MPRI course 2-4
“Functional programming and type systems”
Programming project

Xavier Leroy

December 21, 2015

1 Summary

The purpose of this programming project is to implement a type-checker and a compiler (down to a simple
abstract machine) for a small functional language nicknamed SUB, featuring numbers (integers and floating-
point), records with named fields, and subtyping. Similar techniques are used in the OCaml and SML/NJ
compilers to implement the ML module language (with structures as records and functors as functions).

Subtying is an extension of simple types whereas an expression of type T can be used in any context
expecting a type 7’ that is “bigger” than 7. In more technical terms, we say that T’ must be a supertype of t,
or equivalently that T must be a subtype of t’. For example, we treat the type int of integers as a subtype of
the type float of floating-point numbers. Likewise, a record type is subtype of record types having fewer
fields.

For background information on subtyping, you can refer to part III of Pierce’s textbook Types and
Programming Languages.

To compile SUB down to the Modern SECD abstract machine, we use type-directed data representa-
tions: the machine representation of the value of an expression depends on the type with which this expres-
sion is viewed. For example, the number 2 is represented as an integer if viewed with type int and as a FP
number if viewed with type float. Likewise, the record {x = 1;y = 2} is represented by the pair (1,2) if
viewed with type {x: int;y: int}, but as the pair (2,1) if viewed with type {y : int;x: int}. To perform
this compilation, we use an intermediate language nicknamed IL that features coercion terms materializing
the changes of data representations required to implement subsumption steps, i.e. the points in the execution
where an expression is viewed with a supertype of its type.

The project can be implemented in any language of your choice, but we strongly recommend using
Caml, as the sources we provide are written in Caml.

2 Required software

To use the sources we provide, you will need:

OCaml Any version > 4.00 should do. You can use the packages available in your Linux distribution,
or the OPAM package manager https://opam.ocaml.org. or the source distribution from http:
//caml.inria.fr/ocaml/release.html.

https://opam.ocaml.org
http://caml.inria.fr/ocaml/release.html
http://caml.inria.fr/ocaml/release.html

Linux, MacOS X, or Windows with the Cygwin environment The sources that we distribute were devel-
oped and tested under Linux. They should work under other Unix-like environments.

3 Overview of the provided sources

As a starting point, we provide a number of OCaml source files in the src/ directory. To build them,
you can change to the src/ directory and type ocamlbuild Main.byte (for compilation to bytecode) or
ocamlbuild Main.native (for compilation to native code).

You will need to study carefully the following interfaces:

AST.mli Abstract syntax for the source language SUB, plus some useful functions.
IL.mli Abstract syntax for the intermediate language, plus a pretty-printer for IL terms.
Mach.mli The instruction set for the Modern SECD, plus an interpreter to execute Modern SECD programs.

The following parts of the implementation are provided and should not need to be modified, unless you
add “extra credit” features:

Lexer.mll Lexical analyzer for SUB.

Parser.mly Parser for SUB. The concrete syntax of SUB is in appendix. See examples in the tests/
directory.

Main.ml The driver for the whole program. After compilation by ocamlbuild Main.byte, you can run
the program as follows:

./Main.byte

e filename to typecheck, compile and execute the SUB expressions contained in file filename.
Each expression is terminated by ; ; (double semi-colon).

./Main.byte
e without arguments provides a toplevel interactive loop similar to OCaml’s. Just enter expressions
terminated by ; ;.

The following templates are to be completed by you:
Typing.ml The type-checker (task 1).
Elab.ml Type-directed elaboration to the intermediate language (task 2).
Expand.ml Expansion of coercion terms (task 3).
Compile.ml Compilation to abstract machine code (task 4).
Optimize.ml Optimizations of redundant coercions (task 5).

In the tests/ subdirectory you’ll find several files containing SUB expressions. Some are well typed
and should execute without errors. Others are ill typed and should be rejected.

4 Programming tasks

Task 1: type-checking

Implement a type checker for the language SUB. Given a closed SUB expression, the type checker should
compute its most precise type if it is well typed, and raise the Type_error exception with an explanatory
message if it is ill typed. The notion of “most precise” is with respect to subtyping and is explained below.
The file to modify is Typing.ml.

The typing rules for SUB are those of the simply-typed A-calculus extended with records and subtyping.
For records, we use types of the form {¢; : 7;;...;¢, : 7,} denoting records having n fields labeled ¢; .../,
and associating values of type 7; to label ¢;. The typing rules for record construction and for access to a
labeled field are:

Ikei:tifori=1,....n L #Iifi#]
I'{li=ei;...;lh=-en}:{l1:T15...50,: Ty}
Ike:{li:t;...500: T} ¢
I'teld:

(RECORD)

(ProJ)

For subtyping, we add the subsumption rule that allows us to consider an expression with any supertype of
its type:

I'Fe:t <7
¢ (SUB)

I'ke: 7
The subtyping relation <: is defined by the following rules:

T <: 7T (SUBREFL) 7<: T (SUBTOP) int <: float (SUBNUM)
T1<:01 0 <:T Vie{l,...,n},3jc{l,....m}, ,=1I'N 0;<:7;
LS9 925 % (supFun) { hared b =10 0T R
01— 0 <:T =T {00l comt<i{li:t... 0y Ty}

Note that rule SUBREC supports both width subtyping (the subtype has more labels than the supertype)
and depth subtyping (the types of a label ¢ present in both record types are in the subtyping relation).

In this type system, an expression can have several types: not just 7, but also all supertypes of 7, owing
to the subsumption rule SUB. However, it is the case that every well-typed expression has a type that is
minimal with respect to the <: subtype ordering. (See Pierce’s textbook for a proof.) The goal of your
type-checker is to compute such a minimal type if it exists.

Task 2: type-directed compilation to the intermediate language

Implement a translation from SUB expressions to expressions of the intermediate language IL. The file to
modify is Elab.ml.

The intermediate language is described in file IL.m11i: it is an untyped A-calculus with tuples (instead
of records with named fields), these tuples being accessed by position (“extract the n-th field”) instead of by
label names. Hence, your translation must transform record accesses (by label names) into tuple projections
(by position), using the type of the record being accessed to determine the position. For example, e.x

becomes an access to the second component of a pair if e is viewed with type {y : int;xint}. If e is viewed
with type {x: int;y: int}, an access to the first component of a pair should be generated instead.

Moreover, IL features a construct Lcoerce(a,c) representing the application of a coercion ¢ to an IL
term a. The algebra of coercions is shown in file IL.ml1i. Coercions materialize the changes in data
representation that need to be performed when an expression is viewed with a supertype 7’ of its original
type 7. For example:

e When an expression of type int is viewed with type f1oat, the coercion is Cint2float, materializ-
ing the conversion of an integer to a FP number.

e When an expression of type 7 is viewed with type T, no change of representation is needed and the
coercion is simply Cid (identity coercion).

e When a record of type {x: int;y : int} is viewed with supertype {y : float}, the coercion is
Crecord[(2,Cint2float)], meaning “build a 1-tuple by taking the second field of the original record
and applying it the Cint2float coercion”.

As suggested by the description above, the translation depends strongly on the types assigned to the
various subexpressions. The easiest way to keep these types straight during translation is to recompute them
on the fly, like the type checker of Task 1 does. Hence, the translation to be written here is an extension of
the type checking function of Task 1, returning a pair (minimal type, IL term) instead of just the minimal

type.

Task 3: expansion of coercions

Implement an IL-to-IL translation that removes Lcoerce coercion applications, replacing them by actual
computations of the IL language. The file to modify is Expand.ml.

As an example of expansion, Lcoerce(a,Cint2float) should become Lunop(0Ofloatofint,a), ma-
terializing the Cint2float coercion from integers to FP numbers by an explicit application of the operator
floatofint.

Pay attention to efficiency of the expanded expressions. The expansion of Lcoerce(a, c¢) should evaluate
a exactly once (in call-by-value), no matter how complex the ¢ coercion is.

(You may wonder why Task 2 generates coercions that we eliminate in this task, instead of directly
producing the corresponding IL. computations during Task 2. The reason is that, by representing coercions
specially, we can perform optimizations over coercions more easily: this is the topic of Task 5 below.)

Task 4: compilation to the Modern SECD

Implement a compiler from IL expressions (not containing Lcoerce constructs) to machine code for the
abstract machine described in file Mach.m1i. The file to modify is Compile.ml.

The abstract machine is a simple extension of the Modern SECD from Leroy’s lecture 2. The compila-
tion scheme to implement is similar to that for the Modern SECD. Try to perform tail-call optimization.

Variables in IL are represented by names, while the compilation scheme to the Modern SECD given
in Leroy’s lecture 2 assumes that variables are represented by de Bruijn indices. You need to convert from
variable names to de Bruijn indices, either on the fly during machine code generation, or as a prior pass from
IL to a variant of IL that uses de Bruijn indices.

Task 5: optimization of coercions

The IL code produced by the naive type-directed translation from Task 2 can be quite inefficient, ow-
ing to useless or redundant or inefficient coercions being generated. (See below for some examples and
file tests/optims for more examples.) Study these inefficiencies, design optimizations that could re-
move them, and implement those optimizations as an IL-to-IL compilation pass. The file to modify is
Optimize.ml.

Some examples of coercions that can be optimized:

e Corresponding to {x:int} <:{x: T} is the complex coercion Crecord|(1,Cid)] that reconstructs a
tuple identical to the tuple argument of the coercion. The coercion could be replaced by the identity
coercion, so that the original tuple is reused.

e Two consecutive subsumption steps result in nested coercions Lcoerce(Lcoerce(a,cy),cz). Those
can be replaced by a single coercion Lcoerce(a,c) for an appropriate c.

o Instead of building a record with many fields then coercing it to a record type with fewer fields, why
not build the record with fewer fields directly?

This task is open-ended, as many optimizations can be performed on the IL language. Indeed, since
SUB is normalizing, one could execute the IL terms generated from SUB entirely at compile-time, leaving
no nontrivial computations to be done at run-time. Please refrain from doing so and focus on optimizations
that would remain valid if SUB were extended with recursive functions or other non-normalizing constructs.

For extra credit

If you have time and energy left, this project can be extended in many directions. For example:

Parametric polymorphism (System F) Add support for explicit ploymorphism in the style of System F.
Universally-quantified type variables ¢ are subtypes of themselves and of T, but of no other type.

Bounded polymorphism (System F..) Add support for bounded polymorphism Vo <: 6. T as described
in chapters 25, 26 and 27 of Pierce’s Types and Programming Languages. Warning: this is quite
difficult!

Named types and variance inference Add support for parameterized type abbreviations such as
type ’a point = {x: int; y: int; info: ’a}

To speed up the subtyping check, when checking two types ¢ point and 7 point for subtyping, we
would like to avoid expanding the definition of point, and instead just decide based on whether ¢ and
T are subtypes in one or both directions. To this end, you could analyze type definitions once and for
all to determine whether they are covariant and/or contravariant or invariant in their type parameters,
then exploit this information during subtyping checks.

5 Evaluation

Assignments will be evaluated by a combination of?:

e Testing: your program will be run on the examples provided (in directory test/) and on additional
examples.

e Reading your source code, for correctness and elegance.

6 What to turn in

When you are done, please e-mail Xavier.Leroy@inria.fr a .tar.gz archive containing:
e All your source files. (Please remove the src/_build directory used by ocamlbuild.)
e Additional test files written in the SUB language, if you wrote any.

e A README or LISEZMOI file explaining briefly how far you went, what kind of optimizations you
performed, and any “extra credit” features you added.

Appendix: concrete syntax of SUB

This is the syntax recognized by the provided parser.

Types:
T =T
| int
| float
|71 >
{3}
[{01: s ..ol T}
| ()
Expressions:
e u=x
|fun (x:7) -> e
[fun (xp:7) ... (o T) —> e
|er ex
|let x = ¢; in e
|let f (x1:7)...(xy:Ty) = €1 in ey
| (e :)
[{}
‘{61 = €15 .. fn = en}
le.l
| nn
| nn.nn
| int e
| float e
ler + e
ler +. e
| (&)
Phrases:
p u=e ;;
Identifiers:
x,f variable names, same shape as Caml identifiers
l record labels, same shape as Caml identifiers

the “top” universal type, T

the type of integer numbers

the type of floating-point numbers
function types

empty record type

record type

variable

function abstraction
curried function abstraction
function application

let binding

let binding of a function abstraction
type constraint

empty record

record construction

access label / in a record
integer constant
floating-point constant
truncate e to an integer
convert e to floating-point
integer addition
floating-point addition

expression terminated by a double-semicolon

	Summary
	Required software
	Overview of the provided sources
	Programming tasks
	Evaluation
	What to turn in

