
Zen and the Art of Symbolic Computing:

Light and Fast Applicative Algorithms for

Computational Linguistics

Gérard Huet

INRIA Rocquencourt,
BP 105, 78153 Le Chesnay Cedex, France,

Gerard.Huet@inria.fr,
http://pauillac.inria.fr/~huet

Abstract. Computational linguistics is an application of computer sci-
ence which presents interesting challenges from the programming method-
ology point of view. Developing a realistic platform for the treatment of a
natural language in its phonological, morphological, syntactic, and ulti-
mately semantic aspects demands a principled modular architecture with
complex cooperation between the various layers. Representing large lex-
ical data bases, treating sophisticated phonological and morphological
transformations, and processing in real time large corpuses demands fast
finite-state methods toolkits. Analysing the syntactic structure, comput-
ing anaphoric relations, and dealing with the representation of informa-
tion flow in dialogue understanding, demands the processing of complex
constraints on graph structures, with sophisticated sharing of large non-
deterministic search spaces.
The talk reports on experiments in using declarative programming for the
processing of the sanskrit language, in its phonological and morphological
aspects. A lexicon-based morphological tagger has been designed, using
an original algorithm for the analysis of euphony (the so-called sandhi

process, which glues together the words of a sentence in a continuous
stream of phonemes). This work, described in [2], has been implemented
in a purely applicative core subset of Objective Caml [5]. The basic
structures underlying this methodology have been abstracted in the Zen
toolkit, distributed as free software [3]. Two complementary techniques
have been put to use. Firstly, we advocate the systematic use of zippers

[1] for the programming of mutable data structures in an applicative way.
Zippers, or linear contexts, are related to the interaction combinators of
linear logic. Secondly, a sharing functor allows the uniform minimisation
of inductive data structures by representing them as shared dags. This is
similar to the traditional technique of bottom-up hashing, but the com-
putation of the keys is left to the client invoking the functor, which has
two advantages: keys are computed along with the bottom-up traversal
of the structure, and more importantly their computation may profit of
specific statistical properties of the data at hand, optimising the buck-
ets balancing in ways which would be unattainable by generic functions.
These two complementary technologies are discussed in [4].
The talk discusses the use of these tools in the uniform representation
of finite state automata and transducers as decorated lexical trees (also



II

called tries). The trie acts as a spanning tree of the automaton search
space, along a preferred deterministic skeleton. Non deterministic transi-
tions are constructed as choice points with virtual addresses, which may
be either absolute words (locating the target state by a path from the
starting state) or relative differential words (bytecode of the trie zipper
processor, representing the shortest path in the spanning tree of the state
graph). Sharing such automata structures gives uniformly an associated
equivalent minimal automaton. For instance, the lexicon is itself repre-
sented by its characteristic minimal recognizer. But this applies as well
to possibly non-deterministic transducers. Thus our segmenting sandhi
analyser compiles a lexicon of 120000 flexed forms with a data base of
2800 string rewrite rules into a very compact transducer of 7300 states
fitting in 700KB of memory, the whole computation taking 9s on a plain
PC.
We believe that our experiment with functional programming applied
to lexical and morphological processing of natural language is a con-
vincing case that direct declarative programming techniques are often
superior to more traditional imperative programming techniques using
complex object-oriented methodologies. Our programs are very short,
easy to maintain and debug, though efficient enough for real-scale use.
It is our belief that this extends to other areas of Computational Lin-
guistics, and indeed to most areas of Symbolic Computation.

References

1. Gérard Huet. “The Zipper”. J. Functional Programming 7,5 (Sept. 1997), pp. 549–
554.

2. Gérard Huet. “Transducers as Lexicon Morphisms, Segmentation by Euphony Anal-
ysis, And Application to a Sanskrit Tagger”. Draft available as http://pauillac.

inria.fr/~huet/FREE/tagger.pdf.
3. Gérard Huet. “The Zen Computational Linguistics Toolkit”. ESSLLI 2002 Lectures,

Trento, Italy, Aug. 2002. Available as: http://pauillac.inria.fr/~huet/PUBLIC/
esslli.pdf.

4. Gérard Huet. “Linear Contexts and the Sharing Functor: Techniques for Symbolic
Computation”. Submitted for publication, 2002.

5. Xavier Leroy et al. “Objective Caml.” See: http://caml.inria.fr/ocaml/index.
html.


