
Under consideration for publication in Formal Aspects of Computing

Shallow Linear Action Graphs
and their Embeddings

James J. Leifer1 and Robin Milner2

1 INRIA, Domaine de Voluceau, BP 105,

78153 Le Chesnay Cedex, France. email : James.Leifer@inria.fr
2 Computer Laboratory, University of Cambridge,

J J Thomson Avenue, Cambridge CB3 0FD, UK. email : Robin.Milner@cl.cam.ac.uk

Abstract. Action calculi, which generalise process calculi such as Petri nets,
π-calculus and ambient calculus, have been presented in terms of action graphs.
We here offer linear action graphs as a primitive basis for action calculi. This
paper presents the category of embeddings of undirected linear action graphs
without nesting, using a novel form of graphical reasoning which simplifies some
otherwise complex manipulations in regular algebra. The results are adapted in
a few lines to directed graphs. This work is part of a long-term search for a
uniform behavioural theory for process calculi.

Keywords: action calculus; process calculus; graph embedding.

1. Introduction

This paper is part of long-term project, which began in about 1991, to develop
a general mathematical model of mobile computing which can underpin many
different formulations. The action graphs [Mil96], with which the project began,
admit great freedom in the way in which graphs can reconfigure themselves, re-
flecting different aspects of mobility. That first phase of work has also revealed
the need to understand a more primitive form of graph: those in which the
wiring is linear in a sense to be described. Their theory will be simpler, and
the exploratory work we have done indicates that non-linear varieties can be
recovered in terms of the linear ones. The present paper therefore begins a re-
search programme which will develop the linear and non-linear theories in careful
progression.

Correspondence and offprint requests to: Robin Milner

2 James Leifer and Robin Milner

We are happy to include this work in a festscrift for Rod Burstall; it is appro-
priate in more than one way. Burstall’s untiring enthusiasm for using category
theory to understand computing is well-known to many, especially to one of
us (Milner) who had the good fortune to work alongside him for some twenty
years and profit from his insights. Less well-known, probably, is his 1972 pa-
per [Bur72], a pioneering use of graphical reasoning to enlighten the hazardous
business of updating list structures by swinging pointers. His work is indeed a
rigorous treatment of mobility in data structures; our present work can be seen as
a generalisation of Burstall’s ideas to deal with mobility of processes, for example
in the “global computer” which the internet is rapidly becoming.

Background Action calculus [Mil96] is an approach to a general model for mo-
bile interactive computing. An individual action calculus AC(K) is determined by
its set K of controls and their associated reaction rules. Petri nets, the λ-calculus
and the π-calculus are all action calculi. There is also a growing range of more
modern calculi, mostly focussed upon specific features of mobile distributed com-
puting; examples are the spi calculus [AbG97] and the ambient calculus [CaG00].
These, or at least many of their features, fall within the action calculus frame-
work. By a familiar abuse of language, we use the term “action calculus” to mean
either this framework or any individual calculus that falls within it.
What is the use of a framework for calculi? If calculi share common material,

in particular if they can be formulated in action calculus, then they may also
benefit from shared theory. There are other shared theories in computing; for
example, the analysis of programming languages within a particular semantic or
type-theoretic framework. Semantics of programming has alleviated the threat
of a Babel of languages; the threat of a Babel of calculi is now upon us, and we
would like to alleviate that threat too. If action calculus is to help, then it must
provide shared theory, not just shared formalism.
The first steps [Mil96] towards a shared theory of action calculi rested on

their presentation using action graphs. An essential feature of these graphs, not
conventional in graph theory, is their nesting ; each node may contain a child
graph, and nesting may be arbitrarily deep. Nesting represents both scope, e.g. of
a name in the π-calculus, and location, e.g. a site of activity such as an ambient of
the ambient calculus. Figure 1, deliberately vague in detail, shows such a graph;
a node, at any depth, may be linked by an edge to any other node.
The crucial element of each action calculus is its reaction rules, each re-

configuring a subgraph; the rules will model message-passing, migration, repli-
cation, destruction or any other mode of interaction. Thus, communication in
the π-calculus is modelled by edge manipulation, and guarding –e.g. the prefix
x(y).P– by encapsulation of P within a node, whose boundary is destroyed when
the prefix reacts. (In general, when a node boundary is destroyed, the rule must
determine where to link edges which impinge on the boundary.) Movement in
the ambient calculus is modelled quite directly; an ambient is one kind of node,
edges represent references to ambients, and the reaction rules specify the move-
ment of ambients across ambient boundaries and the creation or removal of such
boundaries. These two examples illustrate different reaction disciplines; the first
inhibits activity inside certain nodes, while the second permits it.
In [Mil96] a particular class of action graphs is treated algebraically. Some of

its features are as follows: Graphs are the arrows of a strict symmetric monoidal
category whose objects are arities; edges are directed, and impinge on nodes
at source and target ports; moreover edges can fork –many can emerge from a

Shallow Linear Action Graphs 3

Fig. 1. An action graph

single source port– but not join at a target port; edges may only cross node
boundaries going inwards (from source to target); and so on. These details are
mentioned only to illustrate the possible variety; other choices have been taken,
for example by Honda [Hon00] and Gardner and Wischik [GaW98]. At the end of
this section is a taxonomy which is incomplete, but enough to place our present
work in relation to the varieties mentioned.

Purpose A long-term aim is to provide a rich behavioural theory of such graph-
ical models, since we believe that a combination of rigour and geometric intuition
is essential to the engineering of mobile interactive systems. To begin with, we
clearly have to understand “behaviour”; what does the term mean? Guided by
experience with process calculi, we approach this question via a study of be-
havioural preorders or equivalences based directly upon reaction rules.
Recently we have begun to find a behavioural theory, common to many action

calculi. We defined a general notion of reactive system, which includes action
graphs and their reaction rules. We then showed [LeM00, Lei01] that, for certain
“nice” reactive systems, a labelled transition system (LTS) can be derived whose
associated preorders and equivalences –such as trace inclusion, trace equivalence,
the failures ordering and (bi)simulation– are congruential. Then in [CLM00],
as an exploratory exercise, we showed that without nesting a wide range of
categories of action graphs and their embeddings are “nice” reactive systems.
We believe that this result can be extended to admit nesting; at that point,
we shall be in a position to compare our general behavioural theory with what
has been previously developed independently for many real calculi, including the
π-calculus.
This work makes essential use of graphical properties. But graphical formula-

tion levies a toll! The conditions on reaction rules and graph embeddings which
ensure “nice” reactive systems are not at all obvious. We first have to set up an
appropriate category of action graphs under embeddings, and this turns out to be
subtle. Moreover, the embeddings in our exploratory study [CLM00] admit only
a constrained form of reflexion or feedback (see Section 3), and for a satisfactory

4 James Leifer and Robin Milner

theory we would like no constraint on reflexion. One of us (Leifer) has indeed
adapted the axioms to this end; the justifying proofs, requiring considerable use
of regular algebra, will appear in a forthcoming Technical Report [Lei02].
Taking into account the difficulties already encountered, before extending our

theory we seek to base it on a more primitive foundation. We therefore study
linear action graphs here, expecting so to shed more light upon the non-linear
case. Indeed, linear graphs are close to previously-studied structures, at least in
the shallow (non-nesting) case; Cattani [Cat00] points out, relying on Mifsud’s
work [Mif95], that they constitute the free traced strict symmetric monoidal
category over a signature K of controls. Joyal et al [JVS96], deploying techniques
of graphical reasoning, have axiomatised these categories. But this does not
determine how to handle embeddings of linear graphs.
The present paper sets up the category of embeddings for shallow linear

action graphs. It also verifies the construction using a novel form of diagrammatic
reasoning that, for linear graphs, does the job for which Leifer [Lei02] used regular
algebra. (Leifer’s treatment allows non-linearity, i.e. arbitrary forking of edges.)
The technique has wider applicability; in future work we shall use it to establish
the conditions under which we get the “niceness” mentioned above.

Taxonomy of graphs There are many varieties of action graph. They can be
linear or non-linear; directed (see Section 2) or undirected; shallow or deep; closed
(no freely-named ports) or open. There are also varieties of embedding – e.g. (as
mentioned) they can admit more or less of reflexion, and (for deep graphs) can
be deep or shallow. A full taxonomy would be complex, since these degrees of
freedom are not always orthogonal. We shall merely distinguish a few, guided by
what we consider important and by how we predict the theory will develop.
We believe that the category G-Emb of linear, undirected, deep, open action

graphs and appropriate embeddings will work well in applications, and that its
theory will underpin the theories of other varieties. For example, we expect to
recover non-linear varieties [Mil96, GaW98, Hon00] by a suitable quotient of the
linear categoryG-Emb. We expect also to derive the associated directed variety,
and to consider shallow and closed varieties.
So we shall subscript G-Emb with any of ‘s’, ‘c’, ‘d’ to mean combinations of

shallow, closed and directed; e.g.G-Embsc for the shallow, closed but undirected
variety. We also expect to introduce subscripts for various non-linear forms.1

In each case we expect (at first) to study fully reflexive embeddings of a single
graph in another. Later, following Sewell’s [Sew98] study of multi-hole contexts,
we shall want to consider multiple embeddings, and may also vary embeddings in
other ways; we may wish to use superscripts to classify varieties of embedding.2

The present paper establishes the category G-Embs of shallow undirected
linear action graphs, and derives G-Embsd, its directed variant. The prime in-
stance of G-Embs is Lafont’s interaction nets [Laf90]; these are also generalised
by Turnbull [Tur02], whose forthcoming PhD thesis [Tur02] will propose a linear
intermediate language for interactive programming.

1 The name G-Emb0 was used in [CLM00] for a category of shallow, closed, directed, non-
linear action graphs. That name does not accord with the convention proposed here.
2 Surely, only a few of the possible combinations of graph and embedding will be interesting!
We have no intention of drowning in a sea of circumscripts – we merely want to avoid confusion
in navigating the archipelago of varieties.

Shallow Linear Action Graphs 5

u0 u1

φd

Gd

Hd

Hd

Fig. 2. An embedding of directed action graphs

2. Linear action graphs

In this section we shall define the category G-Embs of shallow undirected linear
action graphs and embeddings. This depends on the subsidiary category E-Emb
of edge embeddings which is detailed in Section 3.
Before making precise definitions, let us explain with diagrams the kind of

embedding that we want to understand. Here are two directed action graphs Gd

and Hd, of the kind studied in [Mil96, CLM00], together with an embedding φd

of Gd into Hd. Each node u can carry ports; targets at its left and sources at its
right. Also a graph may have both input sources at its left and output targets
at its right. Figure 2 shows how Gd can be “cut out” of Hd. It also shows the
graphical context which remains if we remove from Hd the copy of Gd inside the
dotted line. There is a close connection between such contexts and embeddings;
in fact there are several different contexts into which Gd may be inserted to yield
Hd, and we want to reflect this difference in our definition of embedding. The
diagram illustrates a use of reflexion in the embedding; an outgoing edge from
node u1 is bent back to form an ingoing edge of u0, passing via the input-output
edge of Gd. The example illustrates how a graph and a context can collaborate
to create a link.
Figure 3 shows an undirected version of this situation (ignore the port labels

pi for now). G and H are derived from Gd and Hd simply by deleting directional
information; thus, source ports and target ports are no longer distinguished, and
we line them up along the top edge of the graph. But we want to reverse this
derivation, for we find that many aspects of our theory are best developed for
undirected graphs first, and then transferred to directed graphs. In Section 4 we
shall make precise how directed graphs and their embeddings arise from imposing
direction on undirected ones. Direction can be imposed in many ways on a graph;
in the present example it can be imposed on G and H to obtain Gd and Hd in
a way which is respected by the embedding φ, and thus the embedding φd is
recovered.

6 James Leifer and Robin Milner

G

H
Hφp1

p3

p5p0

q q′

p4

q′q

p2

Fig. 3. An embedding of undirected action graphs

Terminology If R is a binary relation then (y, x) ∈ R, yRx, y ∈ Rx and xR−1y
all mean the same; so does y = Rx if R is a partial function. (In this work there
is no risk of confusing a singleton set with its member.) The composition of

two relations is defined by z(R′
◦R)x

def
⇔ ∃y. zR′y& yRx. The domain of R is

domR = {x | ∃y. yRx} and its range ranR = {y | ∃x. yRx}. We denote the
transitive closure of R by R+, and its transitive reflexive closure by R∗. We
understand the application R′Ry to mean R′(R(y)).
We write A] B for the union of two sets A and B known or assumed to be

disjoint. We write IdA for the identity function on a set A. We write f : AÀ B
for a bijection, and f : A B for a partial bijection, or equivalently a partial
injection – i.e. a partial function which, restricted to its domain, is injective. We
shall call a bijection f :AÀ A an involution if it is self-inverse, i.e. y = fx⇒ x =
fy; a strict involution f is one for which ∀x. fx 6= x. A partial (strict) involution
is a partial function which, restricted to its domain, is a (strict) involution.
In categories, we write the composition of two arrows f :A→ B and g :B →

C as g f :A→ C, and the identity arrow on A as idA. We write [n] for the ordinal
set {0, 1, . . . , n− 1}.

We now proceed to define edgings and edge embeddings, on which our defini-
tions for graphs depend.

Definition 1. (edging) A (linear, undirected) edging is a pair E = (P, edg),
where edg is strict involution on the set P of ports. If p′ = edg p we call {p, p′}
an edge, and write {p, p′} ∈ edg .

Later we shall define directed edgings; their properties can often be de-
rived from those of undirected ones. We shall use E = (P, edgE), E0, E

′, F =
(Q, edgF), . . . to denote edgings, and understand that their components are
similarly subscripted or primed.

Definition 2. (graphs) A (shallow, linear) action graph takes the form G =

Shallow Linear Action Graphs 7

(L,U, ar , edg), where L is a finite set of external ports3, U is a finite set of nodes,
the function ar :U → N provides the arity of each node, and E = (P, edg) is a
linear, undirected edging on the port set

P
def
=

∑

u∈U

[ar(u)] + L .

We shall denote the injections induced by the disjoint sum P as follows:

bind(u) : [ar(u)]½ P for the binding ports of each u ∈ U ;
ext : L½ P for the external ports.

For any injection i into a set A we may write Ai for the range of i; thus P ext is
the set of all external ports and P bind(u) the set of binding ports of the node u.
We shall also write for example P bind for

⊎

u∈U P
bind(u). With this notation we

see that P = P bind] P ext .
If an edge {p, p′} is a subset of P ext we shall call it a link edge. For the rest

of this section, Section 3 and Section 4 we shall omit the terms “shallow” and
“linear”, since they apply to all our constructions.

Definition 3. (edge embedding) Let E = (P, edgE) and F = (Q, edgF) be
edgings. An edge embedding φ :E → F is a pair (φP, φR), where the port map
φP :P Q is a partial bijection, and the reflexion map φR is a partial strict
involution on P . We also write {p, p′} ∈ φR for p′ = φRp. Two conditions are
imposed:

E-dom : domφP] domφR = P
E-edge : edgF ◦φP ⊆ φP

◦ (edgE◦φR)∗◦ edgE .

Thus, E-dom asserts that φP ∪ φR is a total function. The effect of E-edge,
as we shall see, is to ensure that a chain of edges in E linked by reflexion either
embeds into a single edge of F or forms a reflexive loop. It is not quite trivial to
see this; in fact, proofs about this simple definition of embedding involve tricky
regular algebra. To avoid this, in the next section we shall introduce diagrams
called embedding formulae, which will make the proofs both shorter and more
intuitive. For now, consider the embedding φ :G→ H illustrated above. Among
the edges of G are {p0, p1},{p2, p3} and {p4, p5}, as shown. Since the ports p0

and p5 “appear” in H as q and q′ we have

φPp0 = q, φPp5 = q′ .

But the embedding of the three mentioned edges into the edge {q, q′} is repre-
sented also by two members of φR, namely

{p1, p2} ∈ φ
R, {p3, p4} ∈ φ

R .

We think of this as the embedding into H of a chain p0, p1, p2, p3, p4, p5 whose
consecutive pairs are alternately edges of G and reflexions of φR.
This chain formation is what makes our construction of G-Embs non-trivial,

3 External ports include the input and output ports of the directed graphs studied in [CLM00],
and also free names; in this paper it suffices to treat them together. In [CLM00] we also ascribed
a control K ∈ K to each node; for brevity we omit controls here, but the results of this paper
extend easily to admit them.

8 James Leifer and Robin Milner

so we should pause to consider why we need it for our model. Certainly, conven-
tional graphs do not contain link edges, such as {p2, p3} in our illustration graph
G. One reason we need them is to admit a reaction rule of the form

which replaces two linked nodes by an edge, and thus may create a link edge in
any graph to which it is applied. Such rules arise naturally. Furthermore, link
edges are also important in contexts. A simple example arises even in sequential
programming; a program context which makes one program variable an alias for
another may be modelled naturally by a graph context with a link edge.
We are now ready to define the embedding of one graph into another.

Definition 4. (graph embedding) Let two action graphsG = (L,U, arG, edgG)
and H = (M,V, arH , edgH) be given, with E = (P, edgG) and F = (Q, edgH).
Then a graph embedding φ : G→ H is a pair φ = (φV, φE) where φV : U ½ V is
an injection of nodes, and φE = (φP, φR) : E → F is an edge embedding which
respects arity and binding, i.e.

E-ar : arH◦φV = arG

E-bind : bindH(φ
Vu) = φP

◦ (bindG u) .

This implies that φP is defined, and hence φR undefined, on all binding ports
of G.
In Section 3 we shall define the composition of edge embeddings, and thereby

establish in Theorem 15 a category of edge embeddings. Relying on that result,
we now define the category of graph embeddings.

Definition 5. (category of graph embeddings) The categoryG-Embs has
graphs as objects and graph embeddings as arrows. The composition of ar-

rows is given by ψφ
def
= (ψV

◦φV, ψEφE), and the identity embedding idG on
G = (L,U, ar , edg) with edging E = (P, edg) is given by idG = (IdU , idE).

Theorem 6. G-Embs is a category.

Proof. It is clear that the composition of two embeddings is indeed an embed-
ding, from Prop. 10 and the easy fact that E-ar and E-bind are satisfied by the
composite. In proving composition associative and establishing the identities, the
only non-trivial work is done by Prop. 13.

3. Linear edgings

In this section, starting from Def. 1 of edging and Def. 3 of edge embedding, we
shall show that undirected edgings and embeddings form a category which we
call E-Emb. This is not immediate. Its subtlety is hinted by the illustration at
the beginning of Section 2, showing how edges can be created by co-operation
between a graph and its context. To express the composition of embeddings, and
to verify that this yields a category, we find it helpful to use a special form of
diagrammatic reasoning.

Shallow Linear Action Graphs 9

We therefore introduce some diagrams. Each diagram makes an assertion
about the ports and embeddings mentioned in it; we call these diagrams embed-
ding formulae. First, the assertion that p = edg p′, i.e. that {p, p′} is an edge, is
drawn as

.p′p

(Naming conventions will make it clear which edging it belongs to.) Since edg is
an involution, to swap p and p′ would not change the meaning. Next, given an
edge embedding φ : E → F , we assert that q = φP p and {p, p′} ∈ φR respectively
by

q

p p′p .
φ

φ

The latter diagram is called a φ-reflexion, and again has left-right symmetry.
Our main elementary embedding formula, called a φ-reflexion chain, represents
an alternating sequence of zero or more edges and φ-reflexions, where each two
adjacent links in the chain share a port and the end ports are p and p′. There
are four forms of the diagram:

.

pp′
φ

p′p
φ

p′p

p′p
φ

φ

The overlaps of dashed and bold lines in each diagram describe the ends of the
chain. The first two diagrams mean the same; they both assert p (φR

◦ edg)∗ p′,
i.e. the chain may be empty or else the leftmost (resp. rightmost) link is a re-
flexion and the rightmost (resp. leftmost) is an edge. The third is an instance of
edg◦ (φR

◦ edg)∗, or equivalently (edg◦φR)∗◦ edg , i.e. the end links are both edges;
the fourth is an instance of (φR

◦ edg)∗◦φR, i.e. the end links are both reflexions.
These elementary formulae can be combined to represent complex assertions.

At each join, the omission of a port name implies that it is existentially quanti-
fied. For example, the antecedent and consequent of the condition E-edge are
expressed by compound diagrammatic formulae:

q

=⇒ φ

p

q

.

φ
φ

p

E-edge :

Proposition 7. Let φ :E0 → E1 be an edge embedding, and q0 q1 an
edge of E1. Then for all p ∈ P

10 James Leifer and Robin Milner

q0 q1

p

⇐⇒φ φ

.p
φφ

Proof. Assume the lefthand side, with p0 such that q0 = φPp0. By E-edge there

exists p1 such that q1 = φPp1, and since φ
P is injective p1

φ
p0 . The

reflexion chain starting from p0 is uniquely determined, and by E-dom cannot

proceed beyond p1, hence meets p en route; so
φ

p p1 , and the righthand
side follows. The reverse implication is similar.

For the rest of this section, in discussing embeddings between the four edg-
ings E0, E1, E2 and E3, we shall consistently use the letters p, q, r and s to
denote members of their respective port sets. We first consider how to define
the composition of two edge embeddings φ : E0 → E1 and ψ : E1 → E2. We

have to define a partial bijection (ψφ)
P
: P0 P2 and a partial strict involution

(ψφ)
R
: P0 P0. We first describe them informally, in a way which clearly

secures E-dom for the composite ψφ.

Start with p ∈ P0. If p
′ = φRp is defined then we take {p, p′} ∈ (ψφ)R,

leaving (ψφ)
P
p undefined. Otherwise let q = φPp; starting from q with a reflexion,

develop a ψ-reflexion chain until encountering a q′ either (a) in the range of φP,
say φPp′ = q′, or (b) in the domain of ψP, say ψPq′ = r (indeed, if ψPq itself is
defined then the chain is empty and q′ = q). Exactly one of (a) and (b) must
occur first, for if the chain revisits q – which is in the range of φP – then by
E-edge it has already encountered q′ = edg1 q in the range of φ

P.

(a) (b)

p p′

φφ

ψ

φ

p

ψ

r

.

ψ

In case (a) we take {p, p′} ∈ (ψφ)R, and in case (b) we take (ψφ)Pp
def
= r; in

each case the other map is left undefined on p. Thus E-dom is secured, and with

the exception of E-edge it follows easily from our construction that (ψφ)
P
and

(ψφ)
R
have the properties required for an edge embedding.

It remains to check that E-edge is satisfied by this construction, but first we
shall introduce a refinement of our diagrams to state the construction succinctly.
We refine the elementary edge assertion to the following

,
φ

q q′

which we call a φ-free edge (formula); it asserts not only that {q, q′} is an edge
but also that q, q′ 6∈ ranφP. We also refine the notion of reflexion chain to a
ψ/φ-reflexion chain

Shallow Linear Action Graphs 11

q q′
ψ

φ
, etc.q q′

ψ

φ

each of which asserts that there is a ψ-reflexion chain from q to q′, and moreover
that every edge on the chain is φ-free. This only constrains edges in the chain;
it does not constrain an end port of the chain if the end link is a reflexion.
We shall see shortly how this diagrammatic convention represents a partial

duality, hinted by the fact that each ψ-reflexion q′ = ψRq implies q 6∈ domψP (or
equivalently q′ 6∈ domψP). This “up-down” duality should not be confused with
the left-right symmetry of our diagrams.
With our refined embedding formulae we can now define composition of em-

beddings entirely by diagrams:

Definition 8. (composition of embeddings) Let two edge embeddings φ :
E0 → E1 and ψ : E1 → E2 be given. Then the composite embedding ψφ : E0 →
E2 is defined by the following diagrams:

def
⇐⇒

p p

r

φ

ψ

r

φ

ψψφ

(1)

.

ψ

p
φ

or
def

⇐⇒p p′
ψφ

p′p
p′

φ
φφ

(2)

To complete our proof that this is a good definition we need a lemma:

Lemma 9.

=⇒
p

φ

ψ

p

qq

.
φ

ψ

φφ
ψφ

Proof. By E-edge, any edge {q0, q1} in the antecedent’s ψ-reflexion chain which
is in the range of φ can be replaced by the t-configuration

q0

φ
.

φ φ

q1

This leaves only φ-free edges; so from the antecedent we deduce

.p
φ

φ
φ

ψ

φ
φ

φ
φ

φ φ

ψ ψ

φ

p′

q
· · · · · ·

12 James Leifer and Robin Milner

Now by Def. 8(2) each u-configuration in this formula implies a ψφ-reflexion,
and so does each φ-reflexion; hence the part of the formula between p and p′

implies a ψφ-reflexion chain, and the consequent follows.

We are now in a position to justify Def. 8.

Proposition 10. The composition of two edge embeddings is an edge embed-
ding.

Proof. We have already argued that (ψφ)
P
and (ψφ)

R
as defined in Def. 8 have

the right properties, except for E-edge. The proof that E-edge is satisfied is now
brief. In the first step below we use left-right symmetry in unpacking Def. 8(1)),
and in the second step before applying Prop. 7 we weaken a ψ/φ-reflexion chain
to a ψ-reflexion chain:

.

φ

p

ψ

r

ψ

ψφ

p

r

ψ
ψ

p

φ
φψφ

r

φ
φ

ψ

p

r

ψ

ψφ

r

ψ

φ

ψ

φ

p p

r

ψφ

=⇒
Def. 8(1)

=⇒
Lemma 9

=⇒
Def. 8(1)

=⇒
Prop. 7 for ψ

=⇒
E-edge for φ

The main task in showing that edgings and embeddings form a category is to
show composition associative. For this, we need a property which is interesting
in its own right; as promised, it is a kind of dual of Def. 8(2).

Proposition 11. r′ψφr ⇐⇒ r′ψr or

ψ
ψ ψ

φ

r r′

.

Proof. (=⇒) Assume the lefthand side. If {r, r′} is a ψ-free edge, then r′ψr .

If not, then E-edge yields

ψ
ψ ψ

r r′

; furthermore every edge on this ψ-

reflexion chain must be φ-free, else r would be in the range of (ψφ)
P
contradicting

the assumption, hence ψ
ψ ψ

φ

r r′

.

Shallow Linear Action Graphs 13

(⇐=) Assume the righthand side. If the first disjunct holds, i.e r 6∈ ranψP,

then by Def. 8(1) r 6∈ ran(ψφ)
P
and we are done. If the second holds, then the

defining formulae for (ψφ)
P
in Def. 8(1) cannot hold for r and any p; hence

r 6∈ ran(ψφ)
P
. Also {r, r′} must be an edge; for, given r, the port r′ is unique

such that

ψ
ψ ψ

r r′

holds, and by E-edge it certainly holds when r′ = edg2r.

Hence r′ψφr .

Thinking (as we do) of embeddings going upwards, this duality seems to
say that reflexion links look the same “from on top” as edge links look “from
underneath”. We now show that the duality yields an elegant zigzag property,
as follows:

Lemma 12.
.

⇐⇒
q

r
ψφ

χ χ

ψ
χψ

φφ

ψ
ψ ψ

q

r

Proof. (=⇒) In the χ-reflexion chain, replace each ψφ-free edge by either a
ψ-free edge or a t-configuration, as justified by Prop. 11. Then use Def. 8(2) to
replace each u-configuration and each ψ-reflexion by a χψ-reflexion.

.
=⇒

χ

ψ

φ

χψ

r

q

ψ

χ

φ

ψ

χ

φ

ψ
ψ ψ

χ

ψ

φ

ψ
=⇒

q

r
ψφ

χ

φ

ψ
ψ ψ ψψψ

q

r

· · ·

(⇐=) Similar, but swap the roles of Prop. 11 and Def. 8(2).

Proposition 13. Composition of embeddings is associative.

Proof. Let φ :E0 → E1, ψ :E1 → E2 and χ :E2 → E3. We require χ(ψφ) =
(χψ)φ.

Consider the embedding maps first. All that is needed is to unpack Def. 8(1)
four times, and then apply Lemma 12.

14 James Leifer and Robin Milner

.

p p

⇐⇒

φ

ψ

χ

ψφ ⇐⇒

φ

χ

Lemma 12(1)Def. 8(1)

s

χ(ψφ)

s

ψ

⇐⇒
Def. 8(1)

χ

ψ
ψ

χ

χψ

φ
φ

p

(χψ)φ

p

s s

We now wish to show that ((χψ)φ)
R
= (χ(ψφ))

R
. Unpacking Def. 8(2) three

times – for (χψ)φ, χ(ψφ) and ψφ – we find that it will be sufficient to prove

⇐⇒

p p′ p p′

φ φ φ
φ

χψ

φ

ψ

or

.p p′

ψφ

χ

ψφ ψφ

φ

Now by Def. 8(2) each χψ reflexion is either a ψ reflexion or a u-configuration,
so

⇐⇒ φ

p p′ p p′

φ φ φφ
φ

χψ ψ

φ φ

ψ
ψ

χ

ψ
ψ

χ

ψ ψ
ψ· · ·

and, splitting between the cases of no u and of at least one u, we complete the
proof:

Shallow Linear Action Graphs 15

p p′

φ
φ φ

ψ ψ
ψφ

ψψ

χ

φ φ
φ

ψ

p p′
⇐⇒
Prop. 11

φor

or

ψφ

p pp′ p′

φ φ

ψφ
φ

ψ
ψφ

χ

⇐⇒
Def. 8(1)

.

We are now ready to define our category of edgings and embeddings.

Definition 14. (category of edgings and embeddings) The category E-
Emb has edgings as objects and edge embeddings as arrows, with composition
as defined in Def. 8. Its identity embedding on each edging E = (P, edg) is

idE :E → E
def
= (IdP , ∅).

Theorem 15. E-Emb is a category.

Proof. The associativity of composition is proved in Prop. 13, and it is easy to
check that φ = φ◦ idE = idF ◦φ for any embedding φ :E → F .

4. Directed edgings and graphs

We now define the categories E-Embd of directed edgings and G-Embsd of
shallow directed graphs, each with appropriate embeddings.

Definition 16. (directed edging) A directed edging is a triple (P, edg , δ),
where (P, edg) is an edging and δ = (S, T) is a partition of P into sources S
and targets T so that each edge in edg contains exactly one source and one
target.

Definition 17. (category of directed edge embeddings) Let (Ei, δi) be a
pair of directed edgings (i = 0, 1), with δi = (Si, Ti). Then a directed edge em-
bedding φ : (E0, δ0)→ (E1, δ1) is an edge embedding φ :E0 → E1 which respects
direction, i.e. for all p ∈ P0,

If p ∈ domφP then p ∈ S0 ⇔ φPp ∈ S1;
If p ∈ domφR then p∈ S0 ⇔ φRp ∈ T0.

These embeddings of directed edgings, with the composition and identities of E-
Emb, constitute the category E-Embd of directed edge embeddings. It is routine
that the identities respect direction, and that composition preserves respect for
direction.

(The latter assertion relies on the fact that if φ respects direction then sources
and targets alternate in a φ-reflexion chain.)

16 James Leifer and Robin Milner

These definitions can now be easily lifted to the level of graphs. We define
the categories E-Embd of directed edgings and G-Embsd of directed graphs,
each with appropriate embeddings.

Definition 18. (directed graph) A directed action graph is a pair (G, δ),
where G = (L,U, ar , edg) is an action graph with port set P and (P, edg , δ)
a directed edging.

Note that although δ partitions the ports of G equally, there is no further
constraint on how it partitions the external link ports L. The reader may like
to verify that the directed graphs G′ and H ′ in Section 2 arise from G and H
by imposing directions γ and δ, and that φ′ thus arises from φ as detailed in
Def. 17.

Definition 19. (category of directed graphs and embeddings) Let (G, γ)
and (H, δ) be two directed graphs, with edgings (P, edgG) and (Q, edgH) respec-
tively. Then a directed graph embedding φ : (G, γ)→ (H, δ) is a graph embedding
φ = (φV, φE) :G→ H such that φE : (P, edgG, γ)→ (Q, edgH , δ) is also a directed
edge embedding.
These embeddings of directed graphs, with the composition and identities of

G-Embs, constitute the category G-Embsd of directed graph embeddings. The
identities and composition clearly have the required properties.

5. Conclusion

To set up this category of graphs and embeddings has required an indirect ap-
proach. This is largely due to our firm intention to handle reflexion in full gen-
erality, and to admit graphs which contain link edges, because we expect these
ideas to be essential in applications. Reflexion has great expressive power, e.g. it
leads to succinct presentations of recursion, as Mifsud [Mif95] has pointed out;
it also eases the derivation of labelled transition systems [Lei01, LeM00] for ac-
tion calculi in a way which guarantees congruential behavioural equivalences. We
argued the importance of link edges in Section 2; we should point out further
that they appear to be essential in modelling the important idea of name fu-
sion originated by Parrow and Victor in the fusion calculus [PaV98] and further
developed by Gardner and Wischik as explicit fusions [GaW00].
As we said in the introduction, this is the start of a research programme

which will develop the theory of linear and non-linear action graphs. The next
step, following the pattern of [CLM00] but simpler (due to linearity,) should
be to set up the relationship between the category G-Embs and the category
P-Cxts whose arrows are graphs and contexts; this will be shown to yield a
“nice” reactive system in the sense of the Introduction, i.e. one for which we can
uniformly derive behavioural congruences. In further work we intend to tackle
(1) nested graphs; (2) quotienting our categories to yield non-linear graphs; (3)
handling multiple graph embeddings and (correspondingly) multihole contexts,
following Sewell [Sew98]. This brings us close to real-life calculi; we may then
begin to compare our general theory with their specific theories.

Acknowledgement We owe much to the insights of our colleagues Luca
Cattani, Philippa Gardner and Peter Sewell.

Shallow Linear Action Graphs 17

References

[AbG97] Abadi, M. and Gordon, A.D. (1997), A calculus for cryptographic protocols: the spi
calculus. Proc. 4th ACM Conference on Computer and Communications Security,
ACM Press, 36-47.

[Bur72] Burstall, R.M. (1972), Some techniques for proving correctness of programs which
alter data structures. In Machine Intelligence 7 (ed. Meltzer, Michie), Edinburgh
University Press, 23–50.

[CaG00] Cardelli, L. and Gordon, A.D. (2000), Mobile ambients. Foundations of System
Specification and Computational Structures, LNCS 1378, 140–155.

[Cat00] Cattani, G.L. 2000, private communication.
[CLM00] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and Embed-

dings for closed shallow action graphs. University of Cambridge Computer
Laboratory, Technical Report 496. [Submitted for publication.] Available at
http://pauillac.inria.fr/~leifer/ .

[GaW98] Gardner, P.A. and Wischik, L.G. (1998), Symmetric action calculi. Unpublished
manuscript, University of Cambridge Computer Laboratory.

[GaW00] Gardner, P.A. andWischik, L.G. (2000), Explicit fusions. Proc. MFCS 2000. LNCS
1893.

[Hon00] Honda, K. (2000), Elementary structures in process theory (1): Sets with renam-
ing. Mathematical Structures in Computer Science 10(5), 617–663.

[JVS96] Joyal, A., Street, R. and Verity, D. (1996), Traced Monoidal Categories. Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol 119(3), pp 447–
468.

[Laf90] Lafont,Y. (1990), Interaction nets. Proc. 17th ACM Symposium on Principles of
Programming Languages, 95–108.

[Lei01] Leifer, J.J. (2001), Operational congruences for reactive systems. Ph.D. Disserta-
tion, University of Cambridge.
Also available as Technical Report 521, Computer Laboratory, University of Cam-
bridge, and at http://pauillac.inria.fr/~leifer/ .

[Lei02] Leifer, J.J. (2002), A category of action graphs and reflexive embeddings. Forth-
coming Technical Report, Computer Laboratory, University of Cambridge.

[LeM00] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive
systems. Proc. CONCUR2000.
Available at http://pauillac.inria.fr/~leifer .

[Mif95] Mifsud, A. (1995), Control structures. PhD Dissertation, Computer Science De-
partment, University of Edinburgh.

[Mil96] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, 707–737.
[PaV98] Parrow, J. and Victor, B. (1998), The fusion calculus: expressiveness and symme-

try in mobile processes. Proc. LICS’98, IEEE Computer Society Press.
[Sew98] Sewell, P. (1998), From rewrite rules to bisimulation congruences. Proc. CON-

CUR’98, LNCS 1466. Revised version to appear (2002) in J. Theoretical Computer
Science, vol 274(1-2), pp 183–230.

[Tur02] Turnbull, A. (2002), Forthcoming PhD Dissertation, University of Cambridge.

