
Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

On connections between CHR and LCC

Semantics-preserving program transformations
from CHR to LCC and back

Thierry Martinez

INRIA Paris–Rocquencourt

CHR’09, 15 July 2009

Introduction

Translations from CHR to LCC and back

Semantics preservation

Encoding the λ-calculus

Conclusion

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

The Linear Concurrent Constraint (LCC) language

• CC [Saraswat 91]: agents add constraints (tell) and wait for
entailment (ask)

• LCC [Saraswat 93]: asks consume linear constraints

• Semantics formalized in [Fages Ruet Soliman 01]: asks are
resources consumed by firing, recursion via declarations

• Declaration as agents [Haemmerlé Fages Soliman 07]:
persistent asks (semantics via the linear-logic bang !)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

LCC with declaration as agents
• Simple arrows denote transient asks.

Linear-logic semantics: ∀x(c (. . .).
• Double arrows denote persistent asks.

Linear-logic semantics: !∀x(c (. . .).

∀x → ∃v ∀y →

∀z ⇒

linear tell

linear ask
(hypothesis consumption)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

CHR as a Concurrent Constraint language
The program is a fixed set of rules.

⇔ |

⇔ |

⇔ |

linear tell

linear ask
(hypothesis consumption)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Linear logic and CHR

In the literature

• Linear semantics [Betz Frühwirth 05]
• Rules ⇔ (Banged) linear implication
• Built-in constraints ⇔ Girard’s translation of classical formulas
• User-defined constraint ⇔ Linear-logic predicates

• Phase semantics [Haemmerlé Betz 08]
• Safety properties (unreachability of bad stores)

In this paper

• Translations from LCC to CHR and back.

• Operational semantics preservation.

• Linear semantics and phase semantics for free!

• Encoding the λ-calculus.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Translation from CHR to LCC

Queries
Goal translated into a single linear-logic constraint:

B1, . . .Bp︸ ︷︷ ︸
built-ins

, C1, . . .Cq︸ ︷︷ ︸
user-defined

.

!B1 ⊗ · · · ⊗ !Bn ⊗ C1 ⊗ · · · ⊗ Cn

Rules
Program translated to a parallel composition of persistent asks:

H1, . . . ,Hn ⇐⇒ G | B1, . . .Bp︸ ︷︷ ︸
built-ins

, C1, . . .Cq︸ ︷︷ ︸
user-defined

.

∀x(H1 ⊗ · · · ⊗ Hn ⊗ !G ⇒ ∃y !B1 ⊗ · · · ⊗ !Bp ⊗ C1 ⊗ · · · ⊗ Cq)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Constraint Theory / Linear Constraint System

In CHR: two kinds of constraints

• Store:

• Rules:
⇐⇒ |

In LCC: linear-logic constraints

Translation from a CHR constraint
theory CT :

• are constraints;

• all
!

are constraints;

• constraints closed by ⊗ and ∃.

Constraints have form: ∃V(!B ⊗ U)
Axioms:

!B
!C
if and only if
CT � B → C

Linear-logic predicates without
axioms (linear tokens) for
user-defined constraints.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Translation from flat-LCC to CHR

Flat-LCC
LCC restricted to top-level persistent asks (neither nested asks, nor
transient asks)
General form of flat-LCC program:

C ‖ ∀x1(C1 ⇒ C′
1) ‖ · · · ‖ ∀xn(Cn ⇒ C′

n)

Translation for asks

C1 ≡ ∃V1(!B1 ⊗ U1) Cn ≡ ∃Vn(!Bn ⊗ Un)

U1 ⇔ B1 ‖ B ′
1,U

′
1. Un ⇔ Bn ‖ B ′

n,U
′
n.

Variable hiding in query

In the initial constraint C ≡ ∃V(!B ⊗ U), variables V are hidden.
The initial constraint is translated to the rule: start(G)⇔ B,U.
and the query: start(G), where G = fv(C) \ V.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Ask-lifting: translation from LCC to flat-LCC
To carve asks in stone: identify them with linear tokens.

From nested asks. . .

∀x ⇒ ∃v ∀y →

∀z ⇒

. . . to flat programs

∀x ∅ ⇒ ∃v ∅ xv xv

∀xvy xv ⇒

∀xvz xv ⇒ xv

Flat programs only contain persistent asks.
Tokens encode:

• ask persistence (tokens representing persistent asks are
re-added to the store, the others are consumed)

• nested variable scopes

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Weakening elimination

LCC transition and weakening

Given the store c0 and the agent ∀x(d → a), if c0 linearly implies
d ⊗ c1, transition to the store c1 and the agent a.
Classical constraints weakening: x 6 2⇒ x 6 3.

In CHR, no weakening in the semantics

• User-constraints are counted in multi-sets.

• Built-in constraints always grow by conjunctions.

Weakening elimination in LCC

Disallowing weakening do not cut derivations.
Only accept transition to a store c1 if there is no more general c
such that c0 implies d ⊗ c (valid for principal constraint system).

Transition from c0 to c1 with guard d only if
∀c , if c0 implies d ⊗ c then c1 implies c .

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Steps collapsing

⇐⇒ | .

|

 3

⇒: one firing per transition

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Strong Bisimulations

Strong comparison of processes between transition systems. Here:

• CHR transition system over states.

• LCC transition system over configurations.

Similarity relations ∼. Here:

• LCC configurations and configurations induced by ask-lifting;

• flat-LCC configurations and their translated states;

• CHR states and their translated configurations.

∼ is a bisimulation if and only if::

s s ′

κ κ′

∼ ∼

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Operational Semantics preservation

Theorem
The three following transformations:

LCC flat-LCC CHR
1

2

3

transform configurations(LCC)/states(CHR) to bisimilar
configurations/states with respect to ⇒.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Linear Logic Semantics correction

Let P be a CHR program and JPK its translation as LCC agent.

CHR Linear-logic reading of P CHR Operational semantics of P

LCC Linear-logic reading of JPK LCC Operational semantics of JPK

⇔ [BF05]

∼ [new]

⇔ [FRS01]

[immediate] ≡

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Encoding the λ-calculus in LCC

The λ-calculus is a functional language ⇒ each expression
computes a value, designated by a distinguished variable V .

• JxK = (V = x)

• Jλx .eK = ∀xE (apply(V , x ,E)⇒ ∃V (JeK ‖ E = V))

• Jf eK = ∃FE (∃V (Jf K ‖ F = V)‖
∃V (JeK ‖ E = V)‖
apply(F ,E ,V))

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Encoding the λ-calculus in CHR

λ-calculus

LCC

flat-LCC

CHR

Direct translation in CHR:

(λX .λY .X) A B

λ-labeling: (λ
()
1 X .λ

(X)
2 Y .X) A B

start(R,A,B)⇐⇒
p1(F 1), apply(F 1,A,F 2), apply(F 2,B,R)

p1(F 1) \ apply(F 1,X ,F 2)⇐⇒
p2(F 2,X).

p2(F 2,X) \ apply(F 2,Y ,R)⇐⇒
R = X .

? start(R,A,B).
R = A

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Conclusion

• Compilation scheme for LCC with committed-choice semantics

LCC→ CHR→ . . .

• Proof for free for CHR linear-logic and phase semantics relying
on the existing results for LCC.

• Explanation of the linear-logic reading of a CHR rule.

• Encoding of functional language with closures in CHR.

• Partially compositional (the preprocessing phase of ask-lifting,
ask-labeling, is not compositional)

• Independent from the choice of Constraint Theory

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ-calculus Conclusion

Perspectives

Refined semantics for a committed-choice LCC

• From a CHR programmer point-of-view:
• a CHR-like language with more structure constructs

(nested rules & variable hiding)
• still with a clean semantics in linear logic,
• benefits from works on modular programming in LCC

[Haemmerlé Fages Soliman 07].

• From an LCC programmer point-of-view:
• a refined semantics,
• with syntactic variations on asks to distinguish propagations

and simplifications,
• depending of the order agents are written.

	Introduction
	

	Translations from CHR to LCC and back
	

	Semantics preservation
	

	Encoding the -calculus
	

	Conclusion
	

