Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 0000 00000 e]e] [o]e]

On connections between CHR and LCC
Semantics-preserving program transformations
from CHR to LCC and back

Thierry Martinez

INRIA Paris—Rocquencourt

CHR'09, 15 July 2009

Introduction

Translations from CHR to LCC and back
Semantics preservation

Encoding the A-calculus

Conclusion

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
@000 0000 00000 e]e] [o]e]

The Linear Concurrent Constraint (LCC) language

e CC [Saraswat 91]: agents add constraints (tell) and wait for
entailment (ask)

e LCC [Saraswat 93|: asks consume linear constraints

e Semantics formalized in [Fages Ruet Soliman 01]: asks are
resources consumed by firing, recursion via declarations

e Declaration as agents [Haemmerlé Fages Soliman 07]:
persistent asks (semantics via the linear-logic bang !)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus

0e00 0000 00000 (e]e] (e}

LCC with declaration as agents

e Simple arrows denote transient asks.
Linear-logic semantics: Vx(¢c — ...).

e Double arrows denote persistent asks.
Linear-logic semantics: !Vx(c — ...).

linear ask

(hypothesis consumption) linear tell

Conclusion

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
jee] lo} 0000 00000 e]e] [o]e]

CHR as a Concurrent Constraint language
The program is a fixed set of rules.

e0 < || @O

O © [dleeo

© < 1 lelle

linear ask
(hypothesis consumption) linear tell

Introduction T lations from CHR to LCC and back S

oooe

tics preservation Encoding the A-calculus Conclusion

Linear logic and CHR

In the literature

e Linear semantics [Betz Friihwirth 05]

e Rules < (Banged) linear implication
e Built-in constraints < Girard’s translation of classical formulas
o User-defined constraint < Linear-logic predicates

e Phase semantics [Haemmerlé Betz 08]
o Safety properties (unreachability of bad stores)

In this paper
Translations from LCC to CHR and back.

e Operational semantics preservation.

e Linear semantics and phase semantics for free!

Encoding the A-calculus.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
©000

Queries
Goal translated into a single linear-logic constraint:

Bi,...B,, C,...C,.
—_——— —_——
built-ins user-defined
$

Bi®- @B, ® CGo-®GC

Rules
Program translated to a parallel composition of persistent asks:

Hi, ..., H, — G ’ Bl,...Bp, Cl,...Cq.
~——— ——
built-ins user-defined
$

Vx(@ 0H, ® 16 =3y 1B® 2B, @ L& o C)

Translations from CHR to LCC and back
0®00

Introduction
0000

Semantics preservation
00000 e]e] [o]e]

Encoding the A-calculus

Constraint Theory / Linear Constraint System

In CHR: two kinds of constraints

e Store:

e Rules:

00 =[] OdO

In LCC: linear-logic constraints

Translation from a CHR constraint
theory CT:

e O@) are constraints;

! m _
o all - are constraints;
e constraints closed by ® and 4.

Constraints have form: 3V(1B @ U)

Axioms:
IBIFIC

if and only if

CTEB—C
Linear-logic predicates without
axioms (linear tokens) for
user-defined constraints.

Conclusion

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 [e]e] o] 00000 e]e] [o]e]

Translation from flat-LCC to CHR
Flat-LCC

LCC restricted to top-level persistent asks (neither nested asks, nor
transient asks)
General form of flat-LCC program:

C | ¥xi(Ci=C1) -1 Vxa(Cn = C})
Translation for asks ; 3
G =3Vi(1B,® Us) Co = IV, (1B, @ Uy)

U< By | Bl U,. U, B,|| B, U.

Variable hiding in query

In the initial constraint C = 3V(!B ® U), variables V are hidden.
The initial constraint is translated to the rule: start(G) < B, U.
and the query: start(G), where G = fv(C) \ V.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus
0000 [e]e]e]) 00000 e]e]

Ask-lifting: translation from LCC to flat-LCC

To carve asks in stone: identify them with linear tokens.

From nested asks. to flat programs

Conclusion
[o]e]

VXO:> Jv Vy.—>©

Vxv =
VZQ:. y@. O

Vxvz @O = @.

Vx O = v @@

Flat programs only contain persistent asks.
Tokens encode:

e ask persistence (tokens representing persistent asks are
re-added to the store, the others are consumed)

e nested variable scopes

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion

00000

Weakening elimination

LCC transition and weakening

Given the store ¢y and the agent Vx(d — a), if ¢ linearly implies
d ® c1, transition to the store ¢; and the agent a.
Classical constraints weakening: x < 2 = x < 3.

In CHR, no weakening in the semantics

e User-constraints are counted in multi-sets.

e Built-in constraints always grow by conjunctions.

Weakening elimination in LCC

Disallowing weakening do not cut derivations.

Only accept transition to a store ¢ if there is no more general ¢
such that ¢y implies d ® ¢ (valid for principal constraint system).

Transition from ¢y to ¢; with guard d only if
Ve, if ¢p implies d ® ¢ then ¢; implies c.

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 0000 0@000 (e]e] (e}

Steps collapsing

Q0 =] 1 OHO -
$

OFAO | _
¢

eje] Jele

—]

=-: one firing per transition

Semantics preservation
00000

Strong Bisimulations

Strong comparison of processes between transition systems. Here:
e CHR transition system over states.
e LCC transition system over configurations.

Similarity relations ~. Here:
e LCC configurations and configurations induced by ask-lifting;
e flat-LCC configurations and their translated states;

e CHR states and their translated configurations.

~ is a bisimulation if and only if:

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus

0000

0000 (o]e]e] le] (e]e]

Operational Semantics preservation

Theorem
The three following transformations:

2
/\

LCC41> flat-LCC CHR
~_

3

transform configurations(LCC)/states(CHR) to bisimilar
configurations/states with respect to = .

Conclusion
[o]e]

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 0000 0000e e]e] [o]e]

Linear Logic Semantics correction

Let P be a CHR program and [P] its translation as LCC agent.

< [BFO05]

T

CHR Linear-logic reading of P CHR Operational semantics of P

[immediate] = < > ~ [new]
LCC Linear-logic reading of [P] LCC Operational semantics of [P]

__’///////”

& [FRSO1]

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 0000 00000 o0 [o]e]

Encoding the A-calculus in LCC

The A-calculus is a functional language =- each expression
computes a value, designated by a distinguished variable V.

I =(V=x)
o [Ax.e] = VxE(apply(V,x,E) = 3V([e] || E=V))
o [f el =3FEC3V(IF] | F = W)I

V([e] [E= V)|

apply(F, E, V)

Introduction Translations from CHR to LCC and back Semantics preservation Encoding the A-calculus Conclusion
0000 0000 00000 oe [o]e]

Encoding the A-calculus in CHR

Direct translation in CHR:

A-calculus (AXAY.X) A B
Mlabeling: (AVXx Ay x) A B
LCC
start(R, A, B) <
pl(F1),apply(F1,A, F2),apply(F2,B,R)
pl(F1) \ apply(F1,X, F2) <
flat-LCC p2(F2, X).
p2(F2,. X))\ apply(F2,Y,R) <
R=X.
CHR

? start(R, A, B).
R=A

Conclusion
e0

Conclusion

Compilation scheme for LCC with committed-choice semantics
LCC—CHR — ...

Proof for free for CHR linear-logic and phase semantics relying
on the existing results for LCC.

Explanation of the linear-logic reading of a CHR rule.
Encoding of functional language with closures in CHR.

Partially compositional (the preprocessing phase of ask-lifting,
ask-labeling, is not compositional)

Independent from the choice of Constraint Theory

lations from CHR to LCC and back S

tics preservation Encoding the A-calculus Conclusion
) 00 oe

Perspectives

Refined semantics for a committed-choice LCC

e From a CHR programmer point-of-view:
e a CHR-like language with more structure constructs
(nested rules & variable hiding)
o still with a clean semantics in linear logic,
e benefits from works on modular programming in LCC
[Haemmerlé Fages Soliman 07].
e From an LCC programmer point-of-view:
e a refined semantics,
e with syntactic variations on asks to distinguish propagations
and simplifications,
e depending of the order agents are written.

	Introduction
	

	Translations from CHR to LCC and back
	

	Semantics preservation
	

	Encoding the -calculus
	

	Conclusion
	

