
Cheap generation
of debugging information

Xavier Leroy

INRIA Paris

Journées Compilation, 2016-09-07

With thanks to. . .

Mark Shinwell (Jane Street), for suggesting the use of reachability
analysis.

Bernhard Schommer (AbsInt), for implementing most of this stuff
in CompCert.

What does it take to do this?

(gdb) break unix.c:351

(gdb) run ../boot/ocamlc -v

(gdb) backtrace

#0 caml_executable_name (name=name@entry=0x64f300 <proc_self_exe> "",

name_len=name_len@entry=256) at unix.c:351

#1 0x000000000042ad2f in caml_main (argv=0x7fffffffdad8) at startup.c:308

#2 0x000000000040c65c in main (argc=<optimized out>, argv=<optimized out>)

at main.c:35

(gdb) print name_len

$1 = 256

The compiler must have produced copious information for the
debugger, and stored it in the object and executable files.

The DWARF file format

DWARF (“Debugging With Arbitrary Record Format”) is a
standard data format that a compiler can use to describe aspects
of a program relevant to a debugger:

• types (predefined, user-defined)

• variables (types, scopes, locations at run-time)

• functions (machine instructions, prologues, epilogues)

• compilation units / modules

• line number table (code address ↔ source location)

• call frame information

• macro definitions (!)

Compactness
In memory: XML-style tree of tagged records.

On disk (inside ELF object and executable files): compact binary
encodings.

In particular, the line number table (which can be very large) is
represented as a program for a bytecode machine whose execution
(by the debugger) reconstructs the table.

Less commonly used are features of
DWARF Version 3 and 4 which allow refer-
ences from one compilation unit to the
DWARF data stored in another compilation
unit or in a shared library. Many compilers
generate the same abbreviation table and
base types for every compilation, indepen-
dent of whether the compilation actually
uses all of the abbreviations or types. These
can be saved in a shared library and refer-
enced by each compilation unit, rather than
being duplicated in each.

Other DWARF Data

Line Number Table

he DWARF line table contains the map-
ping between memory addresses that

contain the executable code of a program
and the source lines that correspond to
these addresses. In the simplest form, this
can be looked at as a matrix with one col-
umn containing the memory addresses and
another column containing the source
triplet (file, line, and column) for that ad-
dress. If you want to set a breakpoint at a
particular line, the table gives you the
memory address to store the breakpoint in-
struction. Conversely, if your program has a
fault (say, using a bad pointer) at some lo-
cation in memory, you can look for the
source line that is closest to the memory
address.

T

DWARF has extended this with added
columns to convey additional information
about a program. As a compiler optimizes
the program, it may move instructions
around or remove them. The code for a giv-
en source statement may not be stored as a
sequence of machine instructions, but may
be scattered and interleaved with the in-
structions for other nearby source state-
ments. It may be useful to identify the end
of the code which represents the prolog of
a function or the beginning of the epilog, so
that the debugger can stop after all of the

arguments to a function have been loaded
or before the function returns. Some pro-
cessors can execute more than one instruc-
tion set, so there is another column that in-
dicates which
set is stored at
the specified
machine loca-
tion.

As you
might imag-
ine, if this ta-
ble were
stored with
one row for
each machine
instruction, it
would be
huge. DWARF
compresses
this data by
encoding it as
sequence of
instructions
called a line
number pro-
gram9. These
instructions
are interpret-
ed by a simple finite state machine to recre-
ate the complete line number table.

The finite state machine is initialized
with a set of default values. Each row in the
line number table is generated by executing
one or more of the opcodes of the line
number program. The opcodes are general-
ly quite simple: for example, add a value to
either the machine address or to the line
number, set the column number, or set a
flag which indicates that the memory ad-
dress represents the start of an source state-

9 Calling this a line number program is some-
thing of a misnomer. The program describes
much more than just line numbers, such as in-
struction set, beginning of basic blocks, end of
function prolog, etc.

ment, the end of the function prolog, or the
start of the function epilog. A set of special
opcodes combine the most common opera-
tions (incrementing the memory address
and either incrementing or decrementing
the source line number) into a single op-
code.

Finally, if a row of the line number ta-
ble has the same source triplet as the previ-
ous row, then no instructions are generated
for this row in the line number program.
Figure 10 lists the line number program for
strndup.c. Notice that only the machine
addresses that represent the beginning in-
struction of a statement are stored. The
compiler did not identify the basic blocks in
this code, the end of the prolog or the start
of the epilog to the function. This table is
encoded in just 31 bytes in the line number
program.

Macro Information

ost debuggers have a very difficult
time displaying and debugging code

which has macros. The user sees the origi-
nal source file, with the macros, while the
code corresponds to whatever the macros
generated.

M

DWARF includes the description of the
macros defined in the program. This is
quite rudimentary information, but can be
used by a debugger to display the values
for a macro or possibly translate the macro
into the corresponding source language.

Call Frame Information

very processor has a certain way of
calling functions and passing argu-E

Introduction to the DWARF Debugging Format 8 Michael J. Eager

Address File Line Col StmtBlock End Prolog Epilog ISA

0x0 0 42 0 yes no no no no 0

0x9 0 44 0 yes no no no no 0

0x1a 0 44 0 yes no no no no 0

0x24 0 46 0 yes no no no no 0

0x2c 0 47 0 yes no no no no 0

0x32 0 49 0 yes no no no no 0

0x41 0 50 0 yes no no no no 0

0x47 0 51 0 yes no no no no 0

0x50 0 53 0 yes no no no no 0

0x59 0 54 0 yes no no no no 0

0x6a 0 54 0 yes no no no no 0

0x73 0 55 0 yes no no no no 0

0x7b 0 56 0 yes no yes no no 0

File 0: strndup.c
File 1: stddef.h

Figure 10. Line Number Table for strndup.c.

Abbrev 5: DW_TAG_formal_parameter [no children]
DW_AT_name DW_FORM_string
DW_AT_decl_file DW_FORM_data1
DW_AT_decl_line DW_FORM_data1
DW_AT_type DW_FORM_ref4
DW_AT_location DW_FORM_block1

 ┌──────────────────────────────── abbreviation 5
 │ ┌──────────────────────────── ”s”
 │ │ ┌──────────────────────── file 1
 │ │ │ ┌───────────────────── line 41
 │ │ │ │ ┌──────────────── type DIE offset
 │ │ │ │ │ ┌───────── location (fbreg + 0)
 │ │ │ │ │ │ ┌───── terminating NUL

 05 7300 01 29 0000010c 9100 00
Figure 9. Abbreviation entry and encoded form.

Expressiveness

Naively, the run-time location of a variable is one of:

• an absolute memory address

• a stack-relative memory address

• a register

To handle more complicated situations (e.g. displays, closures,
pass-by-reference, etc), DWARF describes the location of a
variable by a program for a stack machine, which can

• access registers (incl. SP) and symbol table;

• perform pointer arithmetic;

• dereference pointers;

• test and branch;

• recombine data that’s been split up
(e.g. high 32 bits here, low 32 bits there).

Outline

1 The DWARF file format

2 Adding DWARF generation to a compiler

3 Warm up: line number information

4 Black belt: locations of local variables

5 In closing. . .

Demanding users

Your cute academic compiler is successful.

Industrial users are serious about using it.

Someone is serious about distributing and supporting it as a
product.

They all expect a working -g option!

Time to panic?

Demanding users

Your cute academic compiler is successful.

Industrial users are serious about using it.

Someone is serious about distributing and supporting it as a
product.

They all expect a working -g option!

Time to panic?

Producing DWARF info

Encoding the information in DWARF binary format:

• A lot of code to write

• Not much help from the assembler

• Some but not many libraries available

• Not my problem today.

Producing the information in the first place:

• collect it, esp. from source code

• transport it through the compiler

• preserve it through optimizations (if at all possible).

TIME TO PANIC??

Producing DWARF info

Encoding the information in DWARF binary format:

• A lot of code to write

• Not much help from the assembler

• Some but not many libraries available

• Not my problem today.

Producing the information in the first place:

• collect it, esp. from source code

• transport it through the compiler

• preserve it through optimizations (if at all possible).

TIME TO PANIC??

How to go about it?

Bypass the compilation chain:

• Generate as much info as possible from the source AST.

• E.g. infos on types and on global variables.

• Call frame info uses only late back-end info.

Instrument the compilation passes:

• E.g. add a “line number info” field to every node of your CFG.

• A lot of work.

• Especially if your pass is formally verified.

Piggy-back on an existing mechanism:

• For CompCert: built-in functions and annotations.

• For GCC and Clang: inline assembly (possibly).

Built-in functions in CompCert

x = __builtin_fmin(y, z);

Look like normal function calls.

Most compilation passes treat them conservatively, as calls to
unknown functions with unknown effects.

At the end of the compilation pipeline, turned into canned
sequences of machine instructions (e.g. the MINSD instruction of
x86-SSE2).

Used heavily in CompCert to deal with annoying C features that
should not be optimized, such as volatile memory accesses or inline
assembly.

Code annotations in CompCert

__builtin_annot("CODE MARKER");

A built-in function that generates zero machine instructions, just a
comment in the assembly file at the code point where the
annotation occurs:

; CODE MARKER

Used by Airbus to communicate information to a WCET static
analyzer. (See ERTS 2012 paper by Ricardo Bedin França et al.)

GCC equivalent:

asm volatile ("; CODE MARKER");

Outline

1 The DWARF file format

2 Adding DWARF generation to a compiler

3 Warm up: line number information

4 Black belt: locations of local variables

5 In closing. . .

The line numbers problem

Given: a C abstract syntax tree with (filename, line number)
information for every statement.

Objective: generate .file and .loc directives in the assembly file.

.file 1 "foo.c"

.loc 1 99

(The GNU assembler takes care of DWARF-encoding this info.)

Whimsical idea

Rewrite the C source by printing source location before execution
of every nontrivial statement.

printf("fact.c:10"); x = 10;

printf("fact.c:11"); y = fact(n);

printf("fact.c:12"); printf("factorial %d is %d\n", x, y);

We get a kind of self-describing program: at run-time it prints the
source locations executed, correctly interspersed with the actual
output of the program.

The CompCert approach

Rewrite the C source, putting the source location in a
__builtin_debug_line before every nontrivial statement.

__builtin_debug_line("fact.c:10"); x = 10;

__builtin_debug_line("fact.c:11"); y = fact(n);

__builtin_debug_line("fact.c:12"); printf("factorial %d is %d\n", x, y);

At assembly generation time, __builtin_debug_line is turned
into appropriate .loc and .file directives.

Nothing is printed, but the optimizations don’t know that, hence
they globally preserve the annotations and their placement relative
to the rest of the code.

Does it work in practice?

Yes, fairly well, provided that the code linearization heuristic (the
part that lays out the CFG as a sequence of asm instructions)
keeps basic blocks contiguous:

__builtin_debug_line("fact.c:10");

x = 10;

and doesn’t do stupid things like moving __builtin_debug_line

off-line:

goto L1

L2: x = 10;

... ...

L1: __builtin_debug_line("fact.c:10")

goto L2

Outline

1 The DWARF file format

2 Adding DWARF generation to a compiler

3 Warm up: line number information

4 Black belt: locations of local variables

5 In closing. . .

Debugging information for local variables

(Local variable = auto, non-static block-scoped variable in C.)

For a local variable, the debugger needs to know:

• Name (easy)

• Type (easy)

• Scope (set of PCs where we can talk about this variable)

• Live range (set of PCs where the variable has a value)
(e.g. from first assigment to end of scope)

• DWARF programs to determine the value of the variable at
every PC of its live range.

Beware of optimizations

Classic optimizations can change local variable info a lot:

• Shorten the live range.
(Register allocation reusing a register after last use.)

• Split the live range into unconnected components.
(SSA conversion, live range splitting).

• Remove the variable and its initializations.
(Dead code elimination).

• Turn the variable into a constant.
(Constant propagation)

• Turn the variable into a derived quantity.
(E.g. x is always y + 1)

• Assign different locations at different PCs.
(E.g. a register and a stack slot, with spills and reloads)

How to keep track of all of this?

Code instrumentation to the rescue
Rewrite the C source (more exactly: the Clight intermediate
representation), adding a builtin after each assignment to a local
variable, tracing the name and new value of the variable.

int f(int n)

{

__builtin_debug_setvar("n", n);

int r = n & 1; __builtin_debug_setvar("r", r);

n = n + r; __builtin_debug_setvar("n", n);

r = 1; __builtin_debug_setvar("r", r);

while (n > 0) {

n--; __builtin_debug_setvar("n", n);

r = r * n; __builtin_debug_setvar("r", r);

}

return r;

}

(Hint: what we really want to trace are the beginnings of live ranges for

local variables. This is an overapproximation.)

After compilation
After optimizations, register allocation, and CFG linearization, we
get the following Linear intermediate code:

f() {

AX = param(0, int)

__builtin_debug_setvar("n", AX) // n starts in AX

CX = AX

CX = CX & 1

__builtin_debug_setvar("r", CX) // r starts in CX

DX = AX + CX + 0

__builtin_debug_setvar("n", DX) // n is now in DX

AX = 1

__builtin_debug_setvar("r", AX) // and r in AX

11: CX = DX

DX = CX + -1

__builtin_debug_setvar("n", DX)

if (CX <=s 0) goto 3

AX = AX * DX

__builtin_debug_setvar("r", AX)

goto 11

3: return

}

Reaching definitions analysis

Just after

__builtin_debug_setvar("n", AX)

we know that register AX holds the current value of variable n.

What about other program points? We’d like to have, at every
program point, a set of pairs

(source variable name, register or stack location)

recording where we can find the current values of the source
variables.

Reaching definitions analysis

{ (source variable name, register or stack location) }

To compute these sets, CompCert performs a reaching definitions
analysis on the Linear code:

• The builtin debug setvar(n, r) are the definitions we
track. It adds (n, r) to the set and removes any other (n, r ′).

• Any assignment to r kills all (n, r).

• Moves between registers or stack slots can be tracked more
precisely.

Reaching definitions analysis

f() {

AX = param(0, int)

__builtin_debug_setvar("n", AX) // (n in AX)

CX = AX // (n in AX)

CX = CX & 1 // (n in AX)

__builtin_debug_setvar("r", CX) // (n in AX) (r in CX)

DX = AX + CX + 0 // (n in AX) (r in CX)

__builtin_debug_setvar("n", DX) // (n in DX) (r in CX)

AX = 1 // (n in DX) (r in CX)

__builtin_debug_setvar("r", AX) // (n in DX) (r in AX)

11: CX = DX // (n in DX) (r in AX)

DX = CX + -1 // (r in AX)

__builtin_debug_setvar("n", DX) // (n in DX) (r in AX)

if (CX <=s 0) goto 3 // (n in DX) (r in AX)

AX = AX * DX // (n in DX)

__builtin_debug_setvar("r", AX) // (n in DX) (r in AX)

goto 11 // (n in DX) (r in AX)

3: return

}

Differential encoding
To help with DWARF encoding, we recode the results of reaching
definitions by marking only the beginning and the end of a range of
reaching definitions.

f() {

AX = param(0, int)

__builtin_debug_startrange("n", AX)

CX = AX

CX = CX & 1

__builtin_debug_startrange("r", CX)

__builtin_debug_endrange("n")

DX = AX + CX + 0

__builtin_debug_startrange("n", DX)

__builtin_debug_endrange("r")

AX = 1

__builtin_debug_startrange("r", AX)

11: CX = DX

DX = CX + -1

if (CX <=s 0) goto 3

AX = AX * DX

goto 11

3: __builtin_debug_endrange("r")

__builtin_debug_endrange("n")

return

}

Assembly code generation
f: subl $20, %esp [LD1,LD3]: n is in %eax

leal 24(%esp), %edx [LD4,LD9]: n is in %edx

movl %edx, 0(%esp) [LD2,LD5]: r is in %ecx

movl 0(%edx), %eax [LD6,LD8]: r is in %eax

LD1: # STARTRANGE n %eax

movl %eax, %ecx

andl $1, %ecx

LD2: # STARTRANGE r %ecx

LD3: # ENDRANGE n

leal 0(%eax,%ecx,1), %edx

LD4: # STARTRANGE n %edx

LD5: # ENDRANGE r

movl $1, %eax

LD6: # STARTRANGE r %eax

L100: movl %edx, %ecx

leal -1(%ecx), %edx

testl %ecx, %ecx

jle L101

imull %edx, %eax

jmp L100

L101:

LD8: # ENDRANGE r

LD9: # ENDRANGE n

addl $20, %esp

ret

Fine points of the approach

Putting a __builtin_debug_setvar after each variable
assignment or initialization works only for scalar variables whose
address is not taken (via the & operator).

CompCert preallocates those other local variables (arrays, structs,
addressable scalars) in the stack frame, before optimization. They
are not subject to register allocation and live range splitting.
Hence, a single

__builtin_debug_addrvar("t", &t);

at the beginning of the scope of t suffices to track its location.

Optimizations of stack-allocated variables

void f(int x)

{ g(&x); // forces stack-allocation of x

x = x + 15; // x is temporarily lifted to a register

x = x >> 2;

g(&x);

}

Here, the “store into stacked x”; “reload from stacked x” sequence
between the two assignments to x is optimized away, causing x’s
current value to be temporarily held in a register, and its value in
the stack location to be out of date.

We should tell the debugger about this but we don’t. GCC doesn’t
either.

Scoping issues

Sometimes the reachability analysis infers locations beyond the end
of the scope of a variable:

int f(int x)

{

int j = x + 1;

{ double i = x + 2; g(i); }

return j; // i still available in a register

}

This is harmless and sometimes useful.

Scoping issues

However, if we have several variables with the same name and
overlapping scopes, more work is needed to distinguish them
correctly:

int f(int x)

{

int i = x + 1;

{ double i = x + 2; g(i); }

return i; // i here refers to "int i" only

}

Outline

1 The DWARF file format

2 Adding DWARF generation to a compiler

3 Warm up: line number information

4 Black belt: locations of local variables

5 In closing. . .

Putting this approach into practice

Available in CompCert since version 2.5 (PowerPC)
and 2.6 (ARM, x86).

Advanced prototype for the OCaml native-code compiler.

How do others proceed?

No idea how other production-quality compilers handle the
generation of debugging information.

War stories welcome!

	The DWARF file format
	Adding DWARF generation to a compiler
	Warm up: line number information
	Black belt: locations of local variables
	In closing…

