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Motivation

More Motivation

Separation Logic with Read-Only Permissions



Separation and ownership

Separation logic (Reynolds, 2002) is about disjointness of heap fragments.

I what “we” own, versus what “others” own.

Therefore, it is about unique ownership.

I if we don’t own a memory cell, we cannot write it, or even read it.
I if we own it, we can read and write it.

We have either no permission or read-write permission.



The read and write axioms

The reasoning rule for writing requires and returns a unique permission :

set
{l ↪→ v ′} (set l v) {λy . l ↪→ v}

So does the reasoning rule for reading :

traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

They are known as “small axioms”.

But are they as small as they could be ? ...



Consequences

From memory cells and arrays,
the dichotomy extends to user-defined data structures.

For every data structure, we have either no permission or read-write permission.



Consequences

Here a specification of an array concatenation function :

{a1 { Array L1 ? a2 { Array L2}

(Array.append a1 a2)

{λa3. a3 { Array (L1 ++ L2) ? a1 { Array L1 ? a2 { Array L2}

It is a bit noisy.

It also has several deeper drawbacks (see next slide).



Our goal

We would like the specification to look like this instead :

{RO(a1 { Array L1) ? RO(a2 { Array L2)}

(Array.append a1 a2)

{λa3. a3 { Array (L1 ++ L2)}

This would be more concise,

require less bookkeeping,

make it clear that the arrays are unmodified,

and in fact would not require the arrays to be distinct.



Our means

For this purpose, we introduce
temporary read-only permissions.

Thank you for your attention.



Remboursez !

What ! ?

Couldn’t one view RO(·) as syntactic sugar ?

I No.

Couldn’t one express this using fractional permissions ?

I Yes. More heavily.

Isn’t the metatheory of RO(·) very simple ?

I Yes, it is. If and once you get it right. That’s the point !
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The sugar hypothesis



The sugar hypothesis

Could the Hoare triple :
{RO(H1) ? H2} t {Q}

be syntactic sugar for :
{H1 ? H2} t {H1 ?Q}

?



Sugar does not reduce work

Sugar reduces apparent redundancy in specifications,

but has no effect on the proof obligations,

so does not reduce redundancy and bookkeeping in proofs.

If we must prove this :

{H1 ? H2} t {H1 ?Q}

then we must work to ensure and argue that the permission H1 is returned.

If “RO” was native, proving {RO(H1) ? H2} t {Q} would require no such work.



Sugar does not allow aliasing

If “RO” is sugar, then this specification requires a1 and a2 to be disjoint arrays :

{RO(a1 { Array L1) ? RO(a2 { Array L2)}

(Array.append a1 a2)

{λa3. a3 { Array (L1 ++ L2)}

As a result, we must prove another specification to allow aliasing :

{a { Array L }
(Array.append a a)
{λa3. a3 { Array (L ++ L) ? a { Array L }

Duplicate work for us ; increased complication for the user.

If “RO” was native and duplicable, the first spec above would allow aliasing.



Sugar is deceptive

A read-only function admits an “RO” specification.

{RO(h { HashTable M)} (population h) {λy . [y = card M]}

If “RO” is sugar, a function that can have an effect also admits an “RO” spec.

{RO(h { HashTable M)} (resize h) {λ(). []}

An “RO” specification, interpreted as sugar, does not mean “read-only”.

Such sugar, if adopted, should use another keyword, e.g., preserves.

If “RO” was native, resize would not admit the second spec above.



Sugar causes amnesia and weakness

Suppose population has this “RO” specification :

{RO(h { HashTable M)} (population h) {λy . [y = card M]}

Suppose a hash table is a mutable record whose data field points to an array :

h { HashTable M :=
∃∃a.∃∃L . (h { {data = a; . . .} ? a { Array L ? . . .)

Suppose there is an operation foo on hash tables :

let foo h =
let d = h.data in – read the address of the array
let p = population h in – call population
. . .

If “RO” is sugar, then the proof of foo runs into a problem...



Sugar causes amnesia and weakness

Reasoning about foo might go like this :

1 let foo h =
2 {h { HashTable M} – foo’s precondition
3 {h { {data = a; . . .} ? a { Array L ? . . .} – by unfolding
4 let d = h.data in
5 {h { {data = a; . . .} ? a { Array L ? . . . ? [d = a]} – by reading
6 {h { HashTable M ? [d = a]} – by folding
7 let p = population h in – we have to fold
8 {h { HashTable M ? [d = a] ? [p = #M]}
9 . . .

At line 8, the equation d = a is useless.

We have forgotten what d represents, and lost the benefit of the read at line 4.

With “RO” as sugar, the specification of population is weaker than it seems.

If “RO” was native, there would be a way around this problem. (Details omitted.)
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Permissions

Permissions are as follows :

H := [P] | l ↪→ v | H1 ? H2 | H1 ∨∨ H2 | ∃∃x .H | RO(H)

Every permission H has a read-only form RO(H).



Properties of RO

RO is well-behaved :

RO([P]) = [P]
RO(H1 ? H2) . RO(H1) ? RO(H2) (the reverse is false)
RO(H1 ∨∨ H2) = RO(H1) ∨∨ RO(H2)

RO(∃∃x .H) = ∃∃x .RO(H)
RO(RO(H)) = RO(H)

RO(H) . RO(H′) if H . H′

RO(H) = RO(H) ? RO(H)



A new read axiom

The traditional read axiom :
traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

is replaced with a “smaller” axiom :

new read axiom
{RO(l ↪→ v)} (get l) {λy . [y = v]}



A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule” :

frame rule
{H} t {Q} normal H′

{H ? H′} t {Q ? H′}

read-only frame rule
{H ? RO(H′)} t {Q} normal H′

{H ? H′} t {Q ? H′}

Upon entry into a block, H′ is temporarily replaced with RO(H′),
and upon exit, magically re-appears.

The side condition “normal H′” means roughly “H′ has no RO components”, so
RO(H′) cannot escape through Q .



That’s all, folks !

That’s all there is to it !



That’s all, folks !

The paper gives a simple model that explains why the logic is sound.

The proof is machine-checked.

We believe that temporary read-only permissions sometimes help state
more concise, accurate, useful specifications, and lead to simpler proofs.

Possible future work : an implementation in CFML.
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