
ICFP'08 Victoria, 2008-09-23

Arthur Charguéraud

Functional Translation of a
Calculus of Capabilities

Joint work with François Pottier

INRIA

2

Separation in Data Structures

 → A type system able to capture disjointness of data structures

5

1

7

9

2

4

5

7

9

L1: odd values L2: sorted

3

5

1

7

9

2

4

5

L1: odd values L2: sorted

3

3

Extending ML with Separation
Technical starting point ⇒ System F
Materialization of ownership ⇒ Capability calculi

Fine-grained control of aliasing ⇒ Alias Types
Describing maybe-aliased data ⇒ Region calculi

Description of disjointness ⇒ Separation Logic
Exclusivity of ownership ⇒ Linear Logic
Delimiting the scope of effects ⇒ Effects type systems

 → A combination of many ideas into a single type system
that targets a high-level programming language

4

Contributions

1) A type system controlling side-effects
more accurately than ML

2) A fine-grained translation of typed
imperative programs into a purely
functional language

5

Capabilities
Capability: a static entity used to materialize ownership.
Reading or writing a reference requires the capability on this ref.

Type of the function "get" that reads a reference:

in ML:

here:

∀τ. (ref τ) → τ

∀τ. (ref τ) {·} → τ {·}

∀τ σ. (ref τ)[σ] {σ} → τ {σ}

∀τ σ. [σ] {σ:ref τ} → τ {σ:ref τ}

"at-sigma" singleton
type for the location

the capability for the
corresponding location

Ref: Alias Types, Smith, Walker, Morrisset, ESOP'00
Ref: Linear Language with Locations, Morrisett,Ahmed,Fluet, TLCA'05

6

Flow of Capabilities
A set of capabilities is available at each point in the program.

input capabilities C1 and C2let f x y =

...

let z = g x in

...

z+y

call to g consumes C1

and produces C3

Skeleton of example:

finally C2 and C3 are returned

Capabilities are treated linearly: they cannot be duplicated.
A frame rule is used to work locally on a subset of capabilities.

Ref: Calculus of Capabilities, Crary, Walker, Morrisset, POPL'99

7

Life-cycle of Capabilities
Type of the function "ref" that allocates a reference:

in ML:

here:

τ → (ref τ)

τ → ∃σ. [σ] {σ:ref τ}

in ML:

here:

τ → (ref τ) → unit

τ → [σ] {σ:ref τ} → unit {σ:ref τ}

in ML:

here:

(ref τ) → unit (unsafe)

[σ] {σ:ref τ} → unit (safe)

Type of the function "set" that updates a reference:

strong: τ2 → [σ] {σ:ref τ1} → unit {σ:ref τ2}

Type of the function "free" that de-allocates a reference:

8

Invariants on Capabilities
If l is a location, then

in ML:

here:

l : ref τ

l : [σ] with capability {σ:ref τ}

1) Whenever {σ:ref τ} is available, the store maps
a location of type [σ] towards a value of type τ

2) There can be at most one capability on a given location

3) If {σ:ref τ} is not available, the location of type [σ]
cannot be accessed

Invariants

9

Example with Aliasing

r1 : [σ1] {σ1:ref int}let r1 = ref 5

let r2 = ref 7

let r3 = r2

let x = get r3

r2 : [σ2] {σ2:ref int}

r3 : [σ2]

x : int

Function "get" is here applied with type

[σ2] {σ2:ref int} → int {σ2:ref int}

10

Example with Sharing

let r1 = ref 5

let r2 = ref r1

let r3 = ref r1

let r4 = get r3

let x = get r4

r1 : [σ1] {σ1:ref int}

r2 : [σ2] {σ2:ref [σ1]}

r3 : [σ3] {σ3:ref [σ1]}

r4 : [σ1]

x : int

r3
r1

r2

11

Building Data Structures

let r1 = ref 5

let r2 = ref r1

r1 : [σ1]

r2 : [σ2]

{σ2:ref (ref int)}r1

r2

5

{σ1:ref int}

{σ2:ref [σ1]}

r1

r2

5

merge

let x = get r2

x : (ref int)

split

BUG!

get : [σ] {σ:ref τ} → τ {σ:ref τ}

τ stands for a type free of the "ref" constructor

12

Example: Mutable Binary Tree
tree α = ref (α × tree α × tree α) Note: the constructor

for leaves has been
hidden for simplicity.L : [σ] with capability {σ:tree α}

{σ:ref (α × tree α × tree α)}
can be traded against

{σ:ref ([σ1] × [σ2] × [σ3])}
{σ1: α}
{σ2: tree α}
{σ3: tree α}

13

L : [ρ]

ρ

Example: Graph with Pointers
node α = ref (α × list (node α))

Capability on the "group region"
{ρ:node α }
as opposed to "singleton regions"
of the form {σ:node α}

adoption

focus

defocus

σ

Ref: Adoption & Focus, Fahndrich, DeLine, PLDI'02
Ref: Connecting Effects & Uniqueness with Adoption, Boyland, Retert,

POPL'05

here:

in ML:

node α = ref (α × list [ρ])ρ

ρ

14

Functional Translation
Goal: write a purely functional program equivalent to
a given imperative program

But:

– it threads more data than necessary

→ does not take advantage of separation properties

→ is not the identity over the pure fragment

→ does not match what a programmer would code

– the threaded map contains heterogeneous data

→ does not type-check in System F

Standard monadic translation: threads a map that
represents the state of the store throughout the
program

15

let f x y c1 c2 =

...

let z,c3 = g x c1 in

...

z+y,c2,c3

Translation based on Capabilities
Fact: capabilities describe precisely which pieces of
store need to be threaded at each point in the program

Idea: materialize capabilities as runtime values

input the translation of
capabilities C1 and C2

call to g consumes C1

and produces C3

finally C2 and C3 are returned

Translated program:

16

Translating Capabilities and Types
Source program Translated program

Static capability

{σ:ref τ}

Type of runtime value

{ρ:ref τ}

τ

map key τ

Type of runtime value

[σ]

Type of runtime value

[ρ]

unit

key

17

A Few Examples
Mutable trees: represented as functional trees.

Mutable lists: the in-place list reversal function is
translated to the reverse function for functional lists.

Tarjan's union-find: each instance of the union-find
graph is represented using a map, each node is
represented using a key.

Landin's knot: this fixpoint combinator implemented
with a reference cell translates to the Y-combinator
(which type-checks in System F with recursive types).

18

On-going work

– Extend the system to a full-blown language

– Augment the expressiveness of operations on group regions

– Set up a partial type-inference engine and implement it

Conclusions

Applications

– More precise types mean better documentation and fewer bugs

– Relaxing the value restriction (restriction now only on types)

– Support for safe deallocation (with runtime support for groups)

– Semi-automatic functional translation of imperative programs

– Should help for reasoning on imperative programs

– Should help for programming concurrent programs

Thanks!

