On connections between CHR and LCC Semantics-preserving program transformations from CHR to LCC and back

Thierry Martinez

INRIA Paris-Rocquencourt

CHR'09, 15 July 2009

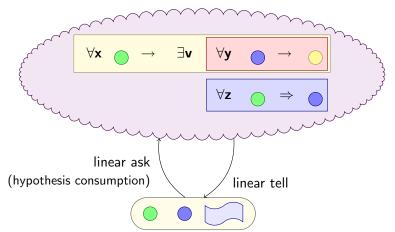
Introduction Translations from CHR to LCC and back Semantics preservation Encoding the λ -calculus Conclusion

Introduction

- CC [Saraswat 91]: agents add constraints (tell) and wait for entailment (ask)
- LCC [Saraswat 93]: asks consume linear constraints
- Semantics formalized in [Fages Ruet Soliman 01]: asks are resources consumed by firing, recursion via declarations
- Declaration as agents [Haemmerlé Fages Soliman 07]: persistent asks (semantics via the linear-logic bang!)

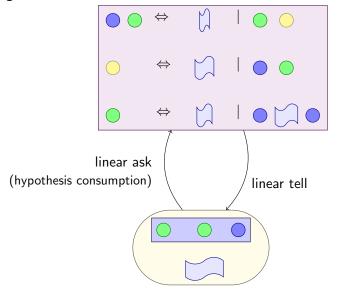
LCC with declaration as agents

- Simple arrows denote transient asks.
 Linear-logic semantics: ∀x(c → ...).
- Double arrows denote persistent asks. Linear-logic semantics: $\forall x(c \multimap ...)$.



Introduction

The program is a fixed set of rules.



In the literature

Introduction

- Linear semantics [Betz Frühwirth 05]
 - Rules ⇔ (Banged) linear implication
 - Built-in constraints ⇔ Girard's translation of classical formulas
 - User-defined constraint
 ⇔ Linear-logic predicates
- Phase semantics [Haemmerlé Betz 08]
 - Safety properties (unreachability of bad stores)

In this paper

- Translations from LCC to CHR and back.
- Operational semantics preservation.
- Linear semantics and phase semantics for free!
- Encoding the λ -calculus.

Translation from CHR to LCC

Queries

Goal translated into a single linear-logic constraint:

$$\underbrace{B_1, \dots B_p}_{\text{built-ins}}, \qquad \underbrace{C_1, \dots C_q}_{\text{user-defined}}.$$

$$\vdots$$

$$!B_1 \otimes \dots \otimes !B_n \otimes C_1 \otimes \dots \otimes C_n$$

Rules

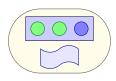
Program translated to a parallel composition of persistent asks:

$$H_1, \dots, H_n \iff G \qquad | \qquad \underbrace{B_1, \dots B_p}_{\text{built-ins}}, \qquad \underbrace{C_1, \dots C_q}_{\text{user-defined}}.$$

 $\forall \mathbf{x} (H_1 \otimes \cdots \otimes H_n \otimes !G \Rightarrow \exists \mathbf{y} !B_1 \otimes \cdots \otimes !B_n \otimes C_1 \otimes \cdots \otimes C_n)$

In CHR: two kinds of constraints

• Store:



Rules:

In LCC: linear-logic constraints

Translation from a CHR constraint theory CT:

- are constraints;
- all ! are constraints;
- constraints closed by \otimes and \exists .

Constraints have form: $\exists \mathbf{V}(!B \otimes U)$

$$!B \Vdash !C$$
 if and only if $CT \vDash B \rightarrow C$

Linear-logic predicates without axioms (linear tokens) for user-defined constraints.

Translation from flat-LCC to CHR

Flat-LCC

LCC restricted to top-level persistent asks (neither nested asks, nor transient asks)

General form of flat-LCC program:

$$\begin{array}{c|cccc} \mathcal{C} & \parallel & \forall \mathbf{x}_1(\mathcal{C}_1 \Rightarrow \mathcal{C}_1') & \parallel \cdots \parallel & \forall \mathbf{x}_n(\mathcal{C}_n \Rightarrow \mathcal{C}_n') \\ \\ \text{Translation for asks} & & & & & & \\ & C_1 \equiv \exists \mathbf{V}_1(!B_1 \otimes U_1) & & C_n \equiv \exists \mathbf{V}_n(!B_n \otimes U_n) \\ & & U_1 \Leftrightarrow B_1 \parallel B_1', U_1'. & & U_n \Leftrightarrow B_n \parallel B_n', U_n'. \end{array}$$

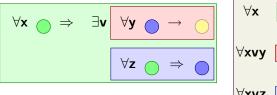
Variable hiding in query

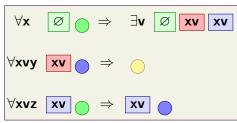
In the initial constraint $\mathcal{C} \equiv \exists \mathbf{V}(!B \otimes U)$, variables \mathbf{V} are hidden. The initial constraint is translated to the rule: $\mathsf{start}(\mathbf{G}) \Leftrightarrow B, U$. and the query: $\mathsf{start}(\mathbf{G})$, where $\mathbf{G} = \mathsf{fv}(\mathcal{C}) \setminus \mathbf{V}$.

To carve asks in stone: identify them with linear tokens.

From nested asks....

... to flat programs





Flat programs only contain persistent asks.

Tokens encode:

- ask persistence (tokens representing persistent asks are re-added to the store, the others are consumed)
- nested variable scopes

LCC transition and weakening

Given the store c_0 and the agent $\forall \mathbf{x}(d \to a)$, if c_0 linearly implies $d \otimes c_1$, transition to the store c_1 and the agent a. Classical constraints weakening: $x \le 2 \Rightarrow x \le 3$.

In CHR, no weakening in the semantics

- User-constraints are counted in multi-sets.
- Built-in constraints always grow by conjunctions.

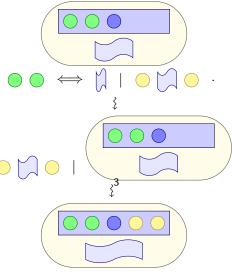
Weakening elimination in LCC

Disallowing weakening do not cut derivations.

Only accept transition to a store c_1 if there is no more general csuch that c_0 implies $d \otimes c$ (valid for *principal* constraint system).

> Transition from c_0 to c_1 with guard d only if $\forall c$, if c_0 implies $d \otimes c$ then c_1 implies c.

Steps collapsing



 \Rightarrow : one firing per transition

Strong Bisimulations

Strong comparison of processes between transition systems. Here:

- CHR transition system over states.
- LCC transition system over configurations.

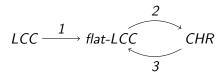
Similarity relations \sim . Here:

- LCC configurations and configurations induced by ask-lifting;
- flat-LCC configurations and their translated states;
- CHR states and their translated configurations.

 \sim is a bisimulation if and only if::

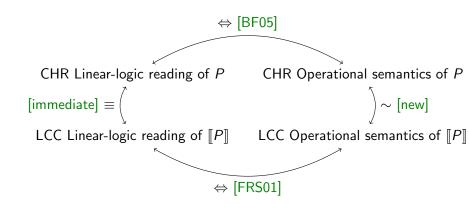
Theorem

The three following transformations:



transform configurations(LCC)/states(CHR) to bisimilar configurations/states with respect to \Rightarrow .

Let P be a CHR program and $\llbracket P \rrbracket$ its translation as LCC agent.

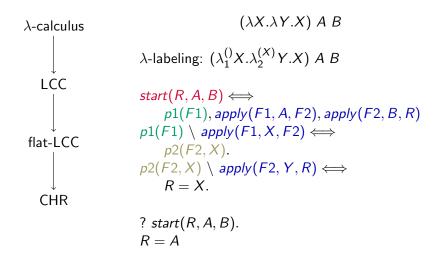


The λ -calculus is a functional language \Rightarrow each expression computes a value, designated by a distinguished variable V.

- $\bullet \ \llbracket x \rrbracket = (V = x)$
- $[\![\lambda x.e]\!] = \forall x E(\mathsf{apply}(V, x, E) \Rightarrow \exists V([\![e]\!] \parallel E = V))$
- $\llbracket f \ e \rrbracket = \exists FE (\exists V (\llbracket f \rrbracket \parallel F = V) \parallel \exists V (\llbracket e \rrbracket \parallel E = V) \parallel apply(F, E, V))$

Encoding the λ -calculus in CHR

Direct translation in CHR:



Conclusion

Compilation scheme for LCC with committed-choice semantics

$$\mathsf{LCC} \to \mathsf{CHR} \to \dots$$

- Proof for free for CHR linear-logic and phase semantics relying on the existing results for LCC.
- Explanation of the linear-logic reading of a CHR rule.
- Encoding of functional language with closures in CHR.
- Partially compositional (the preprocessing phase of ask-lifting, ask-labeling, is not compositional)
- Independent from the choice of Constraint Theory

Perspectives

Refined semantics for a committed-choice LCC

- From a CHR programmer point-of-view:
 - a CHR-like language with more structure constructs (nested rules & variable hiding)
 - still with a clean semantics in linear logic,
 - benefits from works on modular programming in LCC [Haemmerlé Fages Soliman 07].
- From an LCC programmer point-of-view:
 - a refined semantics,
 - with syntactic variations on asks to distinguish propagations and simplifications,
 - depending of the order agents are written.