
Incorporating Semi-supervised Features into Discontinuous Easy-first

Constituent Parsing

Yannick Versley

Department of Computational Linguistics
University of Heidelberg

versley@cl.uni-heidelberg.de

Abstract

This paper describes our entry for the discontinuous constituent parsing track using EAFI, a
parser for easy-first parsing of discontinuous constituents,1 as well as the work we undertook to
adapt it to multiple languages as well as make use of the unlabeled data that was provided as part
of the SPMRL shared task 2014.

1 Introduction

The SPMRL shared task 2014 (Seddah et al., 2014) augments the 2013 shared task dataset – dependency
and constituent trees for several languages, including discontinuous constituent trees for Swedish and
German – with unlabeled data that allows for semisupervised parsing approaches.

For the shared task entry, we added provisions to EaFi that make it easier to use it in new languages
(section 2.1), by using the provided dependency data to construct a head table automatically, and use
refinements to the feature model based on the Universal POS tagset mapping (Petrov et al., 2012) for
Swedish and German.

Section 3.1 explains the use of word clusters for semi-supervised parsing, and finally section 3.2
discusses how we incorporated a dependency bigram model into the parser.

2 Easy-first parsing of discontinuous constituents

The EAFI parser uses the easy-first parsing approach of Goldberg and Elhalad (2010) for discontinuous
constituent parsing. It starts with the sequence of terminals with word forms, lemmas, and part-of-speech
tags, and progressively applies the parsing action that has been classified as most certain. Because the
classifier only uses features from a small window around the action, the number of feature vectors that
have to be computed and scored is linear in the number of words, contrary to approaches that perform
parsing based on a dynamic programming approach.

By using a swap action similar to the online reordering approach of Nivre et al. (2009), EAFI is able to
perform discontinuous constituent parsing in sub-quadratic time, with an actual time consumption being
close to linear.

In order to learn the classifier for the next action, the training component of EAFI runs the parsing
process until the first error (early stopping, cf. Collins and Roark, 2004). The feature vectors of the
erroneous action and of the highest-scoring action are used to perform a regularized AdaGrad update
(Duchi et al., 2011).

2.1 Multilingual Adaptations

The EaFi parser uses two components that are language-specific and not contained in the treebank that
is used for training: the first is a head table that is used to induce the head (pre-)terminal of a constituent,

1EaFi will be released as part of the PyTree tool suite at http://bitbucket.org/yannick/pytree after the
requisite cleanups.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/



In

APPR

der

ART

irischen

ADJA

Hauptstadt

NN

werden

VAFIN

dafür

PROAV

45

CARD

Leute

NN

angestellt

VVPP

.

$.

PP

VP

NP

S

VROOT

“In the Irish capital, 45 people were hired for it.”

Figure 1: A discontinuous constituent tree. The VP node has block-degree 3.

and the second is a list of “special” part-of-speech tags where the parser augments the POS values in
features with the word forms.

We induce a head table by interposing the dependency data in CoNLL format with the constituency
trees. Based on this, the actual head of a phrase is the a preterminal that has a governor outside the phrase.
A constituent may have multiple heads when constituency and dependency criteria do not match exactly;
In cases such as coordination constructions or appositions, the head determination always follows the
rules of the dependency scheme. The head constituent is the constituent that has the head (preterminal)
as part of its yield.

From these observed head constituents, we then derive a head table in the format used by RPARSE
(Maier, 2010) and DISCODOP (van Cranenburgh, 2012) by finding a priorization of the head constituent
labels that fits the actual heads maximally well.

For each constituent label, we start with a candidate set of all labels of head constituents, and infer a
priorization of these constituent labels that fits the observed head constituents:

1. Look for phrases where two daughter constituent labels from the candidate set occur. These are
called conflicts because the assigned head would depend on the order in the head rule.

The score of a label is the number of wins (where this label and another candidate co-occur and
this label has the actual head) minus the number of losses (where this label and another candidate
co-occur and the other candidate is the actual head constituent).

2. The label from the candidate set with the highest score is appended to the rule. To decide on right-
to-left or left-to-right precedence, look at conflicts between two instances of this label and count the
number of conflicts that have been resolved towards the right/left constituent of those cases.

Remove the label from the candidate set, and all conflicts that contain this candidate. If any labels
remain in the candidate set, start again at (1.)

For the list of special categories, our intuition is that these will be most useful in cases such as PP
attachment (which motivated their treatment as a special case in the case of Goldberg and Elhalad (2010),
and possibly conjunctions).

We use the Universal Tagset Mapping of Petrov et al. (2012) where it is available to make a three-way
split between open-class POS tags, closed-class POS tags, and punctuation.

• In the case of tagsets that have a Universal POS tag mapping, and tags that are mapped to ADP (ad-
positions) and CONJ (conjunctions) are included in the closed-class tags. Tags that have a universal
POS mapping as . (punctuation) count as punctuation.



• In the case where no such mapping is available (e.g. Polish), we look at the count of types and
tokens.

If a tag has more instances containing punctuation than those containing containing a letter, and the
number of tokens that contain a letter is less than 5, this tag is treated as punctuation.

If a tag has more than 100 occurrences, while it only occurs with less than 40 different word forms,
it is treated as a closed-class tag.

2.2 General tuning

EaFi uses online learning with a hash kernel to realize the learning of parameters – in particular, AdaGrad
updates (Duchi et al., 2011) with forward-backward splitting (FOBOS) for L1 regularization (Duchi and
Singer, 2009). Several parameters influence the performance of the parser:

• The size of the weight vector – because a hash kernel is used, collisions of the hash function on the
available dimension can have a negative impact on the performance.

We use a 400MB weight vector, which still allows training on modestly-sized machines, but leaves
room for more features than the 80MB weight vector used by Versley (2014).

• The size of the regularization parameter. As FOBOS does not modify the weights between updates,
smaller parameters seem to work better than larger ones. Goldberg (2013) suggests a value of
� = 0.05�D� , due to Alexandre Passos, where �D� is the number of decisions per epoch.

In our case, a value of � = 0.001
N (for N the number of sentences in the training set) works consider-

ably better than the � = 0.1
N that was used in the initial results reported by Versley (2014).

3 Integrating semi-supervised features

3.1 Using word clusters

Augmenting word forms with word clusters is univerally recognized as a straightforward way to improve
the generalization performance of a parser. In discriminative parsers such as the dependency parser of
Koo et al. (2008), features that use surface forms are complemented by duplicated features where the
word forms are (wholly or in part) replaced by clusters. A discriminative framework also allows to use
both clusters and reduced clusters.

Candito and Seddah (2010) have shown that word clusters can productively be incorporated into a
generative parser such as the Berkeley Parser, which uses a PCFG with latent annotations (PCFG-LA).
In their case, they augment the clusters with suffixes to improve the parser’s ability to assign the correct
part-of-speech tags.

As EAFI uses discriminative parsing, we followed Koo et al. in providing duplicates of features where
word form features are replaced by features using clusters.2

For all bigrams m,n (both bigrams, and the skip bigrams n−1n2 and n0n2), the supervised model
already includes the combinations

WmWn WmCn CmWn WmWn

of words and the category.
For each kind K of clusters, we additionally include combination of category and the cluster of the

respective head word:

CmKn KmCn CmKmCn CmCnKm CmKmCnKn

We made experiments with the original clusters and with the clusters shortened to 6 bits and 4 bits,
respectively, in which the full clusters performed best. The final model combines features using the full
clusters with features using the 6-bit cluster prefixes.

2Thanks to Djamé Seddah for providing providing Brown clusters for these languages.



F1 EX UAS NP PP VP
original EAFI 76.35 41.35 87.02 75.1 83.2 57.9
+ multilingual adaptation 76.70 41.93 87.12 75.5 83.1 58.5
+ 400MB weights 76.65 41.79 87.11 75.4 83.3 58.6
+ l1=0.001 80.60 48.43 89.75 79.8 86.9 65.0

Table 1: Parser parameters (German only, dev set, gold preprocessing, ` ≤ 70)

3.2 Using a Dependency Bigram Language Model

For models with a generative component, self-training (as in McClosky et al., 2006) can provide tangible
benefits. Indeed, Suzuki et al. (2009) show that it is possible to reach improvements in dependency
parsing beyond what is possible with word clustering when combining a discriminative model that uses
word clusters with an ensemble of generative models that are used as features.

While the approach of Suzuki et al. works with a dynamic programming model of parsing, Zhu et al.
(2013) show that it is also possible to use lexical dependency statistics learned from a large corpus to
improve a state-of-the-art shift-reduce parser for constituents.

Similar to Zhu et al., we first extract pairs of words linked by a dependency edge, and a weighting
function is applied to these co-occurrence counts: in the case of Raw, the raw counts are used; in the case
of L1, the counts are simply normalized over each head words, and in the case of LL, the G2 likelohood
ratio statistic of Dunning (1993) is used.

The scored weights for dependents of a head word that were seen in the corpus are then discretized
into quantiles, with the top-10% of seen dependents being labeled HI (high association), the top-30%
scored dependents being labeled as MI (medium asssociation), and the remaining seen dependents being
labeled as LO (low association), with unseen dependents receiving a NO (no association label). Through
this mechanism, any potential dependent-head pair can be given one label from the set of NO/LO/MI/HI.

In an edge-factored dynamic programming parser, it would be sufficient to simply attach these labels as
features to single edges; In the easy-first model, we also need to include features concerning concurrent
edges that we exclude by joining the partial trees at positions 0 and 1. Hence, not only the pair (0,1)
receives features based on the dependency bigram (both the bin label, and that label joined with head and
dependent-candidate part-of-speech tags), but also the position pairs (1,2) and (0,2).

The bigram association strength feature is taken both by itself and paired with the POS tags of the
words in question.

4 Experiments

Among the treebanks used in the SPMRL shared task, German and Swedish have discontinuous con-
stituents – in this case, German has a large number of them (about ten thousand on the five thousand
sentences of the test set), while Swedish only has very few (only fifty discontinuous phrases in the 600
sentences of the test set).

Based on prior experiments, learning on the larger German dataset was run for 15 epochs, whereas
training on the Swedish dataset was run for 30 epochs.

5 Results and Discussion

Table 1 shows how the adaptations to the purely supervised part of EAFI influence the results based
on results for German gold tags. In particular, the data-driven head table and special POS tags have a
slight positive effect. Increasing the size of the weight vector does not seem to have strong effect, which
implies that the existing weight vector is sufficient for the feature set used in the experiments. However,
a different setting for the regularization constant yields a rather large difference (almost +4%), indicating
that the previous setting was suboptimal.

In tables 2 and 3, we find the supervised initial results together with experiments regarding the use of
clusters and their granularity, and the use of features based on the bigram language model.



5 10 15 20 25 29

76

78

80

82

F 1
G

er
m

an
(g

ol
d)

,`
≤40

0.1
0.01
0.001

5 10 15 20 25 29
70

75

80

F 1
G

er
m

an
(p

re
d)

,`
≤40

0.1
0.01
0.001

Figure 2: Influence of the regularizer on learning performance (yield F1 versus epochs)

F1 EX UAS NP PP VP
German supervised 80.60 48.43 89.75 79.8 86.9 65.0
clusters (full) 82.45 50.65 90.54 81.3 87.9 67.4
clusters (6bit) 80.56 48.07 89.66 80.1 87.2 62.7
clusters (4bit) 80.81 47.95 89.83 79.9 87.1 64.2
clusters (full+6bit) 81.64 49.73 90.05 81.1 87.5 65.3
clust(full+6bit)+Bigram(Raw) 80.20 49.43 89.66 81.1 87.3 59.9
clust(full+6bit)+Bigram(L1) 80.60 49.09 89.62 81.3 87.1 60.4
clust(full+6bit)+Bigram(LL) 82.20 50.86 90.31 81.2 87.8 65.9
Swedish supervised 73.13 18.90 74.72 76.6 66.7 64.6
clusters (full) 75.77 22.97 76.93 78.3 71.1 66.0
clusters (6bit) 75.25 22.76 76.69 78.0 70.7 66.4
clusters (4bit) 74.98 21.95 76.17 78.0 70.7 66.6
clusters (full+6bit) 76.02 24.39 76.30 78.8 70.4 66.5
clust(full+6bit)+Bigram(Raw) 75.93 22.36 77.18 79.1 69.8 64.7
clust(full+6bit)+Bigram(L1) 76.12 22.76 77.08 78.9 71.2 66.8
clust(full+6bit)+Bigram(LL) 76.37 22.56 77.16 79.2 71.6 68.5

Table 2: Integration of semisupervised features (gold preprocessing)

Both for Swedish and for German, we see that adding cluster-based features improves the results
considerably, with an increase of +1.3% in the case of German and of slightly more than +3.5% in
Swedish for predicted tags and +1.7% and +2.6%, respectively, for gold tags.

We also see that the shortest version of the clusters (4bit) works less well than the others, while clusters
shortened to 6-bit prefixes are relatively close to the results using full clusters.

6 Conclusions

In this paper, we have reported adaptations with the dual goal of, firstly, using the EAFI engine for
parsing multiple languages by using existing dependency conversions and tagset mappings to provide
head rules and lists of closed-class tags; secondly, of improving on these supervised learning results
by incorporating features based on data from large corpora without manual annotation, namely Brown
clusters and a dependency bigram language model.

Experimental results show that these two improvements are well-suited to improve the capabilities
of the parser. At the same time, they demonstrate that techniques that are known from dependency
parsing can also be harnessed to create parsers for discontinuous constituent structures that work better
than existing parsers that are based on treebank LCFRS grammars, making it a practical solution for the
parsing of discontinuous structures such as extraposition and scrambling.

References

Candito, Marie-Helene and Djamé Seddah. 2010. Parsing word clusters. In Proceedings of the First
Workshop on Statistical Parsing of Morphologically-Rich Languages (SPMRL 2010).



F1 EX UAS NP PP VP
German supervised 78.63 44.97 87.51 77.4 85.9 59.3
clusters (full) 79.96 47.35 88.16 79.1 86.7 61.2
clusters (6bit) 79.34 45.91 87.69 78.1 86.4 60.8
clusters (4bit) 78.59 44.53 87.45 77.2 85.6 59.6
clusters (full+6bit) 79.77 46.79 87.96 79.1 86.4 60.9
clust(full+6bit)+Bigram(Raw) 79.95 47.09 88.14 79.1 86.7 61.5
clust(full+6bit)+Bigram(L1) 80.07 47.25 88.12 79.2 86.7 61.8
clust(full+6bit)+Bigram(LL) 79.96 47.19 88.20 79.3 87.0 60.8
Swedish supervised 70.72 16.06 73.32 74.9 66.1 61.5
clusters (full) 74.26 18.90 75.78 77.0 69.7 65.1
clusters (6bit) 74.05 19.72 75.57 77.0 69.6 65.2
clusters (4bit) 72.06 17.89 74.50 76.1 66.9 62.9
clusters (full+6bit) 74.39 20.33 76.06 76.5 69.0 66.4
clust(full+6bit)+Bigram(Raw) 74.46 19.92 76.24 77.4 70.2 66.2
clust(full+6bit)+Bigram(L1) 74.19 20.12 75.82 77.1 70.4 65.7
clust(full+6bit)+Bigram(LL) 74.39 20.33 76.06 76.5 69.0 66.4

Table 3: Integration of semisupervised features (predicted tags&morph)

F1 EX UAS NP PP VP
German, gold preprocessing
supervised ♢ 73.53 38.47 85.54 74.5 82.8 56.1
clusters (full+6bit) 75.76 39.71 86.51 76.1 83.7 60.3
+Bigram (LL) ♡ 76.46 41.05 86.94 76.4 84.4 60.5
German, predicted tags+morph
supervised ♢ 71.96 35.12 83.15 71.7 80.9 55.0
clusters (full+6bit) 73.35 35.98 83.80 73.1 82.1 55.4
+Bigram (LL) ♡ 73.90 37.00 84.16 73.7 82.6 56.7
Swedish, gold preprocessing
supervised ♢ 81.16 31.73 80.81 83.2 79.4 77.0
clusters (full+6bit) 82.10 34.89 81.56 84.6 80.3 77.1
+Bigram(LL) ♡ 82.49 34.89 81.37 84.7 79.2 79.2
Swedish, predicted tags+morph
supervised ♢ 79.17 28.42 79.63 82.6 76.1 73.1
clusters (full+6bit) 80.61 30.83 79.71 83.4 78.2 76.6
+Bigram(LL) ♡ 80.58 30.68 80.14 83.6 78.5 76.7

Table 4: Results on the test set. Results from the official submission are marked with ♢ (supervised run)
and ♡ (semi-supervised run).



Collins, Michael and Brian Roark. 2004. Incremental parsing with the perceptron algorithm. In ACL-04.

Duchi, John, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12:2121–2159.

Duchi, John and Yoram Singer. 2009. Efficient learning with forward-backward splitting. In Proceedings
of Neural Information Processing Systems (NIPS 2009).

Dunning, Ted. 1993. Accurate methods for the statistics of surprise and coincidence. Computational
Linguistics 19(1):61–74.

Goldberg, Yoav. 2013. Dynamic-oracle transition-based parsing with calibrated probabilistic output. In
Proceedings of IWPT 2013.

Goldberg, Yoav and Michael Elhalad. 2010. An efficient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of NAACL-2010.

Koo, Terry, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised dependency parsing.
In ACL 2008.

Maier, Wolfgang. 2010. Direct parsing of discontinuous constituents in German. In Proceedings of the
NAACL-HLT First Workshop on Statistical Parsing of Morphologically Rich Languages.

McClosky, David, Eugene Charniak, and Mark Johnson. 2006. Reranking and self-training for parser
adaptation. In CoLing/ACL 2006.

Nivre, Joakim, Marco Kuhlmann, and Johan Hall. 2009. An improved oracle for dependency parsing
with online reordering. In Proceedings of the 11th International Conference on Parsing Technologies
(IWPT).

Petrov, Slav, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In Proceed-
ings of the Eighth International Conference on Language Resources and Evaluation.

Seddah, Djamé, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas, Iakes Goe-
naga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Vers-
ley, Veronika Vincze, Marcin Woliński, Alina Wróblewska, and Eric Villemonte de la Clergerie. 2014.
Overview of the SPMRL 2014 Shared Task on Parsing Morphologically Rich Languages. In Pro-
ceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and
Syntactical Analysis of Non-Canonical Language. Seattle, WA, pages 146–182.

Suzuki, Jun, Hideki Isozaki, Xavier Carreras, and Michael Collins. 2009. An empirical study of semi-
supervised structured conditional models for dependency parsing. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP).

van Cranenburgh, Andreas. 2012. Efficient parsing with linear context-free rewriting systems. In EACL
2012.

Versley, Yannick. 2014. Experiments with easy-first nonprojective constituent parsing. In Proceedings
of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Language.

Zhu, Muhua, Jingbo Zhu, and Huizhen Wang. 2013. Improving shift-reduce constituency parsing with
large-scale unlabeled data. Natural Language Engineering .


