
k≥j(d

p+2
i )(x) · dpj (dp+1

k+1≥i)(x) · dp
j≥i(d

p+2
k+2)(x)]

comes as a consequence of the strictness of the equality.

The de�nition above has been fully formalized in Coq, using an equality that satis�es

uniqueness of re�exivity proofs. The faces identities for speci�c values of n, i and j would

hold de�nitionally if Coq had supported a de�nitional form of uniqueness of re�exivity

proofs (e.g. by providing Streicher's axiom K with its reduction rule).



Hugo Herbelin 10

5. The initial segments of a dependently-typed augmented semi-simplicial

types in the absence of a strict equality

We now place ourselves in a context where equality is not provably strict. Then, n extra

coherence conditions have to be proved to support the construction of augmented semi-

simplicial types with types at h-level n+ 2.

The construction made in Section 4 works directly for types at h-level 2, since then,

equality between elements of such types is strict.

To construct (augmented) semi-simplicial types with types at h-level 3, we need to

prove an extra coherence condition, and for that purpose, we assume given a proof

d
n,F,Y,d,d,d,p

k≥j≥i , shortly d
p

k≥j≥i, of the following coherence property over combinations:

d
p

k≥j≥i : [dpk(d
p+1

j≥i )·d
p

k≥i(d
p+2
j+1)·dpi (d

p+1

k+1≥j+1) =dp

k≥j≥i

d
p

k≥j(d
p+2
i )·dpj (d

p+1

k+1≥i)·d
p

j≥i(d
p+2
k+2)]

where the d
p

i (d
p+1

k≥j) are proofs of d
p

i ◦d
p+1

k ◦dp+2

j =dp
i (d

p+1

k≥j
) d

p

i ◦d
p+1

j ◦dp+2

k+1 and the d
p+1

k≥j(d
p

i )

are proofs of d
p

k ◦ d
p+1

j ◦ dp+2

i =dp

k≥j
(dp+2

i ) d
p

j ◦ d
p+1

k+1 ◦ d
p+2

i . Note that the left-hand side is

then a proof of

d
p

k ◦ d
p+1

j ◦ dp+2

i =dp
k(d

p+1

j≥i
)·dp

k≥i
(dp+2

j+1 )·d
p
i (d

p+1

k+1≥j+1
) d

p

i ◦ d
p+1

j+1 ◦ d
p+2

k+2

while the right-hand side is a proof of

d
p

k ◦ d
p+1

j ◦ dp+2

i =dp

k≥j
(dp+2

i )·dp
j (d

p+1

k+1≥i
) ·dp

j≥i
(dp+2

k+2)
d
p

i ◦ d
p+1

j+1 ◦ d
p+2

k+2

so that the equality is correct only up to pointwise transport along dp
k≥j≥i

.

We can now de�ne dependently-typed (augmented) semi-simplicial types at h-level 3

by inductively proving the following extra property mutually with the de�nition of sstn,

Fn,p, dn,pi and dn,p
k≥j :

dn,p
k≥j≥i

(X : sstn)(x : Fn,p+3(X)) :

dpk(dp+1

j≥i )(x) · dp
k≥i(d

p+2
j+1)(x) · dpi (dp+1

k+1≥j+1
)(x)

=

dp
k≥j(d

p+2
i )(x) · dpj (dp+1

k+1≥i)(x) · dp
j≥i(d

p+2
k+2)(x)

d0,p
k≥j≥i

unit unit : refl

dn+1,p

k≥j≥i
(X,Y ) (x, y) : (dn,p+1

k≥j≥i
(x), d

n,Fn,Y,dn,dn,dn,p+1

k≥j≥i (x)(y))

We suspect that the proof of d requires to prove a coherence diagram involving the

commutation of d. With types at h-level 3, this extra coherence diagram would hold by

de�nition of h-level 3.

We suspect that n such new extra coherence diagrams have to be proved each time

we want the formalization to be applicable to types of h-level n+ 2. In particular, using

non-strict equality, the dependently-typed construction of (augmented) semi-simplicial

types cannot be done over a family of types whose h-levels are not bounded.



A dependently-typed construction of semi-simplicial types 11

6. Examples

6.1. Standard semi-simplicial types

In the standard (augmented) semi-simplicial type ∆[m], the type of (−1)-simplices is

empty and the type of 0-simplices (points) is the interval [0,m]. Then, the set of n-

simplices over n+ 1 ordered points contains a (unique) simplex if and only if the points

it is based on are ordered along the numerical order.

We can then de�ne the initial segments of the standard semi-simplicial type ∆[m]

mutually with auxiliary functions as follows:

∆[m](n) : sstn
∆[m](0) , unit

∆[m](1) , (unit, λunit.Unit)

∆[m](2) , ((unit, λunit.Unit), λx.[0,m])

∆[m](n+ 3) , (∆[m](n+ 2), λx.mklinn+2(x))

mklinn (x : Fn,0(∆[m](n))) : Type1
mklin0 x , Unit

mklin1 x , Unit

mklin2 (x, y) , d
1,0

1 (y) < d
1,0

0 (y)

mklinn+3 (x, y) , mkltn+2 (dn+2,0
1 (x)) (dn+2,0

0 (x))

∧ mklinn+2 (dn+2,0
0 (x))

mkltn
(x1 : Fn,0(∆[m](n)))

(x2 : Fn,0(∆[m](n)))
: Type1

mklt0 x1 x2 , Unit

mklt1 x1 x2 , Unit

mklt2 (x1, y1) (x2, y2) , d
1,0

1 (y1) < d
1,0

1 (y2)

mkltn+3 (x1, y1) (x2, y2) , mkltn+2 (dn+2,0
1 (x1))(dn+2,0

1 (x2))

Some n-simplex being given, the points the n-simplex is composed of can be retrieved

by applying each of the n + 1 iterated faces of the form d11 ◦ ... ◦ di1 ◦ di+1
0 ◦ ... ◦ dn0 ,

where i ranges between 0 and n. This translates over the collection x of subsimplices of

some n-simplex as similar compositions of d, ending with d. Calling this function φi, the

purpose of mklin is to build the conjunction of constraints φi+1(x) < φi(x). The function

mklt comes as a helper. For d0(x) and d1(x) produced by mklin, mklt recursively applies

d1 to them, ending with d1, eventually producing a point.

In the construction, conjunctions of inequalities need to be proof-irrelevant. This can

easily be done by de�ning < by cases so that it returns either Unit or the empty type,

Empty.



Hugo Herbelin 12

6.2. Product

We consider how to build the product of initial segments of (augmented) semi-simplicial

types. To de�ne the product of two semi-simplicial types, we need to prove some equalities

relating the d's and the projections. For X1 and X2 of type sstn, we de�ne X1 ×X2 of

type sstn by induction on n as follows, where we sometimes omit the arguments X1 and

X2:

(X1 ×X2)n : sstn
(unit× unit)0 , unit

((X1, Y1)× (X2, Y2))n+1 , ((X1 ×X2)n, λx : Fn,0((X1 ×X2)n).∧{ Y1(projn,01 (X1, X2)(x))

Y2(projn,02 (X1, X2)(x))

}

proj
n,p
1

(X1 : sstn) (X2 : sstn)

(x : Fn,p((X1 ×X2)n))
: Fn,p(X1)

proj
0,p
1 unit unit unit , unit

proj
n+1,p
1 (X1, Y1) (X2, Y2) (x, y) ,

(projn,p+1
1 (x),

mapn,p(projn1 , λx.π1, h
n
1 )(x)(y))

proj
n,p
2

(X1 : sstn) (X2 : sstn)

(x : Fn,p((X1 ×X2)n))
: Fn,p(X2)

proj
0,p
2 unit unit unit , unit

proj
n+1,p
2 (X1, Y1) (X2, Y2) (x, y) ,

(projn,p+1
2 (x),

mapn,p(projn2 , λx.π2, h
n
2 )(x)(y))

hn,p1,i

(X1 : sstn) (X2 : sstn)

(x : Fn,p+1((X1 ×X2)n))
:

proj
n,p
1 (dn,pi ((X1 ×X2)n)(x))

= dn,pi (X1)(projn,p+1
1 (x))

h0,p1,i unit unit unit : refl

hn+1,p
1,i (X1, Y1) (X2, Y2) (x, y) : (hn,p+1

1,i (x), h
n,p

1,i (projn,01 , λx.π1)(x)(y))

hn,p2,i

(X1 : sstn) (X2 : sstn)

(x : Fn,p+1((X1 ×X2)n))
:

proj
n,p
2 (dn,pi ((X1 ×X2)n)(x))

= dn,pi (X2)(projn,p+1
2 (x))

h0,p2,i unit unit unit : refl

hn+1,p
2,i (X1, Y1) (X2, Y2) (x, y) : (hn,p+1

2,i (x), h
n,p

2,i (projn,02 , λx.π2)(x)(y))

where mapn,F,G,Y,Z,d,e(f, g, h), shortly map(f, g, h), is de�ned for n, F p : Type, Gp : Type,

Y : F 0 → Type, Z : G0 → Type, dpi : F p+1 → F p, epi : Gp+1 → Gp, fp : F p → Gp,

g : Πx : F 0. Y (x) → Z(f0(x)) and hpi : Πx : F p+1. fp(dpi (x)) = epi (fp+1(x)). For p being

given and x of type F p+1, it has the following type:

mapn,p(f, g, h)(x) :
∧

i0...ip∈
(
n + p + 1

p + 1

) Y (dn,0i0
...dn,pip

(x))

→
∧

i0...ip∈
(
n + p + 1

p + 1

) Z(en,0i0
...en,pip

(fp(x)))



A dependently-typed construction of semi-simplicial types 13

and it satis�es the property:

h
p

i (f, g)(x)(y) : mapn,p(f, g, h)(dpi (x))(d
p

i (x)(y))

=hp+1(i)(x) epi (epi (fp(x)))(mapn,p(f, g, h)(x)(y))

This latter property is provable under the assumption:

fp(dp
ik

) · hpi (dp+1
k+1) · epi (hp+1

k+1) = hpk(di) · e
p
k(hp+1

i ) · bik(fp)

This latter property holds if equality is taken to be strict. Otherwise, it is expected to

be provable by recursively relying on higher-dimension equalities, the number of whose

being bounded by n and by the h-levels of Y and Z. In particular, we do not see how

this property could be solved uniformly at all n without having a uniform bound on the

h-levels of Y and Z all over the construction.

6.3. Exponential

We sketch the de�nition of the exponential XX1
2 of the �nite parts X1, X2 : sstn of

two (augmented) semi-simplicial types. Interestingly, because the dependently-typed con-

struction of semi-simplicial types carries straightaway the whole structure of sub-semi-

simplices of a semi-simplex, this structure does not have to be explicitly added as it is

the case with the presheaf de�nition.

(XX1
2 )n : sstn

(unitunit)0 , unit

((X2, Y2)(X1,Y1))n+1 , ((XX1
2 )n, λf : Fn,0((XX1

2 )n). Πx : Fn,0(X1).

Y1(x)→ Y2(applyn,0 f x))

applyn,p
(X1 : sstn) (X2 : sstn)

(f : Fn,p((XX1
2 )n))

(x : Fn,p(X1))

: Fn,p(X2)

apply0,p unit unit unit unit , unit

applyn+1,p (X1, Y1) (X2, Y2) (f, g) (x, y) , (applyn,p+1 f x, apply
n,p

f g x y)

applyn,p
i

(X1 : sstn) (X2 : sstn)

(f : Fn,p+1((XX1
2 )n))

(x : Fn,p+1(X1))

:
applyn,p (dn,pi (f)) (dn,pi (x))

= dn,pi (applyn,p+1 f x)

apply0,p unit unit unit unit , refl

applyn+1,p (X1, Y1) (X2, Y2) (f, g) (x, y) , (applyn,p+1 f x, apply
n,p

f g x y)



Hugo Herbelin 14

where, for

f : Fn,p+1((XX1
2 )n

g :
∧

i0...ip∈
(
n + p + 1

p + 1

) Πx : Fn,0(X1).Y1(x)→ Y2(applyn,0 (dn,0i0
...dn,pip

(f)) x))

x : Fn,p(X1)

y :
∧

i0...ip∈
(
n + p + 1

p + 1

) Y1(dn,0i0
...dn,pip

(x))

we de�ne

apply
n,p

(f, g, x, y) :
∧

i0...ip∈
(
n + p + 1

p + 1

)Y2(dn,0i0
...dn,pip

(x))

what requires the auxiliary result apply that apply commutes with d, which itself requires

a proof apply that apply commutes with d.

7. Full dependently-typed construction of augmented semi-simplicial types

From the initial segments of the dependently-typed construction of a augmented semi-

simplicial type, it is easy to build a full augmented semi-simplicial type. This can be

de�ned as

SST , SST0(unit)

where SSTn(X) : Type1 for X : sstn is de�ned coinductively in type theory as �the

trailing sequence of Xp for p ≥ n with initial pre�x X�. The coinductive type SSTn(X)

is de�ned by its destructors:

S : SSTn(X)

thisS : Fn,0(X)→ Type1

S : SSTn(X)

nextS : SSTn+1(X, thisS)

In particular, if S is an augmented semi-simplicial type, then, its underlying p-semi-

simplicial type nextp and its underlying p-initial pre�x thisp S are given by iterating

nextfrom where, assuming X to be an initial semi-simplicial pre�x of type sstn, the

operator nextfrom(X,S) , ((X, thisS), (nextS)) extends the n-th decomposition of S :

SST into (X,S) with X : sstn and S : SSTn(X) to its n+ 1-th decomposition into some

(X ′, S′) with X ′ : sstn+1 and S′ : SSTn+1(X ′):

nextn S : sstn
, fst (nextfromn (unit, S))

thisn S : Fn,0(nextn S)→ Type1
, this (snd (nextfromn (unit, S)))

The total space of each thisnS (what corresponds to the type Xn−1 of (n − 1)-semi-

simplices in the introduction) is:

Tn(S) , Σx : Fn,0(nextn(S)).thisn(S)(x) .



A dependently-typed construction of semi-simplicial types 15

Its faces dni , from Tn+1(S) to Tn(S), are de�ned by:

dni ((x, y), z) , (dn,0i (x), d
n,0

i (x)(y)) .

They commute thanks to the properties d and d.

Remarks: As an alternative to the coinductive construction of SST, we could also con-

sider the directed families of Xn : sstn, i.e. the families (Xn)n∈N such that fstXn+1 =

Xn. Also, the type of (non augmented) semi-simplicial types can be de�ned to be

SST1(unit, λunit.Unit).

8. Voevodsky's dependently-typed formalization of semi-simplicial types

Voevodsky started a formalization of dependently-typed (non augmented) semi-simplicial

types in the Coq proof assistant (Voevodsky, 2012a). The idea is similar to ours. Using

our notations, it starts as follows§ where [j] ↪→ [k] denotes the set of injections from the

interval [j] of the �rst j + 1 natural numbers to the [k] such interval:

sstn : Type2
sst0 , Type1
sstn+1 , ΣX : sstn.F

n,n+1(X)→ Type1

Fn,j (X : sstn) : Type1
F 0,j X , [j]→ X

Fn+1,j (X,Y ) , Σx : Fn,j(X).Πs ∈ ([n+ 1] ↪→ [j]).Y (dn,n+1,j
s (x))

dn,j,ks:[j]↪→[k] (X :sstn) (x :Fn,k(X)) : Fn,j(X)

d0,j,ks X x , x ◦ s
dn+1,j,k
s (X,Y ) (x, y) , (dn,j,ks (X)(x), λs′ ∈ ([n+ 1] ↪→ [j]).y(s ◦ s′))

It remains to prove dn,n+1,k
s◦s′ (x) = dn,n+1,j

s′ (dn,j,ks (x)) to justify the last line of the

de�nition. This is suspected to hold by Voevodsky under the assumption that the type

theory supports some extensional form of �de�nitional equality�. This basically reduces

to supporting (computable) strict equality, and, indeed, based on our work, everything

suggests that the equation holds when stated using strict equality.

The di�erence between Voevodsky's construction and ours re�ects di�erent views over

the underlying structure of face maps.

Voevodsky's construction relies on the categorical structure of face maps, namely on

composition and associativity of composition. Contrastingly, our construction relies on

the combinatorial structure of them, namely their factorization into atomic faces up to

face identities.

§ We slightly simpli�ed the formalization: in the original Coq �le, both F , called sks, and d, called
restr, had an extra argument i ≤ n, reminiscent of some possible need for well-founded induction
but which happened not to be used (i.e. i only needs to be n in practice). We dropped this argument.



Hugo Herbelin 16

In Voevodsky's construction, the face identities are proved within the (syntactic) cat-

egory of faces as part of the proof of associativity of composition. In our construction,

associativity of faces comes for free but the proofs of face identities surfaces within the

(semantical) construction of semi-simplicial types.

There is a secondary orthogonal issue. When the collections of j-sub-semi-simplices are

represented using a Π-type, as in the de�nition of Fn+1,j above, functional extensionality

is needed, here to prove dn,n+1,k
s◦s′ (x) = dn,n+1,j

s′ (dn,j,ks (x)). Contrastingly, functional ex-

tensionality of equality is not needed when the collections of sub-semi-simplices of some

dimension are represented by tuples.

References

Coq Development Team, T. (2012). The Coq Reference Manual, version 8.4. Distributed elec-

tronically at http://coq.inria.fr/doc.

Friedman, G. (2012). Survey article: An elementary illustrated introduction to simplicial sets.

LeFanu Lumsdaine, P. (2012). Semi-simplicial types. Online at http://uf-ias-

2012.wikispaces.com/Semi-simplicial+types.

The Univalent Foundations Program, IAS. (2013). Homotopy type theory: Univalent foundations

of mathematics. Technical report, Institute for Advanced Study.

Voevodsky, V. (2011). Univalent foundations of mathematics. In Logic, Language, Informa-

tion and Computation, volume 6642 of Lecture Notes in Computer Science, page 4, Berlin -

Heidelberg. Springer.

Voevodsky, V. (2012a). Semi-simplicial types. Online at http://uf-ias-

2012.wikispaces.com/Semi-simplicial+types.

Voevodsky, V. (2012b). Univalent foundations repository. Ongoing Coq development,

https://github.com/vladimirias/Foundations.


