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Prologue

The band U2 has a concert that starts in 17 minutes and they must all cross a bridge to get there.
They stand on the same side of the bridge. It is night. There is one flashlight. A maximum of two
people can cross at one time, and they must have the flashlight with them. The flashlight must be
walked back and forth (no throwing the flashlight across the bridge). A pair walks together at the
rate of the slower man’s pace:

Bono 1 minute to cross

Edge 2 minutes to cross
Adam 5 minutes to cross
Larry 10 minutes to cross

For example: if Bono and Larry walk across first, 10 minutes have elapsed when they get to the
other side of the bridge. If Larry then returns with the flashlight, a total of 20 minutes have passed
and you have failed the mission.

How would you schedule the moves of the band members so that they have all crossed the bridge
in 17 minutes or less? Can you find an answer within 5 minutes?

(Turn the page after 5 minutes.)



Introduction

The purpose of this programming project is to develop libraries and tools to help solve problems
like the “bridge crossing” puzzle. More precisely, we are going to support nondeterministic or prob-
abilistic programming in a functional language through the development of appropriate monads,
following and extending the approach outlined in X. Leroy’s MPRI 2-4 lectures.

Nondeterministic programming focuses on the generation of possible candidate results, using
choice between various possibilities, combined with elimination of choices that do not satisfy the
constraints of the problem. In the end, all combinations of choices that satisfy the constraints are
produced.

Probabilistic programming is similar, but probabilities are attached to the choices and tracked
during evaluation. The constraints of the problem are observations that eliminate impossible cases
and affect the a posteriori distribution of the results. In the end, the a posteriori probabilities of
the results are produced.

Logistics

A number of templates and test files, written in OCaml, are provided in directory src/ and de-
scribed in this document. The templates contain a number of holes, marked failwith "TODO".
Your goal is to fill the holes in the templates and obtain a working implementation.

This assignment is structured in a number of tasks. Each task is designed so that it can be
tested independently, without having completed the following tasks.

The tasks of sections 3, 4, and 5 are independent and can be completed in any order.

We strongly suggest you use OCaml as the programming language, if only because the templates
are written in OCaml and provide a lot of boring code (e.g. printing of results) that you don’t
need to implement. If you really must, you can use another functional programming language, but
make sure to reimplement the same functionality as the OCaml code, e.g. with respect to printing
and formatting of the test results.

No Makefile is provided but you can just use ocamlbuild. E.g. ocamlbuild Bools.native in
directory src/ will build the executable corresponding to the test Bools.ml.

What to turn in Once you are done, mail Xavier.Leroy@inria.fr a tar or zip archive con-
taining:

e the .ml and .mli files from src/ with your code inside;

e preferably, a short README or LISEZMOI file telling which tasks you completed, how well you
think your code works, and any other comment we should know about.

The following command will build the correct archive:

tar czf Firstname_Lastname.tgz README src/*.ml src/*.mli



1 The naive monad for nondeterminism

Study file src/Nondet.ml. It defines the generic interface for a nondeterminism monad (module
type NONDET) and one naive implementation based on the “list” monad shown in the lecture. (Two
more advanced implementation are outlined in the file and will be worked on in sections 2 and 5.)
The interface declares:

e A type ’a mon of monadic computations that produce values of type ’a.

e The monadic operations ret and bind. You can write
a >>= fun x > b

instead of bind a (fun x -> b).

e The choice function, which provides nondeterministic choice between zero, one or several
possibilities, represented as a list of monadic computations.

e Derived functions fail and either. fail represents failure and is equivalent to choice []
(no possibilities). either a b is choice between a and b; it is equivalent to choice [a;b].
You can write a ||| b instead of either a b.

e Two fixpoint combinators, fix and fixparam, whose need will become apparent in section 2.
You can ignore them for now.

e A run operation that takes a monadic computation of type ’a mon and produces 1- a list of
possible ’a result values, and 2- a boolean indicating whether the list contains all possible
results (the boolean is true) or whether some results were possibly missed (the boolean is
false). run has an extra integer parameter representing the maximal depth of exploration
of the results. Its use will become apparent in section 2.

e A print_run operation that calls run and displays the results with the help of a printing
function of type a -> unit provided as first parameter. All our example will use print_run
to run monadic computations and print the results.

The module Naive is our first implementation of this NONDET monadic interface. Like in the lecture,
it implements ’a mon as ’a list. In other words, a nondeterministic computation producing
results of type ’a is just the list of all possible results (an ’a list). Read the implementation to
reacquaint you with this monad.

Task 1 Use the Nondet.Naive monad to solve the “bridge crossing” puzzle. A template is given
in src/Puzzle.ml. Fill the missing parts in src/Puzzle.ml and run your program to find out the
answer to the puzzle. There are exactly two answers.



2 Choice trees

The representation of nondeterministic computations by a list of values (with strict evaluation) is
inefficient if we need to generate a lot of possibilities, or even an infinite number of them, then filter
out a few. For example, we cannot ask for “any positive integer” or “any list of booleans”, then
select among these sets.

We now develop a different implementation of nondeterminism, where monadic computations
produce a tree-shaped, lazily-evaluated representation of the possible choices. Thunks, i.e. functions
of type unit — 7, are used heavily to delay evaluation until absolutely necessary. Given this tree
representation, run and print_run can explore the tree up to a given depth to collect possible
results. This exploration is often incomplete, if only because the tree is often infinite. By varying
the depth of exploration, we can tune the amount of results obtained (iterative deepening).

Consider module Tree in file src/Nondet.ml. It implements the type ’a mon of monadic
computations as:

type ’a mon = unit -> ’a case list

Note the unit -> that corresponds to a thunk, in order to delay evaluation. Each element of the
list returned by the thunk is not a value of type >a but an element of type

and ’a case = Val of ’a | Susp of ’a mon

The Val case corresponds to a fully-known value. The Susp case corresponds to further possibilities
that have not been explored yet. The Susp constructor carries a thunk that, when applied, produces
further cases. So, the argument of Susp has type unit -> ’a case list, which is just ’a mon.

Example Consider the following element of type int mon:

fun () -> [Val 1; Susp p; Susp ql
fun OO -> [Val 2]

= fun () -> [Val 3; Susp r]

fun () -> []
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m is a thunk that, when applied to (), produces immediately one possible result value 1 and two
suspensions p and q. Applying p and q to () gives two more possible values, 2 and 3, and yet
another thunk r. Applying r to () produces no other possibility.

Task 2.1 Implement the monadic operations ret, bind, choice, fail and either in the Tree
module. Hint: in several places you will have a choice between eagerly constructing lists of cases or
lazily generating a Susp that delays this construction. It is recommended to be as lazy as possible,
so that all nontrivial monadic computation steps are materialized as Susp nodes in the choice tree.

Now that we have constructed our choice trees, it remains to explore them to finite depth. The
key function to implement is

flatten: int -> ’a mon -> ’a case list

which forces the evaluation of the thunks contained in a tree (second argument) up to a given depth
(first argument), collecting the results in a single list of cases.



Example Continuing the m example above,

flatten O m
flatten 1 m
flatten 2 m

[Val 1; Susp p; Susp ql
[Val 1; Val 2; Val 3; Susp rl
[Val 1; Val 2; Val 3]

The run operation is, then, defined by post-processing the list of cases produced by flatten.
Val elements of this list are collected to form the first result of run (the list of possible values).
The second result of run, the boolean indicating exhaustiveness, depend on whether the result of
flatten contains Susp elements (as in flatten 1 m above) or not (as in flatten 2 m above).

Task 2.2 Implement run and print_run in monad Tree as outlined above. Test your imple-
mentation on the following two examples: 1- src/Bools.ml (a simple combinatorial exploration of
3 booleans), 2- src/Puzzle.ml (your solution to the puzzle, after replacing open Nondet.Naive
with open Nondet.Tree at the top of the file).

Despite its lazyness, the Tree monad still has problems defining infinite enumerations such as
“all lists of booleans” or “all integers greater or equal to n”. Consider:

let rec any_bool_list =
ret []
[l (any_bool >>= fun hd ->
any_bool_list >>= fun tl -> ret (hd :: tl))

let rec any_int n =
ret n ||| any_int (n + 1)

The first recursive definition is rejected by Caml because the right-hand side is not syntactically a
function. The second recursive definition is accepted but diverges when applied, because of strict
evaluation.

We can work around these issues with eta-expansion:

let rec any_bool_list () =

(ret [1 111 ...) O
let rec any_int n () =
(ret n ||| any_int (@ + 1)) O

However, it is nicer (and more resilient to changes in implementation of the monad) to use fized-
point combinators provided by the monad, instead. This is the role of the fix and fixparam
combinators of the Tree monad. They let us write

let any_bool_list = fix (fun any_bool_list ->
choice [ret [];
(any_bool_list >>= fun tl -> ret (false :: tl));
(any_bool_list >>= fun tl -> ret (true :: tl))]

let any_int = fixparam (fun any_int n ->
ret n || any_int (n + 1)



Task 2.3 Implement the fix and fixparam combinators of the Tree monad. Test them on the
src/Sumless.ml example (which involves enumerating all positive integers) and on the src/Append . ml
example (discussed in the next section).

3 A taste of Prolog

Logic programming languages such as Prolog have an advantage over functional languages: a given
Prolog predicate can be used in several “modes”, thus implementing several functionalities that
would each require a specific function definition in a functional language. Consider for example list
concatenation:

append([],L,L).
append ([X|L1],L2, [XIL3]) :- append(L1,L2,L3).

([XIL] means “X cons L”.) If we give ground lists as the first two arguments, Prolog computes the
third argument, which is the concatenation of the two lists. However, if we give the first and third
arguments, Prolog will compute their “difference”. Finally, if we give the third argument only,
Prolog computes all the ways to split it into two lists that concatenate back to the argument.

Nondeterministic functional programming can emulate some of this “reversibility”. Consider
the example src/Append.ml. It shows how to find all the ways to decompose a given list L into
the concatenation of two lists, just by enumerating all pairs of lists (L1, Ly) and keeping only those
such that L1 @ Ly = L. This works only for short lists L, as the complexity of the enumeration is
exponential. (But see section 6 for further improvements.)

Another area where “reversibility” comes handy is type checking and type inference. Consider
the simply-typed, implicitly-typed A-calculus with constants:

Terms: ax=N|z|Ar.a|a az

Types: 71u=int |7 — 7
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Determining whether a term has a given type, or determining the type(s) of a term, both appear
to involve some amount of “guessing” the types involved in the typing derivation(s). The clever
way to eliminate this “guessing” is to perform constraint-based or unification-based type inference,
as shown in the MPRI 2-4 lectures. However, in a pinch, generating all the possible types for type
unknowns can do.

Task 3.1 Consider file src/Typing.ml. Fill in the blanks so as to implement nondeterministic
functions that 1- infer the type(s) of a term, and 2- check that a term has a given type.

Pleasantly, we can also “reverse-execute” those functions to e.g. find (closed) terms that have
a given type.

Task 3.2 In file src/Typing.ml, add a nondeterministic generator for terms. Use this generator
to find many closed terms that have type int — int.



Interlude: a game of Bayesian Cluedo

Zoe is found murdered in her house. Alice and Bob are the two suspects. Based on their respective
feelings towards Zoe, the police estimates that Alice has a 30% chance of being the murderer and
Bob 70%. Then, a length of pipe is found near Zoe’s body. Bob, being into firearms, has a 80%
probability of having used a gun and only 20% of having used a pipe. Alice, on the other hand,
likes to practice plumbing, hence she has a 97% chance of having used a pipe and only 3% of having
used a gun. Who is the more likely culprit?

4 Probabilistic programming

Probabilistic programming is very much like nondeterministic programming, except that the various
alternatives of a choice are weighted by the probabilities of taking the alternative. For example, a
biased coin flip is expressed as

distr [(Heads, 0.4); (Tails, 0.6)]

meaning that we get Heads with probability 0.4 and Tails with probability 0.6.

Study file src/Proba.ml. It defines the generic interface for a monad of probability distributions
(module type PROBA). Instead of just computing the set of all possible results, we want to compute
the distribution of the result: every possible result, and for each one, its probability. The type of
distributions is, therefore

type ’a distribution = (’a * prob) list
with prob = float

Your goal is to implement this monad using the lazy choice tree approach of section 2. The
type ’a mon of monadic computations is, now,

type ’a mon = unit -> ’a case distribution
and ’a case = Val of ’a | Susp of ’a mon

That is, every case is now weighted by its probability. Note that in the returned ’a case distribution,
the probabilities do not necessarily sum to 1, because failure cases are not represented in the list.

Task 4.1 Implement the Tree module in file src/Proba.ml. In the flatten function, be very
careful to correctly combine probabilities when expanding a Susp case. In the run function, re-
member to normalize the probabilities in the final distribution so that they sum to 1. Test your
implementation with the simple examples in file src/Probatests.ml.

Task 4.2 Use your probability distribution monad to model and solve the game of Bayesian
Cluedo above. Put your solution in file src/Cluedo.ml.



5 Imperative nondeterministic programming

Perhaps surprisingly, mutable references and other imperative programming features are compat-
ible with nondeterministic and probabilistic programming. For simplicity, we now forget about
probabilities and return to plain nondeterminism.

Consider the following example of imperative nondeterministic programming, where we write
getref and setref for the usual dereferencing and assignment operations over references:

(setref r false ||| setref r true) >>= fun _ ->
or, equivalently,
(ret false ||| ret true) >>= fun b -> setref r b >>= fun _ ->

The net effect is to evaluate the ... expression in two different states, one where getref r returns
false, the other where it returns true.

As the example above suggests, we cannot use Caml’s built-in references here, because they are
global and hold only one value at any given time. Instead, we must materialize the state as an
explicit store component in our nondeterminism monad, so that different states can be associated
to different cases of an alternative. This leads to the following type for our monadic computations:

type ’a mon = Store.t -> (’a case * Store.t) list
and ’a case = Val of ’a | Susp of ’a mon

A monadic computation is now a store transformer, taking the initial store and returning a list of
possible cases, along with the corresponding final stores. Again, it is crucial that different cases
can have different final stores.

A somewhat clever implementation of stores (finite maps from references to values) is provided
in files src/Store.mli and src/Store.ml. Read the interface src/Store.mli to understand the
store operations and their semantics.

Task 5 Implement the TreeState monad in src/Nondet.ml. It extends the Tree monad with
the operations newref (to create a fresh reference), getref (to query the value of a reference) and
setref (to change the value of a reference). Note that references do not need to be initialized when
created: doing getref on a fresh reference over which no setref has been done simply fails. Test
your implementation with the src/Sumless_imp.ml example.

6 Monadic data structures and memoization

This part of the project is significantly more difficult than the preceding parts. It is for extra credit.

We now return to Prolog-style reversibility (section 3). The generate-then-filter approach we
followed is quite inefficient because our generation strategy for recursive data structures is inefficient.
Taking lists of booleans as an example, we basically generate a huge alternative

[
[l [false]
[l [truel



| 1] [false; false]
[I| [false; truel
| 1] [true; false]
1]

The number of cases is exponential in the length of the list. Each of these cases is, then, filtered
by applying constraints, but it is too late: we have already generated too many cases.

We are looking for alternative approaches where we could filter over partially-defined lists such
as “true cons any list” and discard them if the head of the list does not match the constraints,
without generating the tail. One such alternative is to define lists as follows (see file src/Mlist.ml):

type ’a mlist = ’a mlist_content mon
and ’a mlist_content = Nil | Cons of ’a * ’a mlist

Every list cell is a monadic (= nondeterministic) computation that produces either Nil or Cons of
a value and another monadic computation for the tail of the list. The familiar list constructors are:

let nil : ’a mlist = ret Nil
let cons (hd: ’a) (tl: ’a mlist) : ’a mlist = ret (Cons(hd, tl))

and the generator for boolean mlists is:

let any_bmlist : bool mlist = fix (any_bmlist ->
choice [nil; cons false any_bmlist; cons true any_bmlist])

As a trivial example of efficient filtering over mlists, consider:

let isnil (1: ’a mlist) : unit mon =

1 >>= function Nil -> ret () | Cons( ) -> fail

- -

let =

print_run (fun () -> printf "OK!") 1000 (isnil any_bmlist)

Despite the big depth 1000, this run executes instantly, and moreover it is exhaustive. That’s
because the isnil test eliminated all non-nil mlists in one single test!

Task 6.1 Implement the following functions over mlists: conversions to and from ordinary lists,
concatenation append, equality. See src/Mlist.ml for the types of these functions. Using these
functions, solve the question “given a mlist L, does there exists two mlists L1, Lo such that L =
append Lj Lo 7”. Check that your solver is relatively efficient, i.e. quadratic (not exponential) in
the length of L.

So far, mlists give us efficient answers to questions of the form “does there exist an mlist such
that ...7?”. However, they do not help answering questions of the form “what are the mlists such
that ...7”. Continuing the trivial isnil example, assume we want to observe the mlists that pass
the isnil test:

let nil_mlists =
let 1 = any_bmlist in
isnil 1 >>= fun _ -> list_of_mlist 1



Running nil_mlists will attempt to print all boolean mlists, not just the empty one! The reason is
use-site choice: even though any_bmlist is let-bound to 1, the two uses of 1 represent independent
generation processes. The first use, as argument to isnil, is filtered so that only the empty mlist
remains. But the second use is independent and still produces all mlists.

We can, however, implement definition-site choice by memoizing the choices made as some use
site and sharing them with the other use sites. For this memoization and sharing, we can use the
store of the TreeState monad. Memoization is presented as a combinator memo that takes any
’a mon and returns an equivalent ’a mon with memoization of the possible results. The following
example illustrates the effect of memo:

let without_memo : bool mon =
let any_b = ret false ||| ret true in
any_b >>= fun b -> if b then any_b else fail

let with_memo : bool mon =
let any_b = memo (ret false ||| ret true) in
any_b >>= fun b -> if b then any_b else fail

with_memo produces only the boolean true, while without_memo produces both false and true.

Task 6.2 Implement the memo combinator in the TreeState monad of file src/Nondet.ml. Test
it using the simple examples in src/Testmemo.ml.

The next step is to return to mlists and add memoization in the generator for boolean mlists.
Ideally we would like to write

let any_bmlist () : bool mlist = fix (fun any_bmlist ->
memo (choice [nil; cons false any_bmlist; cons true any_bmlist]))

You can try that with the examples in src/M1list.ml, but chances are that £ix and memo don’t play
well together, with fix delaying the creation of the memo location and therefore losing sharing. In
the end, you will probably need to implement a specific fixmemo combinator for fixed points with
sharing, and write

let any_bmlist () : bool mlist = fixmemo (fun any_bmlist ->
choice [nil; cons false any_bmlist; cons true any_bmlist])

Task 6.3 Implement the fixmemo combinator in the TreeState monad of file src/Nondet.ml.
Test it with the nil_mlists example from src/Mlist.ml. Define split_mlist in the same file
and make sure that it produces all splits efficiently.

Can we play the same game with the type inference example? That is, represent type expressions
using the monad, like we did for mlists?

Task 6.4 Fill in the blanks in src/Mtyping.ml and see if this alternate representation of types
improves the speed and completeness of the typing function.
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