
Polymorphic Typed Defunctionalization

François Pottier∗

Francois.Pottier@inria.fr

Nadji Gauthier∗

Nadji.Gauthier@inria.fr

Abstract

Defunctionalization is a program transformation that aims
to turn a higher-order functional program into a first-order
one, that is, to eliminate the use of functions as first-class
values. Its purpose is thus identical to that of closure conver-
sion. It differs from closure conversion, however, by storing
a tag, instead of a code pointer, within every closure. De-
functionalization has been used both as a reasoning tool and
as a compilation technique.

Defunctionalization is commonly defined and studied in
the setting of a simply-typed λ-calculus, where it is shown
that semantics and well-typedness are preserved. It has been
observed that, in the setting of a polymorphic type system,
such as ML or System F, defunctionalization is not type-
preserving. In this paper, we show that extending System
F with guarded algebraic data types allows recovering type
preservation. This result allows adding defunctionalization
to the toolbox of type-preserving compiler writers.

1 Introduction

Defunctionalization, due to Reynolds [13, 14], is a program
transformation that aims to turn a higher-order functional
program into a first-order one, that is, to eliminate the use
of functions as first-class values. Let us begin with a rough,
machine-oriented description of it. Under the assumption
that the entire source program is available, a distinct tag is
associated with every λ-abstraction, or, in other words, with
every code block. Then, a function value is represented by a
closure composed of the tag associated with its code and of
a value environment. The generic code in charge of function
application, which we refer to as apply in the following, per-
forms case analysis on the tag and jumps to the associated
code block, making the contents of the value environment
available to it. The reader may notice that defunctional-
ization is a close cousin of closure conversion. In fact, to a
certain extent, closure conversion may be viewed as a par-
ticular implementation of defunctionalization, whereby tags
happen to be code pointers, and case analysis of a tag is
replaced with a single indirect jump. One reported advan-
tage of defunctionalization over closure conversion is that,
due to the idiosyncrasies of branch prediction on modern
processors, the cost of an indirect jump may exceed that of
a simple case analysis followed by a direct jump.

∗INRIA, BP 105, F-78153 Le Chesnay Cedex, France.

Closure conversion versus defunctionalization in a
typed setting Even though defunctionalization and clo-
sure conversion appear conceptually very close, they dif-
fer when viewed as transformations over typed programs.
Minamide, Morrisett, and Harper [8] have shown how to
view closure conversion as a type-preserving transformation.
There, the type of a closure is a pair of a first-order func-
tion type and of a record type, packed within an existential
type, so that closures whose value environments have dif-
ferent structure may still receive identical types. Minamide
et al. deal with both simply-typed and type-passing, poly-
morphic λ-calculi. The case of a type-erasure polymorphic
λ-calculus has been addressed in [10]. Defunctionalization,
on the other hand, has been studied mainly in a simply-typed
setting [11, 1]. There, closures receive sum types: closure
construction becomes injection, while the case analysis in-
volved by application becomes elimination. (If one wishes to
avoid recursive types, one must in fact employ algebraic data
types, rather than anonymous sum types.) When the source
language is ML, the source program is typically turned into a
simply-typed program by applying monomorphization prior
to defunctionalization [15, 16, 3]. However, monomorphiza-
tion involves code duplication, whose cost may be difficult
to control. Bell, Bellegarde, and Hook [2] propose a com-
bined algorithm that performs on-demand monomorphiza-
tion during defunctionalization. This may limit the amount
of duplication required, but performs identically in the worst
case. When the source language is ML with polymorphic
recursion or System F, monomorphization becomes impos-
sible, because an infinite amount of code duplication might
be required. In that case, no type-preserving definition of
defunctionalization was known to date.

The difficulty with polymorphism Why is it difficult
to define defunctionalization for a typed, polymorphic λ-
calculus? The problem lies in the definition of apply , the
central function that remains in the defunctionalized pro-
gram, whose task is to perform dispatch based on tags. Its
parameters are a closure f and a value arg ; its task is to
simulate the application of the source function encoded by
f to the source value encoded by arg , and to return its re-
sult. In other words, if JeK denotes the image of the source
expression e through defunctionalization, we intend to de-
fine Je1 e2K as apply Je1K Je2K. Now, assume that defunction-
alization is type-preserving, and that JτK denotes the im-
age of the source type τ through defunctionalization. Then,
if e1 has type τ1 → τ2 and e2 has type τ1, we find that,
for apply Je1K Je2K to be well-typed, apply must have type

Jτ1 → τ2K → Jτ1K → Jτ2K. Furthermore, because e1 may
be arbitrary, this should hold for all types τ1 and τ2. The
most natural way to satisfy this requirement is to arrange
for apply to have type ∀α1α2.Jα1 → α2K → α1 → α2 and
to ensure that J·K commutes with substitution of types for
type variables.

Now, what is the code for apply? It should be of the
form

Λα1.Λα2.λf : Jα1 → α2K.λarg : α1.case f of c̄

where c̄ contains one clause for every tag, that is, for ev-
ery λ-abstraction that appears in the source program. The
right-hand side of every such clause is the body of the asso-
ciated λ-abstraction, renamed so that its formal parameter
is arg . For the sake of illustration, let us assume that the
source program contains the λ-abstractions λx.x + 1 and
λx.not x, whose types are int → int and bool → bool , and
whose tags are succ and not, respectively. (These are closed
functions, so the corresponding closures have an empty value
environment. This does not affect our argument.) Then, the
definition of apply should contain the following clauses:

succ 7→ arg + 1
not 7→ not arg

However, within System F, these clauses are incompatible:
they make different assumptions about the type of arg , and
produce values of different types. In fact, for apply to
be well-typed, every λ-abstraction in the source program
must produce a value of type α2, under the assumption
that its argument is of type α1. In the absence of any
further hypotheses about α1 and α2, this amounts to re-
quiring every λ-abstraction in the source program to have
type ∀α1α2.α1 → α2, which cannot hold in general! This
explains why it does not seem possible to define a type-
preserving notion of defunctionalization for System F.

The standard, limited workaround The workaround
commonly adopted in the simply-typed case [2, 15, 16, 3, 11,
1] consists in specializing apply . Instead of defining a single,
polymorphic function, one introduces a family of monomor-
phic functions, indexed by ground types τ1 and τ2, each
member of which has type Jτ1 → τ2K → Jτ1K → Jτ2K. The
point is that the definition of applyτ1→τ2

lists only the tags
whose associated λ-abstractions have type τ1 → τ2. Con-
tinuing our example, the definition of apply int→int should
contain a case for succ, but none for not. Conversely, the
definition of applybool→bool deals with not, but not with succ.
It is now easy to check that all clauses in the definition
of applyτ1→τ2

are type compatible, so that the function is
well-typed. Then, exploiting the fact that e1 must have a
ground type of the form τ1 → τ2, one defines Je1 e2K as
applyτ1→τ2

Je1K Je2K. Thus, defunctionalization in a simply-
typed setting is not only type-preserving, but also type-
directed. We note that J·K no longer commutes with sub-
stitution of types for type variables. Indeed, every distinct
arrow type in the source program must now map to a dis-
tinct algebraic data type in the target program. As a re-
sult, there is no natural way of translating non-ground ar-
row types. These remarks explain why the approach fails in
the presence of polymorphism.

Our solution In the present paper, we suggest another
way out of this problem. We keep a single apply function,

whose type is ∀α1α2.Jα1 → α2K → α1 → α2, as initially sug-
gested above. We also insist that the translation of types
should commute with type substitutions, so Jτ1 → τ2K must
be Arrow Jτ1K Jτ2K, for some distinguished, binary algebraic
data type constructor Arrow. There remains to find a suit-
able extension of System F where the definition of apply is
well-typed, that is, where every clause does produce a value
of type α2, under the assumption that arg is of type α1.
The key insight is that, in order to make this possible, we
must acquire further hypotheses about α1 and α2. For in-
stance, in the case of the succ branch, we might reason as
follows. If this branch is taken, then f is succ, so succ has
type Arrow α1 α2, that is, it encodes a source function of
type α1 → α2. However, we know that the λ-abstraction
associated with the tag succ, namely λx.x + 1, has type
int → int , so it is natural to assign type Arrow int int
to the data constructor succ. Combining these two facts,
we find that, if the branch is taken, then we must have
Arrow α1 α2 = Arrow int int , that is, α1 = int and α2 = int .
Under these extra typing hypotheses, it should be possible to
prove that arg + 1 has type α2 under the assumption that
arg has type α1. Then, by dealing with every clause in an
analogous manner, it should be possible to establish that
apply is well-typed.

The ingredients that make this solution possible are sim-
ple. First, we need the data constructors succ and not, which
are associated with the algebraic data type Arrow, to be as-
signed types Arrow int int and Arrow bool bool , respectively.
Please note that, if Arrow was a standard (ML-style) al-
gebraic data type, then the nullary data constructors succ
and not would necessarily have type ∀α1α2.Arrow α1 α2.
Second, when performing case analysis over a value of
type Arrow α1 α2, we need the branch associated with succ
(resp. not) to be typechecked under the extra assump-
tion Arrow α1 α2 = Arrow int int (resp. Arrow α1 α2 =
Arrow bool bool). Such a mechanism is quite natural: it is
reminiscent of the inductive types found in the calculus of in-
ductive constructions [12], and is known in a programming-
language setting as guarded recursive data types [18] or as
first-class phantom types [4]. We refer to it as guarded al-
gebraic data types. The term guarded stems from Xi, Chen,
and Chen’s observation that they may be encoded in terms
of recursive types, sum types, and constrained existential
types.

Contributions The main contribution of this paper is a
proof that defunctionalization may be viewed as a type-
preserving transformation from System F, extended with
guarded algebraic data types, into itself. We also observe,
but do not explicitly prove, that the same property holds
of ML, extended with polymorphic recursion and guarded
algebraic data types.

It is interesting to note that, because our version of de-
functionalization employs a single, polymorphic apply func-
tion, it is not type-directed. In other words, type infor-
mation in the source program is used to construct a type
derivation for the target program, but does not influence the
latter’s structure. Put another way, it is possible to prove
that our version of defunctionalization coincides with an un-
typed version of defunctionalization, up to erasure of all type
annotations. This makes it possible to first prove that the
transformation is meaning-preserving in an untyped setting,
then lift this result to the typed setting. These proofs form
the paper’s second contribution. They appear to be new:

2

indeed, previous proofs [11, 1] were carried out in a simply-
typed setting.

Road map The paper is laid out as follows. Section 2 de-
fines an extension of System F with guarded algebraic data
types. Section 3 defines defunctionalization of well-typed
programs. In Section 4, we prove that defunctionalization
preserves well-typedness. In Section 5, we define defunction-
alization of untyped programs, prove that it preserves their
meaning, and prove that this result carries over to defunc-
tionalization of typed programs. Section 6 contains some
closing remarks.

2 The type system

In this section, we define an extension of System F with
guarded algebraic data types, which serves both as the
source and target language for our version of defunction-
alization. Our presentation of the type system is identical
to Xi, Chen, and Chen’s [18], with a couple of superficial dif-
ferences. First, we replace pattern matching with a simple
case construct, which is sufficient for our purposes. Second,
we adopt an implicit introduction style for type variables,
so that type variables are not explicitly listed in typing en-
vironments, and types or typing environments do not have
a notion of well-formedness.

A type signature T consists of an arbitrary set of al-
gebraic data type constructors T , each of which carries a
nonnegative arity. The definitions that follow are relative
to a type signature. We let α range over a denumerable set
of type variables and r range over an arbitrary set of record
labels. The syntax of types is as follows:

τ ::= α
| τ → τ
| ∀α.τ
| {r̄ : τ̄}
| T τ̄

Types include type variables, arrow types, universal types,
record types, and algebraic data types. In the universal
type ∀α.τ , the type variable α is bound within τ . In the
record type {r̄ : τ̄}, r̄ must be a vector of distinct record
labels, while τ̄ is a vector of types of the same length. We
write r̄ : τ̄ for the vector of bindings obtained by associating
elements of r̄, in order, to elements of τ̄ . Vectors of bindings
are identified up to reordering. (In the following, we employ
similar notation for vectors of bindings of the form x̄ : τ̄ ,
ē : τ̄ , c̄ : τ̄ , and for conjunctions of equations τ̄1 = τ̄2.) In
the algebraic data type T τ̄ , the length of the vector τ̄ must
match the arity of T .

A constraint C or D is a conjunction of type equations
of the form τ = τ . An assignment is a total mapping from
type variables to ground types. An assignment satisfies an
equation if and only if it maps both of its members to the
same ground type; an assignment satisfies a conjunction of
equations if and only if it satisfies all of its members. A
constraint C entails a constraint D (which we write C
D) if and only if every assignment that satisfies C satisfies
D. Two constraints are equivalent if and only if they entail
each other. Constraints serve as hypotheses within typing
judgements; entailment allows exploiting them. Entailment
is decidable; see e.g. [18].

A data signature D consists of an arbitrary set of data
constructors K, each of which carries a closed type scheme

of the form ∀ᾱ[D].τ̄ → T τ̄1. In such a type scheme, the
type variables ᾱ are bound within D, τ̄ , and τ̄1. The length
of the vector τ̄ is the arity of the data constructor K. The
definitions that follow are relative to (a type signature and)
a data signature.

Let x and y range over a denumerable set of term vari-
ables. The syntax of expressions e, also known as terms, and
of clauses c is as follows:

e ::= x
| λx : τ.e
| e e
| Λα.e
| e τ
| let x = e in e
| letrec x̄ : τ̄ = ē in e
| {r̄ = ē}
| e.r
| K τ̄ ē
| case e of [τ]c̄

c ::= K ᾱ x̄ 7→ e

The language is an extension of the polymorphic λ-calculus
with recursive definitions, constructs for creating and ac-
cessing records, and constructs for building and inspecting
algebraic data structures. (In Section 5, where we present an
operational semantics for this programming language, type
abstractions and recursive definitions are restricted to val-
ues; for the moment, however, this is irrelevant.) The in-
jection construct K τ̄ ē requires the data constructor K to
be fully applied. Thus, partial applications of K are not
valid expressions: they must be encoded via η-expansion.
This choice simplifies the definition of defunctionalization,
because it means that only λ-abstractions have arrow types.
In case constructs, the clauses’ result type τ is explicitly
given, so as to preserve the property that every expression
has at most one type, up to equivalence, with respect to
a given typing environment. (We do not, however, make
use of that property.) We assume that, for some algebraic
data type constructor T , every data constructor K associ-
ated with T is selected by one and only one clause in c̄.
In a clause K ᾱ x̄ 7→ e, the type variables ᾱ and the term
variables x̄ are bound within e.

A typing environment Γ is a mapping of term variables to
types, typically written as a sequence of bindings of the form
x : τ . A typing judgement is of the form C, Γ ⊢ e : τ . We
identify typing judgements up to constraint equivalence. A
typing judgement is valid if and only if it admits a derivation
using the rules of Figure 1. In TAbs, the notation α # C, Γ
requires the type variable α not to appear free within C or Γ.
All rules but Data, Clause, Conv, and Weaken are stan-
dard (System F) rules. Data’s first premise looks up the
type scheme associated with the data constructor K in the
current data signature. Its second and third premises check
that the constraint D is satisfied and that the arguments ē
have type τ̄ , as required by the type scheme. Both of these
checks are in fact relative to an instance of the type scheme
where the type arguments τ̄2 are substituted for the quan-
tifiers ᾱ, as well as to the current hypothesis C. Data may
be viewed as a combination of the standard rules for (con-
strained) type application and value application. Clause’s
first premise looks up the type scheme associated with K
and α-converts it so that its universal quantifiers coincide
with the type variables ᾱ introduced by the clause at hand.
Its second premise requires these type variables to be fresh,

3

Var

C, Γ ⊢ x : Γ(x)

Abs

C, Γ; x : τ1 ⊢ e : τ2

C, Γ ⊢ λx : τ1.e : τ1 → τ2

App

C, Γ ⊢ e1 : τ1 → τ2

C, Γ ⊢ e2 : τ1

C, Γ ⊢ e1 e2 : τ2

TAbs

C, Γ ⊢ e : τ α # C, Γ

C, Γ ⊢ Λα.e : ∀α.τ

TApp

C, Γ ⊢ e : ∀α.τ

C, Γ ⊢ e τ1 : [α 7→ τ1]τ

Let

C, Γ ⊢ e1 : τ1 C, Γ; x : τ1 ⊢ e2 : τ2

C, Γ ⊢ letx = e1 in e2 : τ2

LetRec

C, Γ; x̄ : τ̄ ⊢ ē : τ̄ C, Γ; x̄ : τ̄ ⊢ e : τ

C, Γ ⊢ letrec x̄ : τ̄ = ē in e : τ

Record

C, Γ ⊢ ē : τ̄

C, Γ ⊢ {r̄ = ē} : {r̄ : τ̄}

Proj

C, Γ ⊢ e : {r : τ ; r̄ : τ̄}

C, Γ ⊢ e.r : τ

Data

K :: ∀ᾱ[D].τ̄ → T τ̄1

C [ᾱ 7→ τ̄2]D C, Γ ⊢ ē : [ᾱ 7→ τ̄2]τ̄

C, Γ ⊢ K τ̄2 ē : T [ᾱ 7→ τ̄2]τ̄1

Case

C, Γ ⊢ e : τ1 C, Γ ⊢ c̄ : τ1 → τ2

C, Γ ⊢ case e of [τ2]c̄ : τ2

Clause

K :: ∀ᾱ[D].τ̄ → T τ̄1 ᾱ # C, Γ, τ̄2, τ
C ∧ D ∧ τ̄1 = τ̄2, Γ; x̄ : τ̄ ⊢ e : τ

C, Γ ⊢ K ᾱ x̄ 7→ e : T τ̄2 → τ

Conv

C, Γ ⊢ e : τ1 C τ1 = τ2

C, Γ ⊢ e : τ2

Weaken

C, Γ1; Γ2 ⊢ e : τ x # e

C, Γ1; x : τ1; Γ2 ⊢ e : τ

Figure 1: The type system

so that they behave as abstract types within the clause’s
right-hand side e, and do not escape their scope. Its third
premise typechecks e under the extra hypothesis D∧τ̄1 = τ̄2,
which is obtained from the knowledge that the value being
examined, which by assumption has type T τ̄2, is an appli-
cation of K. This extra hypothesis may provide partial or
complete information about the type variables ᾱ, in effect
making them semi-abstract or concrete. Conv allows re-
placing the τ1 with the type τ2, provided they are provably
equal under the assumption C. It is analogous to the subtyp-
ing rule in a constraint-based type system. The presence of
Weaken is perhaps surprising, since this rule is admissible.
It is intended as a hint to the defunctionalization algorithm
not to include the value of x within closures allocated inside
e; see Section 3.

The type system is sound [18]. Although this property is
of course essential, it is not explicitly exploited in the present
paper. We only make use of the following lemma, which
allows weakening a judgement’s constraint and replacing its
typing environment with an equivalent one. When Γ and Γ′

have the same domain, we view Γ′ = Γ as a conjunction of
type equations.

Lemma 2.1 C, Γ ⊢ e : τ and C′
 C and C′

 Γ′ = Γ
imply C′, Γ′ ⊢ e : τ .

3 Defunctionalization

Defunctionalization is a global program transformation: it
is necessary that all functions that appear in the source pro-
gram be known and labeled in a unique manner. Thus, in
the following, we consider a fixed term p, which we refer
to as the source program. We require every λ-abstraction
that appears within p to carry a distinct label m; we write
λmx : τ.e for such a labeled abstraction. We require p to be
well-typed under the empty constraint true and the empty
environment ?, and consider a fixed derivation of the judge-
ment true,? ⊢ p : τp. We let T and D stand for the type
and data signatures under which p is defined.

In the derivation of true,? ⊢ p : τp, we require every
instance of Abs whose conclusion is of the form C, Γ ⊢ λx :

τ1.e : τ1 → τ2 to satisfy dom(Γ) = fv(λx.e). Thanks to the
presence of Weaken, this assumption does not cause any
loss of generality. This restriction ensures that defunction-
alization is independent of the manner in which Weaken is
employed in the type derivation. This in turn ensures that
our notion of defunctionalization is not type-directed, a fact
which we establish and exploit later on (Lemma 5.6). The
restriction is otherwise inessential.

The transformed program is defined under an extended
type signature T ′, which contains T as well as a fresh binary
algebraic data type constructor Arrow . The effect of the
translation on types is particularly simple: the native arrow
type constructor is translated to Arrow , while all other type
formers are preserved.

JαK = α
Jτ1 → τ2K = Arrow Jτ1K Jτ2K

J∀α.τK = ∀α.JτK
J{r̄ : τ̄}K = {r̄ : Jτ̄K}

JT τ̄K = T Jτ̄K

The type translation function extends in a compositional
manner to vectors of types, typing environments, con-
straints, type schemes, and data signatures.

The transformed program is defined under a transformed
and extended data signature D′, which is defined as follows.
First, D′ contains JDK. Second, for every λ-abstraction that
appears within p and whose typing subderivation ends with

C, Γ ⊢ λmx : τ1.e : τ1 → τ2,

D′ contains a unary data constructor

m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K ,

where ᾱ stands for the free type variables of the above judge-
ment, that is, ftv(C, Γ, τ1, τ2), ordered in a fixed, arbitrary
manner. We point out that JΓK is a typing environment,
that is, a mapping from term variables to types; we assume
that term variables form a subset of record labels, which
allows us to form the record type {JΓK}.

4

Var

C, Γ ⊢ x : Γ(x) x

Abs

C, Γ; x : τ1 ⊢ e : τ2 e′ ᾱ = ftv(C, Γ, τ1, τ2)

C, Γ ⊢ λmx : τ1.e : τ1 → τ2 mᾱ {Γ}

App

C, Γ ⊢ e1 : τ1 → τ2 e′1 C, Γ ⊢ e2 : τ1 e′2

C, Γ ⊢ e1 e2 : τ2 apply Jτ1K Jτ2K e′1 e′2

TAbs

C, Γ ⊢ e : τ e′ α # C, Γ

C, Γ ⊢ Λα.e : ∀α.τ Λα.e′

TApp

C, Γ ⊢ e : ∀α.τ e′

C, Γ ⊢ e τ1 : [α 7→ τ1]τ e′ Jτ1K

Let

C, Γ ⊢ e1 : τ1 e′1 C, Γ; x : τ1 ⊢ e2 : τ2 e′2

C, Γ ⊢ let x = e1 in e2 : τ2 let x = e′1 in e′2

LetRec

C, Γ; x̄ : τ̄ ⊢ ē : τ̄ ē′ C, Γ; x̄ : τ̄ ⊢ e : τ e′

C, Γ ⊢ letrec x̄ : τ̄ = ē in e : τ letrec x̄ : Jτ̄K = ē′ in e′

Record

C, Γ ⊢ ē : τ̄ ē′

C, Γ ⊢ {r̄ = ē} : {r̄ : τ̄} {r̄ = ē′}

Proj

C, Γ ⊢ e : {r : τ ; r̄ : τ̄} e′

C, Γ ⊢ e.r : τ e′.r

Data

K :: ∀ᾱ[D].τ̄ → T τ̄1 C [ᾱ 7→ τ̄2]D
C, Γ ⊢ ē : [ᾱ 7→ τ̄2]τ̄ ē′

C, Γ ⊢ K τ̄2 ē : T [ᾱ 7→ τ̄2]τ̄1 K Jτ̄2K ē′

Case

C, Γ ⊢ e : τ1 e′ C, Γ ⊢ c̄ : τ1 → τ2 c̄′

C, Γ ⊢ case e of [τ2]c̄ : τ2 case e′ of [Jτ2K]c̄
′

Clause

K :: ∀ᾱ[D].τ̄ → T τ̄1 ᾱ # C, Γ, τ̄2, τ
C ∧ D ∧ τ̄1 = τ̄2, Γ; x̄ : τ̄ ⊢ e : τ e′

C, Γ ⊢ K ᾱ x̄ 7→ e : T τ̄2 → τ K ᾱ x̄ 7→ e′

Conv

C, Γ ⊢ e : τ1 e′ C τ1 = τ2

C, Γ ⊢ e : τ2 e′

Weaken

C, Γ1; Γ2 ⊢ e : τ e′ x # e

C, Γ1; x : τ1; Γ2 ⊢ e : τ e′

Figure 2: Term translation

We may now define a compositional term translation as
follows. In the following, let apply be a fresh term variable.
The translation is defined by a new judgement, of the form
C, Γ ⊢ e : τ e′, whose derivation rules are given in Fig-
ure 2. It is immediate to check that C, Γ ⊢ e : τ e′ implies
C, Γ ⊢ e : τ . Conversely, given a derivation of C, Γ ⊢ e : τ ,
there exists a unique expression e′ such that the judgement
C, Γ ⊢ e : τ e′ is the conclusion of a derivation of the
same shape. We refer to e′ as the image of e through de-
functionalization. In the following, we refer to the image of
p through defunctionalization as p′. It is obtained from the
derivation of true,? ⊢ p : τp that was fixed above.

The only two interesting rules in the definition of the
translation are Abs and App. Indeed, all other rules pre-
serve the structure of the expression at hand, using the type
translation defined above to deal with type annotations.
Abs translates every λ-abstraction to an injection, mak-
ing closure allocation explicit. The data constructor (or, in
other words, the closure’s tag) is m, the unique label that
was assigned to this λ-abstraction. Its type arguments, ᾱ,
are all of the type variables that appear free in the typing
judgement. (By convention, these must be ordered in the
same way as in the type scheme associated with the data
constructor m in the data signature D′.) Its value argu-
ment is a record that stores the values currently associated
with all of the term variables that are bound by the environ-
ment Γ. We write {Γ} as a short-hand for the record term
{y = y}y∈dom(Γ), where the left-hand y is interpreted as a
record label, while the right-hand y is a term variable. This
record is the closure’s value environment. One might think
that it is inefficient to save all of the term variables in Γ
into the closure, rather than only those that appear free in
λx : τ1.e. However, if Weaken is used eagerly in the original
type derivation, these must in fact coincide, so no efficiency
is lost. This trick simplifies our notation. As announced in
the introduction, App translates function applications into
invocations of apply .

To complete the definition of the program transforma-
tion, there remains to wrap the term p′ within an appropri-
ate definition of apply . Let τapply stand for

∀α1.∀α2.Arrow α1 α2 → α1 → α2.

Let f and arg be fresh term variables. Let α1 and α2 be fresh
type variables. Then, the translation of the source program
p, which we write JpK, is the target program

letrec apply : τapply =
Λα1.Λα2.

λf : Arrow α1 α2.
λarg : α1.

case f of [α2]c̄p

in p′,

where, for every λ-abstraction that appears within p and
whose enriched typing subderivation ends with

Abs

C, Γ; x : τ1 ⊢ e : τ2 e′ ᾱ = ftv(C, Γ, τ1, τ2)

C, Γ ⊢ λmx : τ1.e : τ1 → τ2 mᾱ {Γ}
,

the vector c̄p contains the clause

m ᾱ {Γ} 7→ let x = arg in e′.

As announced in the introduction, apply examines the clo-
sure’s tag in order to determine which code to execute. The
clause associated with the tag m re-introduces the type and
term variables, namely ᾱ, Γ, and x, that must be in scope
for the function’s code, namely e′, to make sense. (Again,
the type variables ᾱ must be ordered in the same way as
in the type scheme associated with m.) We write {Γ} as
a short-hand for the record pattern {y = y}y∈dom(Γ). The
use of pattern matching is not, strictly speaking, part of our
language: we write K ᾱ {r̄ = x̄} 7→ e as syntactic sugar for

5

K ᾱ env 7→ let x̄ = env .r̄ in e, where we use vector notation
to succinctly represent multiple let definitions.

Our definition of defunctionalization is now complete.
Although, for the sake of simplicity, we have identified the
source and target languages, it is easy to check that every
defunctionalized program is first-order, as desired. Indeed,
all function applications in such a program must be double
applications of apply , a letrec-bound, binary function.

Example For the sake of illustration, we give a short ex-
ample program together with its defunctionalized version.
The program, inspired from [1], defines a very simple im-
plementation of sets as characteristic functions, then builds
the singleton set {1} and tests whether 2 is a member of
it. It makes use of a polymorphic equality function = of
type ∀α.α → α → bool and of the Boolean “or” combinator
|| of type bool → bool → bool . Applications of these two
primitive operations are not affected by the translation.

let empty = Λα.λm1x : α.false in

let insert = Λα.λm2x : α.λm3s : α → bool .
λm4y : α.(= α x y) || (s y) in

insert int 1 (empty int) 2

The empty set empty has type ∀α.α → bool . The insertion
function insert has type ∀α.α → (α → bool) → (α → bool).
The complete program has type bool . Its defunctionalized
counterpart is defined under the following data signature,
where set α stands for Arrow α bool .

m1 :: ∀α[true].{} → set α
m2 :: ∀α[true].{} → Arrow α (Arrow (set α) (set α))
m3 :: ∀α[true].{x : α} → Arrow (set α) (set α)
m4 :: ∀α[true].{x : α; s : set α} → set α

The type scheme associated with mi specifies the structure
of the value environment found in every closure tagged mi,
as well as the type of the function that every such closure
encodes. Closures formed using m1 or m2 carry an empty
value environment, because they encode closed functions.
On the other hand, closures formed using m3 or m4 carry
a nonempty value environment, because the corresponding
λ-abstractions have free term variables. The type schemes
associated with m1 and m4 are similar to those usually as-
signed to the data constructors nil and cons, which makes
apparent the fact that sets built using empty and insert be-
come lists after defunctionalization. The defunctionalized
program is given below:

letrec apply : τapply =
Λα1.Λα2.

λf : Arrow α1 α2.
λarg : α1.

case f of

| m1 α {} 7→ letx = arg in false

| m2 α {} 7→ letx = arg in m3 α {x}
| m3 α {x} 7→ let s = arg inm4 α {x; s}
| m4 α {x; s} 7→ let y = arg in

(= α x y) || (apply α bool s y)
[α2]

in

let empty = Λα.m1 α {} in

let insert = Λα.m2 α {} in

apply (apply (apply (insert int) 1) (empty int)) 2

As before, we use punning, that is, we write {x} for the pat-
tern or expression {x = x} and {x; s} for {x = x; s = s}.

For the sake of brevity, we have omitted the type arguments
to apply in the last line. Most of the code is straightfor-
ward, but it is perhaps worth explaining why every clause
in the definition of apply is well-typed. Let us consider, for
instance, the clause associated with m4. Because the type
scheme associated with m4 is ∀α[true].{x : α; s : set α} →
Arrow α bool , the clause’s right-hand side is typechecked un-
der the extra hypothesis α = α1 ∧ bool = α2, and under a
typing environment that ends with arg : α1; x : α; s : set α.
After binding y to arg , the typing environment ends with
x : α; s : set α; y : α1. Thus, y has type α1, which
by hypothesis equals α. Hence, by Conv, y has type
α. It is then straightforward to check that the expression
(= α x y) || (apply α bool s y) has type bool . However, by hy-
pothesis, bool equals α2, so the clause’s right-hand side has
the expected type α2. All other clauses may be successfully
typechecked in a similar manner: although not all of them
have type bool , all have type α2. Lemma 4.2 carries out the
proof in the general case.

4 Type preservation

We now prove that defunctionalization, as defined in Sec-
tion 3, preserves types. As illustrated by the above ex-
ample, the proof is not difficult. In the following, for the
sake of brevity, we write apply , f , and arg for the bindings
apply : τapply , f : Arrow α1 α2, and arg : α1, respectively.
We use this notation in λ-abstractions and in typing envi-
ronments.

Our first lemma states that if an expression e is well-
typed, then its image through defunctionalization e′ must be
well-typed as well, under a constraint, a typing environment,
and a type given by the type translation. Of course, the
typing environment must be extended with a binding for
apply , which is used in the translation of applications.

Lemma 4.1 C, Γ ⊢ e : τ e′ implies JCK, apply ; JΓK ⊢ e′ :
JτK.

Proof. By structural induction on the derivation of C, Γ ⊢
e : τ e′. In each case, we use the notations of Figure 2.
We explicitly deal with value abstraction and application
only; all other cases are straightforward.

◦ Case Abs. The rule’s conclusion is C, Γ ⊢ λmx :
τ1.e : τ1 → τ2 m ᾱ {Γ} (1). Its premises are C, Γ; x :
τ1 ⊢ e : τ2 e′ (2) and ᾱ = ftv(C, Γ, τ1, τ2) (3). By
(1), (3), and by definition of the data signature D′, we
have m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K (4). Further-
more, by reflexivity of entailment, we have JCK JCK (5).
Last, by Var and Record, we have JCK, apply ; JΓK ⊢
{Γ} : {JΓK} (6). Applying Data to (4), (5), and (6), we
find JCK, apply ; JΓK ⊢ m ᾱ {Γ} : Arrow Jτ1K Jτ2K, that is,
JCK, apply ; JΓK ⊢ mᾱ {Γ} : Jτ1 → τ2K.

◦ Case App. The rule’s conclusion is C, Γ ⊢ e1 e2 :
τ2 apply Jτ1K Jτ2K e′1 e′2. Its premises are C, Γ ⊢ e1 :
τ1 → τ2 e′1 (1) and C, Γ ⊢ e2 : τ1 e′2 (2).
Var yields JCK, apply ; JΓK ⊢ apply : τapply . By defini-
tion of τapply and by TApp, this implies JCK, apply ; JΓK ⊢
apply Jτ1K Jτ2K : Arrow Jτ1K Jτ2K → Jτ1K → Jτ2K, that is,
JCK, apply ; JΓK ⊢ apply Jτ1K Jτ2K : Jτ1 → τ2K → Jτ1K →
Jτ2K (3). Furthermore, applying the induction hypothesis
to (1) and (2) yields JCK, apply ; JΓK ⊢ e′1 : Jτ1 → τ2K (4) and
JCK, apply ; JΓK ⊢ e′2 : Jτ1K (5). By App, (3), (4), and (5)
imply JCK, apply ; JΓK ⊢ apply Jτ1K Jτ2K e′1 e′2 : Jτ2K. �

6

The second lemma states that apply itself is well-typed
and has type τapply , as desired. Because apply is recursive,
this assertion holds under the binding apply : τapply .

Lemma 4.2 true, apply ⊢ Λα1α2.λf .λarg .case f of [α2]c̄p :
τapply .

Proof. We must prove that every clause in c̄p is well-typed.
Thus, let us consider a λ-abstraction that appears within p
and whose enriched typing subderivation ends with

Abs

C, Γ; x : τ1 ⊢ e : τ2 e′ ᾱ = ftv(C, Γ, τ1, τ2)

C, Γ ⊢ λmx : τ1.e : τ1 → τ2 m ᾱ {Γ}
.

By applying Lemma 4.1 to the first premise, we obtain
JCK, apply ; JΓK; x : Jτ1K ⊢ e′ : Jτ2K. Then, Lemma 2.1,
Conv, and Weaken yield JCK ∧ Jτ1K = α1 ∧ Jτ2K =
α2, apply ; arg ; JΓK; x : α1 ⊢ e′ : α2. By Let, this implies
JCK∧Jτ1K = α1∧Jτ2K = α2, apply ; arg; JΓK ⊢ let x = arg in e′ :
α2 (1). Now, by definition of the data signature D′, we
have m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K (2). Last, by
construction, we have ᾱ # α1α2 (3). Applying Clause

to (1), (2), and (3) yields true, apply ; arg ⊢ mᾱ {Γ} 7→
letx = arg in e′ : Arrow α1 α2 → α2. Now, because this
holds for every λ-abstraction that appears within p, and by
definition of c̄p, we have established true, apply ; arg ⊢ c̄p :
Arrow α1 α2 → α2. The result follows by Weaken, Case,
Abs, and TAbs. �

It is now easy to conclude that the image of the source
program p under defunctionalization is well-typed.

Theorem 4.1 true,? ⊢ JpK : JτpK.

Proof. Applying Lemma 4.1 to the judgement true,? ⊢ p :
τp p′ yields true, apply ⊢ p′ : JτpK (1). The result follows
from Lemma 4.2 and from (1) by LetRec. �

5 Meaning preservation

We now prove that defunctionalization preserves the mean-
ing of programs, as defined by a call-by-value operational
semantics. Because our notion of defunctionalization is not
type-directed, we are able to proceed in two steps, as fol-
lows. First, we define defunctionalization of untyped pro-
grams, and prove that it preserves meaning. We emphasize
that working in an untyped setting makes such a statement
particularly simple and general. Second, exploiting the fact
that the two notions of defunctionalization coincide modulo
type erasure, we easily lift this result back to a typed set-
ting. This approach appears more general than those found
in previous works [11, 1].

In the following, we slightly amend the definition of the
programming language in three ways. First, we introduce
two new syntactic classes, namely values v and values or
variables w. The former class contains functions, records,
and algebraic data structures, while the latter includes vari-
ables in addition. We restrict the right-hand sides of letrec

definitions to be values: this restriction is standard in a call-
by-value setting. Second, we place λ-, let-, or case-bound
term variables, written x, and letrec-bound term variables,
written X, in distinct syntactic classes. This choice, while
not essential, simplifies some α-conversion arguments. We
refer to an expression that does not have any free variables of
the former (resp. latter) class as x-closed (resp. X-closed).

Last, we restrict the syntax of programs by requiring, in
many places, values or variables w instead of arbitrary ex-
pressions e. This design, which is reminiscent of Flanagan et
al.’s A-normal forms [7], does not incur any loss of expres-
siveness, but simplifies our proofs by making let x = [] in e
the only evaluation context. Because the amendments de-
scribed in this paragraph have nothing to do with the type
preservation result presented in the previous sections, we
have chosen not to introduce them earlier on.

5.1 Untyped defunctionalization

We first define the untyped language. It is the type free
counterpart of the typed language presented in Section 2,
with the amendments described above.

e ::= w
| w w
| let x = e in e
| letrec X̄ = v̄ in e
| w.r
| case w of c̄

c ::= K x̄ 7→ e

w ::= x
| X
| v

v ::= λx.e
| K w̄
| {r̄ = w̄}

S ::= X̄ = v̄

Next, we define a call-by-value, small-step operational se-
mantics. The objects of reduction are not expressions, but
configurations of the form S / e, where a store S is a set of
bindings of (distinct) letrec-class term variables to x-closed
values. As usual, the term variables in the domain of the
store S are considered bound in the configuration S / e. In
fact, the notation S / e may be viewed as a shorthand for
letrec S in e. The use of a store allows describing the dynam-
ics of letrec definitions in a straightforward manner. The
operational semantics, a rewriting system on closed config-
urations, is defined by the following standard rules.

S / (λx.e) v → S / [x 7→ v]e
S / let x = v in e → S / [x 7→ v]e

S / {r = v; r̄ = v̄}.r → S / v
S / case K v̄ of (K x̄ 7→ e) | c̄ → S / [x̄ 7→ v̄]e

S / letrec X̄ = v̄ in e → S; X̄ = v̄ / e if X̄ # S
S; X = v / X → S; X = v / v

S1 / e1 → S2 / e2

S1 / letx = e1 in e → S2 / letx = e2 in e

We may now define untyped defunctionalization. As in
the typed case, we consider a fixed closed program p, in
which every λ-abstraction carries a unique tag. We do not,
however, require p to be well-typed. The translation of ex-
pressions is defined, in an inductive manner, in Figure 3. All
cases are trivial, except Abs, which translates λ-abstraction
to closure construction, and App, which translates function
application to invocations of apply . Please note that the re-
lation is in fact a function, defined for all subexpressions
of p. We write p′ for the image of p through it. Then, the
complete defunctionalized program JpK is defined as

letrec apply = λf .λarg .case f of c̄p in p′,

where, for every abstraction of the form λmx.e that appears
within p, c̄p contains the clause

m {fv(λx.e)} 7→ letx = arg in e′,

where e′ is defined by e e′.

7

Var

x x
Abs

λmx.e m {fv(λx.e)}

App

e1 e′1 e2 e′2

e1 e2 apply e′1 e′2

Let

e1 e′1 e2 e′2

let x = e1 in e2 letx = e′1 in e′2

LetRec

v̄ v̄′ e e′

letrec X̄ = v̄ in e letrec X̄ = v̄′
in e′

Record

w̄ w̄′

{r̄ = w̄} {r̄ = w̄′}

Proj

w w′

w.r w′.r

Data

w̄ w̄′

K w̄ K w̄′

Case

w w′ c̄ c̄′

case w of c̄ casew′
of c̄′

Clause

e e′

K x̄ 7→ e K x̄ 7→ e′

Figure 3: Untyped term translation

5.2 Untyped meaning preservation

In order to establish that untyped defunctionalization pre-
serves meaning, we exhibit a simulation between closed
source configurations and their defunctionalized versions.
Roughly speaking, the desired simulation is the closure of
the translation under substitution of (x-closed) values
for (x-class) program variables. More precisely, let us define
the relation % by the same rules that define (that is, by
the rules of Figure 3, where every occurrence is of is re-
placed with %), extended with the following new rule, which
subsumes Abs:

SimAbs

λmx.e m {ȳ}
x̄ ⊆ ȳ

v̄, v̄′x-closed v̄ % v̄′

λx.[x̄ 7→ v̄]e % m {[x̄ 7→ v̄′]ȳ}

The notation {[x̄ 7→ v̄′]ȳ} stands for the record expression
{ȳ = [x̄ 7→ v̄′]ȳ}. In short, SimAbs extends Abs by trans-
lating not only functions that appear in the source program,
but also the functions that appear at runtime, where some of
the free variables have been instantiated with runtime val-
ues, that is, x-closed values. It is immediate to check that
% extends , as stated by the following lemma.

Lemma 5.1 e e′ implies e % e′.

Furthermore, % is closed under substitution, as desired.

Lemma 5.2 Let e % e′ and v % v′, where v and v′ are
x-closed. Then, [x 7→ v]e % [x 7→ v′]e′ holds.

Last, % preserves values.

Lemma 5.3 If v % e′ holds, then e′ is a value.

We extend % to stores and to (closed) configurations as fol-
lows:

Store

apply 6∈ X̄ v̄ % v̄′

X̄ = v̄ % apply ; X̄ = v̄′

Config

S % S′ e % e′

S / e % S′ / e′

Above, and in the following, we use apply to stand for the
store binding apply = λf .λarg .case f of c̄p. We are now
ready to prove that % is a simulation.

Lemma 5.4 (Simulation) This diagram commutes:

S1 / e1

��

%

// S′
1 / e′1

+��

S2 / e2

%

// S′
2 / e′2

Proof. By induction on the derivation of S1 / e1 → S2 / e2.
We give only the most interesting case, namely that of β-
reduction.

◦ Case e1 is (λx.e) v and e2 is [x 7→ v]e. Examining the
hypothesis S1 / (λx.e) v % S′

1 / e′1, we find that e′1 must be of
the form apply (m {[x̄ 7→ v̄′]ȳ}) v′, where ȳ is fv(λx.em) (1),
x̄ ⊆ ȳ holds (2), e is [x̄ 7→ v̄]em (3), v̄ and v̄′ are x-closed
and satisfy v̄ % v̄′ (4), and v % v′ holds (5).

Because we are dealing with closed configurations, e1 is
x-closed, which implies that e has no free (x-class) variables
other than x. Given (3), this implies that the free variables
of em form a subset of x̄∪{x}. Given (1), this yields ȳ ⊆ x̄.
Given (2), ȳ and x̄ must coincide, so we may write {[x̄ 7→
v̄′]ȳ} as {ȳ = v̄′}.

Now, by definition, c̄p contains a clause of the form
m {ȳ} 7→ letx = arg in e′m, where e′m is defined by em e′m.
This allows us to build the following reduction sequence:

S′
1 / e′1

= S′
1 / apply (m {ȳ = v̄′}) v′

→+ S′
1 / case m {ȳ = v̄′} of (m {ȳ} 7→ letx = v′

in e′m) | . . .
→ S′

1 / let x = v′
in [ȳ 7→ v̄′]e′m

since v′ and v̄′ are x-closed and, by (1), x 6∈ ȳ holds
→ S′

1 / [x 7→ v′][ȳ 7→ v̄′]e′m

There remains to verify that the simulation holds. By
Lemma 5.1, we have em % e′m. By (4), (5), and Lemma 5.2,
this implies [x 7→ v][ȳ 7→ v̄]em % [x 7→ v′][ȳ 7→ v̄′]e′m, that is,
e2 % [x 7→ v′][ȳ 7→ v̄′]e′m. The result follows by Config. �

Given a closed expression e, we write e ⇑ if and only if
the configuration ∅ / e admits an infinite reduction sequence;
we write e ⇓ if and only if ∅ / e reduces to a configuration
whose right-hand component is a value. Then, the fact that
defunctionalization preserves meaning, in an untyped set-
ting, is stated by the next theorem.

Theorem 5.1 p ⇑ implies JpK ⇑. p ⇓ implies JpK ⇓.

8

Proof. To begin, let us notice that, by definition, JpK is
letrec apply in p′. Thus, the configuration ∅ / JpK reduces, in
one step, to apply / p′. Furthermore, by Lemma 5.1, Store,
and Config, ∅ / p % apply / p′ holds.

Now, assume p diverges. Then, ∅ / p admits an infinite
reduction sequence. By Lemma 5.4, so does apply / p′, hence
so does ∅ / JpK, which proves that JpK diverges.

Last, assume p converges to a configuration of the form
S / v. By the same argument as above, JpK must then reduce
to a configuration that simulates S / v. By Lemma 5.3, the
right-hand component of that configuration must be a value,
hence JpK converges to a value. �

The theorem states that defunctionalization preserves
the termination behavior of the program. It does not ap-
ply to programs that go wrong; however, they are of little
interest, since, in a realistic setting, they should be ruled out
by some sound type system. Of course, if desired, it would
be possible to prove that defunctionalization also preserves
the property of going wrong.

5.3 Typed meaning preservation

We now sketch how the meaning preservation result may be
lifted, if desired, to a typed setting. (The task is simple
enough that it does not, in our opinion, warrant a detailed
development.) Naturally, we consider the type system pre-
sented in Section 2; however, any other type system would
do just as well, provided it is powerful enough to encode
typed defunctionalization and has a type erasure semantics.

We begin by restricting the typed language defined in
Section 2 so as to reflect the restrictions imposed on the
untyped language at the beginning of Section 5. Further-
more, we restrict type abstraction to values, that is, we
replace the construct Λα.e with Λα.v. Indeed, we do not
wish Λ-abstractions to suspend computation, because they
are erased when going down to the untyped language.

Next, we define a typed operational semantics for the
language, which is identical to the untyped semantics of
Section 5, except type information is kept track of. The
two semantics are related by a simple type erasure property,
stated as follows. Given a typed expression e, let ⌊e⌋ be its
untyped counterpart, obtained by erasing all type informa-
tion. Then, we have:

Lemma 5.5 Let true,? ⊢ p : τp. Then, p ⇑ implies ⌊p⌋ ⇑,
and p ⇓ implies ⌊p⌋ ⇓.

Last, we have insisted earlier that our version of defunc-
tionalization is not type-directed. In other words, it com-
mutes with type erasure. This is stated by the following
lemma, whose proof is straightforward:

Lemma 5.6 Let true,? ⊢ p : τp. Then, J⌊p⌋K is ⌊JpK⌋.

Using Theorem 5.1 as well as the previous two Lemmas,
it is now straightforward to establish the correctness of typed
defunctionalization. To conclude, types do not help estab-
lish the correctness of defunctionalization; on the contrary,
we believe it is pleasant to get them out of the way, so as to
obtain a stronger result (Theorem 5.1).

6 Discussion

It is worth noting that recursive or mutually recursive func-
tions in the source program do not cause any extra diffi-
culty. Indeed, a set of mutually recursive bindings whose

right-hand sides are λ-abstractions is mapped to a set of
mutually recursive bindings whose right-hand sides are clo-
sures, that is, applications of data constructors to records
of variables—in other words, values. Even under a call-by-
value evaluation regime, mutually recursive definitions of
values make perfect sense; see the semantics given in Sec-
tion 5.1. The strict functional language Objective Caml
implements such a semantics. Our treatment of mutually
recursive function definitions corresponds to Morrisett and
Harper’s fixpack-based extension to closure conversion [9].

The reader may notice that the simply-typed version of
defunctionalization described in the introduction is more ef-
ficient than the one presented in this paper, because special-
izing apply with respect to ground types τ1 and τ2 allows
setting up smaller dispatch tables. In fact, specialization
is a simple way of exploiting the flow information provided
for the source program by the type system. Our version of
defunctionalization is näıve, and includes no such optimiza-
tion. It is straightforward, however, to perform specializa-
tion in a similar way. Indeed, if τ1 and τ2 are arbitrary
(non-ground) types, whose free type variables are ᾱ, then
one may define a specialized function apply∃ᾱ.τ1→τ2

, whose
type is ∀ᾱ.Jτ1 → τ2K → Jτ1K → Jτ2K, and whose code is
identical to that of apply , except it contains branches only
for the tags corresponding to source functions whose type
is an instance of τ1 → τ2. The resulting program is still
well-typed: indeed, as pointed out by Xi [17], a type sys-
tem equipped with guarded algebraic data types supports
identification and elimination of dead branches: they are
the branches whose typing hypothesis is inconsistent. Thus,
whereas, in the simply-typed case, type-based specialization
was mandatory in order to achieve type preservation, it is
now optional.

Another source of inefficiency in our presentation of de-
functionalization is our näıve treatment of multiple-argu-
ment functions. Indeed, we have adopted the view that all
functions are unary. As a result, applying a (curried) func-
tion to multiple arguments causes the allocation of several
intermediate closures, which immediately become garbage.
In practice, it is possible to address this issue by defining yet
more versions of apply, specialized for 2, 3, . . . arguments,
and to use these specialized versions at every call site where
multiple arguments are available at once.

The specialization techniques described in the previous
two paragraphs may be combined, without compromising
our type preservation result. This yields defunctionalized
programs containing many highly specialized versions of
apply , each of which typically has few branches. Thus, this
approach may allow producing reasonably small dispatch ta-
bles, by exploiting type information only, instead of relying
on a separate closure analysis.

Defunctionalization may be viewed not only as a compi-
lation technique, but also as a tool that helps programmers
transform programs and reason about them. Danvy and
Nielsen [6] have pointed out that it is an inverse of Church’s
encoding, which means that it allows reasoning in terms of
data structures instead of higher-order functions. This is
nicely illustrated by the case of the sprintf function, whose
type is notoriously difficult to express in ML, because the
value of its first argument dictates the number and types
of its remaining arguments. Danvy [5] suggested a clever
way of expressing sprintf in ML by encoding format spec-
ifiers as first-class functions. More recently, Xi, Chen, and
Chen [18] showed that sprintf may be expressed in a more

9

direct style, whereby format specifiers are data structures,
in an extension of ML with guarded algebraic data types.
We point out that the latter code is but a defunctionalized
version of the former: it could, in principle, have been de-
rived from it in a systematic manner. Thus, type-preserving
defunctionalization may be viewed as a tool to turn existing
ML programs that use clever continuation-based tricks to
work around the limitations of ML’s type system back into
perhaps more natural, first-order programs, expressed in an
extension of ML with guarded algebraic data types.

References

[1] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
Design and correctness of program transformations
based on control-flow analysis. In International Sym-
posium on Theoretical Aspects of Computer Software
(TACS), volume 2215 of Lecture Notes in Computer
Science, pages 420–447. Springer Verlag, October 2001.

[2] Jeffrey M. Bell, Françoise Bellegarde, and James Hook.
Type-driven defunctionalization. In ACM International
Conference on Functional Programming (ICFP), Au-
gust 1997.

[3] Henry Cejtin, Suresh Jagannathan, and Stephen
Weeks. Flow-directed closure conversion for typed
languages. In European Symposium on Programming
(ESOP), volume 1782 of Lecture Notes in Computer
Science, pages 56–71. Springer Verlag, March 2000.

[4] James Cheney and Ralf Hinze. First-class phantom
types. Technical Report 1901, Cornell University, 2003.

[5] Olivier Danvy. Functional unparsing. Journal of Func-
tional Programming, 8(6):621–625, November 1998.

[6] Olivier Danvy and Lasse R. Nielsen. Defunctional-
ization at work. In ACM International Conference
on Principles and Practice of Declarative Programming
(PPDP), pages 162–174, September 2001.

[7] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and
Matthias Felleisen. The essence of compiling with con-
tinuations. In ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 237–
247, 1993.

[8] Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed closure conversion. In ACM Symposium
on Principles of Programming Languages (POPL),
pages 271–283, January 1996.

[9] Greg Morrisett and Robert Harper. Typed closure con-
version for recursively-defined functions (extended ab-
stract). In International Workshop on Higher Order
Operational Techniques in Semantics (HOOTS), vol-
ume 10 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 1998.

[10] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From system F to typed assembly language.
ACM Transactions on Programming Languages and
Systems, 21(3):528–569, May 1999.

[11] Lasse R. Nielsen. A denotational investigation of de-
functionalization. Technical Report RS-00-47, BRICS,
December 2000.

[12] Christine Paulin-Mohring. Inductive definitions in the
system coq: Rules and properties. Research Report
RR1992-49, ENS Lyon, 1992.

[13] John C. Reynolds. Definitional interpreters for higher-
order programming languages. Higher-Order and Sym-
bolic Computation, 11(4):363–397, December 1998.

[14] John C. Reynolds. Definitional interpreters revisited.
Higher-Order and Symbolic Computation, 11(4):355–
361, December 1998.

[15] Andrew Tolmach. Combining closure conversion with
closure analysis using algebraic types. In Workshop on
Types in Compilation (TIC), June 1997.

[16] Andrew Tolmach and Dino P. Oliva. From ML
to Ada: Strongly-typed language interoperability via
source translation. Journal of Functional Programming,
8(4):367–412, July 1998.

[17] Hongwei Xi. Dead code elimination through depen-
dent types. In International Workshop on Practical
Aspects of Declarative Languages (PADL), volume 1551
of Lecture Notes in Computer Science, pages 228–242.
Springer Verlag, January 1999.

[18] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded
recursive datatype constructors. In ACM Symposium
on Principles of Programming Languages (POPL), Jan-
uary 2003.

10

