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Abstract

This paper describes our contribution to the SPMRL 2014 Shared Task. We participated in the
predicted POS and morphology setting using full-size training data, and for all languages except
Arabic. Our approach builds upon our contribution from last year (Björkelund et al., 2013), with
additions that utilize unlabeled data. We observed that exploiting unlabeled data is challenging
and we could benefit from it only moderately. We achieved best scores on all languages in the
dependency track and on all languages except Polish in the constituency track.

1 Introduction

We present our contribution to the SPMRL 2014 Shared Task on parsing morphologically rich languages
(Seddah et al., 2014). This year’s shared task (ST) is a direct extension of the SPMRL 2013 Shared
Task (Seddah et al., 2013) which involved parsing both constituency and dependency representations of
9 languages: Arabic, Basque, French, German, Hebrew, Hungarian, Korean, Polish, and Swedish. The
2014 ST extends the task by making large amounts of unlabeled data available to participants.

Our contribution builds upon our system from last year (Björkelund et al., 2013), and extends it with
additional features and components. We started with our tried and tested methods and made some design
decisions (e.g., use of coarse or fine grained POS tags) based on previous experience to reduce our
experimental space. We then explored new techniques, some of which make use of unlabeled data.

Following last year, we predict our own POS tags and morphological features and integrate output
of external morphological analyzers and organizer-provided predictions as features. We change our
integration policy to make use of unlabeled data, which results in lower preprocessing accuracies than
previous year. We compensate this drop in the parsing step and achieve competitive or better results.

In our 2013 submission on the dependency track, we combined n-best output of multiple parsers and
ranked them. This year, we extend our system by using supertags (Bangalore and Joshi, 1999) in parsing
(Ouchi et al., 2014; Ambati et al., 2014), adding a blended tree (Sagae and Lavie, 2006) to the n-best
list, and utilizing unlabeled data as features in reranking.

Our contribution to the 2013 constituency track handled lexical sparsity by removing morphological
annotation of POS tags and replacing rare words with their morphological analysis. This year, we also
experiment with an extended lexicon model (Goldberg and Elhadad, 2013). We then apply a product
grammar (Petrov, 2010) and a reranker (Charniak and Johnson, 2005), and enrich our ranking features
with Brown clusters (Brown et al., 1992) and atomic morphological features (Szántó and Farkas, 2014).
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Given the limited window of time to participate in this year’s shared task, we only contribute to the
setting with predicted preprocessing, using the largest available training data set for each language.1 We
also do not participate in the Arabic track due to late availability of unlabeled data. For the remaining
languages, we achieved the best scores in both constituency and dependency tracks with the exception
of Polish constituency parsing.

2 Preprocessing

As the initial step of preprocessing we converted the Shared Task data from the CoNLL06 format to
CoNLL09, which requires a decision on whether to use coarse or fine grained POS tags. Based on our
2013 ST experiments we prefer fine POS tags where possible, except for Basque and Korean.

We use MarMoT2 (Müller et al., 2013) to predict POS tags and morphological features jointly. We ex-
tracted word forms from the training, development, and unlabeled data and analyzed them with language-
specific morphological analyzers for six languages.3 We integrate the output from these morphological
analyzers as features in MarMoT. We shared these morphological dictionaries with other participants
through the ST organizers.

We also utilize the predicted tags provided by the organizers by creating dictionaries which list all the
predictions of a word form that are present in the training, development and unlabeled data files. This
is a more indirect way of using organizer-provided predictions than stacking (which we used last year),
as in the latter only its best prediction is assigned to a word form. Despite its indirectness we opt for
the dictionary approach to deal with the label inconsistencies on the labeled and unlabeled data for some
languages.4

We use the mate-tools’ lemmatizer5 both on the treebanks and unlabeled data. For both POS and mor-
phological feature tagging and lemmatization, we did 5-fold jackknifing on the training data to produce
realistic input features for the parsers.

Table 1 gives the POS and morphological feature accuracies on the development sets. We observe
POS accuracy drops ranging from 0.12 (Hebrew, German) to 0.71 (Basque) and drops in morphological
accuracies ranging from 0.14 (Hungarian) to 1.63 (Polish) as compared to last year.

Basque French German Hebrew Hungarian Korean Polish Swedish
Björkelund et al. 2013 98.23/89.05 97.61/90.92 98.10/91.80 97.09/97.67 98.72/97.59 94.03/87.68 98.56/92.63 97.83/97.62
This year 97.52/87.81 97.08/89.36 97.98/90.38 96.97/97.15 98.49/97.45 93.82/87.44 98.39/91.00 97.40/97.16

Table 1: MarMoT POS/morphological feature accuracies on the development sets from last year and this
year. Italicized figures denote languages where stacking was used last year (Basque, Polish, Swedish).

3 Constituency Parsing

Our constituency parsing architecture consists of two steps. First, we deal with lexical sparsity and
exploit product grammars. Second, we apply a reranker where we investigate new feature templates. In
the following sections we focus on the methods to alleviate lexical sparsity and features we use in the
reranker.

3.1 Lexical Sparsity

The out-of-vocabulary issue is a crucial problem in morphologically rich languages, as a word can have
many different forms depending on its syntactic and semantic context. Last year, we replaced rare words

1In other words, no gold preprocessing or smaller training sets.
2
https://code.google.com/p/cistern/

3Basque: Apertium (Forcada et al., 2011), French: an IMS internal tool by Zhenxia Zhou, Max Kisselew and Helmut Schmid. It
is an extension of Zhou (2007) and implemented in SFST (Schmid, 2005). German: SMOR (Schmid et al., 2004) Hungarian:
Magyarlanc (Zsibrita et al., 2013), Korean: HanNanum (Park et al., 2010), Polish: Morfeusz (Woliński, 2006).

4The organizers later resolved the issue by patching the data, but time constraints prevented us from using the patched data.
5
https://code.google.com/p/mate-tools



by their morphological analysis produced by MarMoT (similar to the strategy of backing off rare words
to their POS tag in the CCG literature (Clark and Curran, 2007)). We call this strategy Replace.

This year, we experiment with an alternative approach, which exploits the available unlabeled data. We
followed Goldberg and Elhadad (2013) and enhanced a lexicon model trained on the treebank training
data with frequency information about the possible morphological analyses of tokens (ExtendLex). We
estimate the tagging probability P (t|w) of the tag t given the word w by

P (t|w) =

(
Ptb(t|w), if c(w) � K
c(w)P

tb

(t|w)+P
ex

(t|w)
1+c(w) , otherwise

where c(w) is the count of w in the training set, K is a predefined constant, Ptb(t|w) is the probability es-
timate from the treebank (the relative frequency with smoothing) and Pex(t|w) is the probability estimate
from an external lexicon. We calculate the emission probabilities P (w|t) from the tagging probabilities
P (t|w) by applying Bayes’ rule. We construct the external lexicon by relative frequencies of MarMoT’s
morphological tagging counted on the development and unlabeled data, and we use the default value
K = 7 for all languages (for details see Szántó and Farkas (2014)).

We note that the two strategies lead to fundamentally different representations. In the Replace version
the output parses contain morphological descriptions instead of tokens and only main POS tags are
used as preterminal labels while in the ExtendLex approach tokens remain at the terminal level and full
morphological analyses are employed as preterminal labels.6

Table 2 shows the results achieved by the two strategies on the development sets. As our baselines we
use the Berkeley parser (Petrov et al., 2006) by removing morphological annotations and leaving only
POS tags in preterminals (mainPOS), and by using full morphological descriptions (fullMorph). For
German and Swedish, where the main POS is significantly better than the full morphological description,
ExtendLex gets lower scores than BerkeleymainPOS , but the morphological information can help later in
the reranking step. For all languages Replace outperforms ExtendLex, but when we adopt the products
of respective grammars (Petrov, 2010), ExtendLex Product achieves slightly better scores than Replace
Product for French and Hebrew.

Basque French German Hebrew Hungarian Korean Polish Swedish
BerkeleymainPOS 72.32 79.35 82.26 88.71 83.84 71.85 86.75 75.19
BerkeleyfullMorph 77.82 79.17 80.22 88.40 87.18 82.28 85.06 72.82
ExtendLex 77.51 79.67 81.54 89.33 88.99 - 88.21 74.57
Replace 84.27 80.26 82.99 89.73 89.59 83.07 90.29 77.08
ExtendLex Product 80.71 81.38 82.13 89.92 90.43 - 91.52 78.21
Replace Product 85.31 81.29 84.55 89.87 90.72 83.86 92.28 78.66

Table 2: PARSEVAL scores on the development sets for the predicted setting. Best results for each
language are displayed in bold.

We tried several strategies for combining the output of the two approaches (like aggregate parse prob-
abilities and joint reranking) but we could not achieve any improvements over the Replace approach.

3.2 Reranker Features

The second step of our constituency pipeline is discriminative reranking. We conduct ranking experi-
ments on the 50-best outputs of the product grammars. Like last year, we use a slightly modified version
of the Mallet toolkit (McCallum, 2002), where the reranker is trained for the maximum entropy objective
function of Charniak and Johnson (2005) and uses the standard feature set from Charniak and Johnson
(2005) and Collins (2000) (dflt). This year we investigate new feature templates exploiting automatic
dependency parses of the sentence in question (Farkas and Bohnet, 2012); Brown clusters (Brown et al.,
1992); and atomic morphological feature values (Szántó and Farkas, 2014).

6As last year, we reduced compositional Korean POS tags to their first atomic tag, but since we could not apply the same method
on Korean unlabeled data, we could not employ the ExtendLex approach on this language.



We create features from the full morphological description by using each morphological feature sep-
arately (morph). This approach allows us to combine a word with its morphological features (Dog-N-
Cas=n). New features are established using the constituency labels and morphological features of the
word’s head, as well as morphological features of the head and its dependent. As we only use the main
POS tags in case of the Replace method, these new features could only be applicable to ExtendLex.

We also created features based on automatic dependency parsing (dep). These features are made from
heads of constituents and their dependency relations. We are using features describing relations between
the same head-dependent pairs in both the constituency and dependency parses. The frequency of these
relations is also used.

We generate Brown cluster-based features (Brown) using the already mentioned feature templates. In
all features that contain words we replace words with their Brown cluster (to a pre-set depth). The Brown
cluster features improve our results in ExtendLex, but have a negative effect in Replace.

Table 3 shows the reranking results on the development sets. Reranking with default features improves
the scores over product grammars both for ExtendLex and Replace for all languages except Korean
Replace, and Polish ExtendLex and Replace. Adding new features to the reranker also results in higher
scores across languages and methods with an exception of Swedish ExtendLex. The highest jumps
(2.2% absolute) are achieved by adding dep features to the Polish Replace Rerankeddflt grammar and
by adding morph+Brown+dep features to the Basque ExtendLex Rerankeddflt grammar.

Basque French German Hebrew Hungarian Korean Polish Swedish
ExtendLex Rerankeddflt 81.59 81.92 82.83 90.16 91.06 - 89.79 79.09
Replace Rerankeddflt 86.11 82.30 84.59 90.02 91.09 83.50 88.31 78.87
ExtendLex Rerankeddflt+morph+Brown+dep 83.83 82.76 84.69 90.76 92.05 - 91.44 78.78
Replace Rerankeddflt+dep 86.73 82.78 86.05 90.47 91.89 84.78 90.53 79.38

Table 3: PARSEVAL scores of the reranker on the development sets for the predicted setting. dflt denotes
default feature set of the reranker. Best results for each language are displayed in bold.

4 Dependency Parsing

Our dependency parsing architecture extends our 2013 system, as depicted in Figure 1. Like last year,
it consists of two main steps: the parsing step and the ranking step. In the parsing step, we use several
different dependency parsers to create a list of potential trees for each sentence, which are ranked in the
ranking step to find the best analysis.

mate parser

bestfirst
parser

turboparser

mate
lab + unlab

mate
unlabeled

blend
1-best

merge
n-best

rescore ranker

ptb trees

Parsing

Ranking
IN

OUT

BASELINE

Constituency
Parsing

Figure 1: The architecture of the 2014 dependency parsing system.

4.1 The Parsing Step
We use three different dependency parsers to parse the data: the mate parser7 (Bohnet, 2010), a second-
order dependency parser with a Carreras-decoder (Carreras, 2007), the BestFirst parser, an in-house
7
https://code.google.com/p/mate-tools



implementation of the Easy-First parser (Goldberg and Elhadad, 2010), which we extended to handle
non-projective structures similar to Tratz and Hovy (2011), and TurboParser,8 which is based on linear
programming relaxations (Martins et al., 2010). Additionally, we changed the feature sets of mate parser
and TurboParser to include features from supertags.

The mate parser uses McDonald and Pereira’s (2006) approximation algorithm to produce non-
projective structures. It is a greedy hill-climbing process that starts from the highest-scoring projective
tree and produces new trees by reattaching edges if they result in a higher overall score and do not vio-
late the tree property. We use this mechanism in a non-greedy way to output n-best lists. The BestFirst
parser uses beam search and thus can output n-best lists directly. The 50 highest-scoring trees from both
parsers are merged into a list. This creates between 50 and 100 trees per sentence depending on the
overlap between the source lists. This year, we extend the n-best list further in two ways: first, we add
the 1-best tree produced by TurboParser. Second, we add a tree that is created by blending the 1-best
trees from each of the three parsers. The blended trees constitute our baseline submission.

As the last step before ranking, all trees in the n-best lists are rescored by all parsing models. Last
year, we found that the scores from each parsing model are very important features in the ranker. Since
the n-best list for each sentence is created from multiple sources, not all of the trees in the list have
been produced by all parsers and therefore do not necessarily have a score from each model, which
makes rescoring necessary. At this point, we throw in two more parsing models, which were trained on
automatically labeled data only or on a combination of automatically labeled data and treebanks. We thus
get five different scores for each tree in each n-best list, which are then used as features in the ranker.

4.1.1 Supertags
Supertags (Bangalore and Joshi, 1999) are tags that encode more syntactic information than standard
POS tags. Supertags have been used in deep grammar formalisms like CCG or HPSG to prune the search
space for the parser. The idea has been applied to dependency parsing by Foth et al. (2006) and recently
to statistical dependency parsing (Ouchi et al., 2014; Ambati et al., 2014) where supertags are used as
features rather than to prune the search space.

Our supertag design originates from Ouchi et al. (2014). We tested various models with different
levels of granularity and selected the three of them that give the most promising results. Models 1 and 2
are following Ouchi et al. (2014) and Model 3 is a modified version of Model 2 (see Table 4). None of
the models encode the order among the dependents. Duplicate labels occurring on the same side of the
word are removed.

Description Example (German)
Model 1 Relative position of the head of a word, its dependency relation and information whether the

word’s dependents occur to the right or to the left of the word.
OC/R+L

Model 2 Model 1 + dependency relations of obligatory dependents of verbs. OC/R+L OP/L
Model 3 Similar to Model 2; all dependency relations for all possible parts of speech, not only for verbs. OC/R+MO/L OP/L

Table 4: Models of supertags.

Table 5 gives supertag sizes in the training sets and its prediction accuracy with MarMoT. The number
of tags increases and the tagging accuracy decreases with the amount of information encoded by the
supertags. Due to the size of POS and label sets the number of tags strongly varies among languages, for
instance the number of German supertags is five times larger than the Polish one in Model 3. Despite such
differences and rather low accuracies of tagging (around 72% for Model 3) every model has a positive
influence on the dependency parsing results.

Basque French German Hebrew Hungarian Korean Polish Swedish
Model 1 80.59 (179) 82.86 (128) 85.08 (239) 76.84 (196) 79.44 (280) 90.72 (74) 81.66 (113) 72.41 (253)
Model 2 73.43 (1468) 80.41 (1179) 82.26 (1848) 74.75 (821) 77.01 (897) 90.82 (321) 78.84 (801) 69.66 (820)
Model 3 70.13 (4802) 74.42 (7609) 78.45 (14037) 68.30 (6924) 72.36 (10875) 76.21 (4196) 73.12 (2759) 64.41 (5386)

Table 5: MarMoT prediction accuracy and tag set size on the development sets for each supertag model.
8
http://www.ark.cs.cmu.edu/TurboParser. We train TurboParser with MODELTYPE=FULL.



Supertags are used as features in both the mate parser and TurboParser. Their behavior differed when
we experimented with different templates. In particular, the mate parser performed best when we used a
considerably smaller set of templates compared to TurboParser. Table 6 lists the feature templates that
we used in both parsers. We did not use supertags for the BestFirst parser because of time constraints.

both sh; shwh; shlh; shph; sd; sdwd; sdld; shsd; shpd; shld; shwd; sdwh; sdlh
mate shwhpd; shwdpd; sdwdph; sdwhph; phshpd
turbo sdpd; sdph; sh+1; sh�1; sh+1wh+1; sh�1wh�1; shsh+1; shsh�1; sd+1; sd�1; sd+1wd+1;

sd�1wd�1; sdsd+1; sdsd�1; sh+2; sh�2; sh+2wh+2; sh�2wh�2; shsh+1sh+2;
shsh�1sh�2; sd+2; sd�2; sd+2wd+2; sd�2wd�2; sdsd+1sd+2; sdsd�1sd�2

Table 6: Feature definitions using supertags for the mate parser and TurboParser. s: supertag, w: word
form, l: lemma, p: POS tag, h: head, d: dependent, +1: next token on the right, �1: next token on
the left. In TurboParser, these features are also used for second order combinations, where head and
dependent are replaced with dependent and sibling or grandparent and dependent, respectively.

Table 7 presents a comparison between parser results for all models. Supertags used with TurboParser
yield improvements for all languages, giving an improvement of up to 1.5 points LAS (Polish, Swedish).
We therefore decided to select the best model for each language individually for TurboParser. The only
exception is German for which Model 3 gives the best results but has so many tags that learning time is
not acceptable. Instead we use Model 2 which is negligibly worse.

The inclusion of supertags in the mate parser also gives some improvements but they are smaller than
for TurboParser. The difference between all of the models is less than a 0.3 point LAS, so we decided to
use Model 1 for all languages simply because it is the fastest one.

Basque French German Hebrew Hungarian Korean Polish Swedish
TurboParser results

Baseline 88.95/83.98 88.00/84.03 93.45/91.32 86.00/78.99 86.82/82.50 88.38/86.08 90.56/85.27 82.80/75.62
Model 1 89.52/85.08 88.22/84.43 93.66/91.69 86.44/79.64 87.33/83.34 88.97/86.92 91.52/86.29 83.42/77.01
Model 2 89.64/85.08 88.00/84.18 93.66/91.69 86.69/80.05 87.44/83.39 88.85/86.76 91.41/86.21 83.04/76.45
Model 3 89.55/84.79 88.29/84.47 93.70/91.72 86.35/79.74 87.42/83.40 88.86/86.70 92.28/87.03 83.62/77.18

mate results
Baseline 88.78/83.96 87.95/84.34 93.04/91.25 86.59/79.66 87.89/84.15 87.82/85.49 91.47/85.96 82.96/76.50
Model 1 89.29/84.74 88.42/84.79 93.25/91.49 86.43/79.66 88.12/84.47 88.65/86.52 91.31/86.23 83.51/77.25
Model 2 88.93/84.56 88.31/84.67 93.29/91.56 86.59/79.70 88.14/84.42 88.52/86.38 91.00/85.97 83.94/77.51
Model 3 88.92/84.20 88.20/84.58 93.21/91.45 85.93/79.08 88.11/84.41 88.07/85.85 91.58/86.46 83.49/77.13

Table 7: UAS/LAS of parsers with different supertag models on the development sets for the predicted
setting. Best results for each language are displayed in bold.

4.1.2 Blending
We implemented a parser blender (also known as a reparser; Sagae and Lavie, 2006). Blending is a
simple way of combining parse trees from different parsers into one. Arcs are assigned scores depending
on how frequent they are in the base parses. In the simplest case, each arc gets a score equal to the number
of base parses it occurred in. Specifically, we implemented the Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967), which is a directed maximum spanning tree algorithm. We applied this to
combine the best parses from each of the individual parsers. If the blended tree was not already in the
n-best list, it was added. Furthermore, the blended tree received a special flag, such that it can be used
as a feature in the subsequent ranking step.

Table 8 shows the accuracies of each individual parser as well as the blended trees. The blended trees
are better than any of the base parsers on several languages. In all cases where the blended tree is not
the best, the BestFirst parser is lagging behind the mate parse and TurboParser quite considerably. This
feeds into the blend and lowers the performance.9

9Sagae and Lavie (2006) additionally define more fine-grained blending schemes, where the contribution of arcs is weighted
by which parser it originated from. We did not experiment with such schemes since the blended trees primarily are meant as a
baseline, although we note that the figures in Table 8 suggest that weighting the base parsers probably would be beneficial.



Basque French German Hebrew Hungarian Korean Polish Swedish
mate 89.29/84.74 88.42/84.78 93.25/91.49 86.43/79.66 88.12/84.47 88.65/86.52 91.32/86.23 83.51/77.25
bestfirst 83.72/75.76 86.88/83.33 92.73/90.91 85.23/78.60 83.30/75.52 86.41/83.75 89.66/82.52 82.55/75.78
turbo 89.64/85.08 88.29/84.47 93.66/91.69 86.69/80.05 87.44/83.39 88.97/86.92 92.28/87.03 83.62/77.18
blend 89.61/84.71 88.75/85.10 93.93/92.19 87.46/80.65 88.09/84.24 88.93/86.83 92.21/86.97 84.72/78.23
mateulbl 88.59/83.82 86.24/82.43 90.70/88.35 84.59/78.12 86.17/82.26 87.83/85.73 91.12/85.92 82.31/75.48
matelbl+ulbl 89.38/85.02 88.26/84.60 93.21/91.34 86.40/79.95 88.07/84.38 88.45/86.33 91.79/86.63 84.23/78.10

Table 8: UAS/LAS of each parser on the development sets for the predicted setting. Best results are
shown in bold. The mate parser uses Model 1 supertags and TurboParser uses the best supertag model.

4.1.3 Parsing with Unlabeled Data

In order to make use of the unlabeled data, we trained two additional models on it using the mate parser.
We first filtered the unlabeled data with a series of filters. We kept all sentences that fulfill the following
constraints:

1. 5  length  20 4. no word forms longer than 20 characters
2. at most 2 unknown word forms wrt. the training data 5. no word forms that have more than 3 punctuation characters
3. contain at least one verb (determined by POS) 6. no word forms that occur less than 5 times in the unlabeled data

These sentences were automatically annotated with lemmas, POS and morphological tags. We then
parsed them with the mate parser and TurboParser (not using any supertags). The output of both parsers
was then intersected following Sagae and Tsujii (2007) and filtered once more. This last filter removes
sentences in which dependent labels that should occur only once per head occur more often ( e.g., two
subjects). We decided on the labels by their occurrence in the gold standard of the training data.

From such annotated unlabeled data we train two self-trained models (Charniak, 1997; McClosky et
al., 2006). We sample two data sets for each language: one data set with 100k sentences and one with
as many sentences as are in the training data. The first set is used to train a mate parser model on purely
unlabeled data, the second set is combined with the treebank training data and we train a mate parser
model on the combination. These self-trained models are then used as additional rescoring models in
the parsing step (see Figure 1). The last two lines in Table 8 show the performance of these models on
the development sets. The models trained on unlabeled data only usually lag behind quite a bit, but the
models trained on a combination of labeled and unlabeled data are often not that far behind the canonical
models. For Swedish, the model trained on the combination even surpasses all single-parser models, a
curious result that deserves further investigation in the future.

4.2 The Ranking Step

The final step of our dependency parsing architecture is the ranking step. We use the same version of the
Mallet toolkit (McCallum, 2002) that we use for constituency reranking to train the ranker (cf. Section 3).
The ranking model is trained to select the best parse according to the labeled attachment score (LAS).
We created training data for the ranker by running 5-fold cross-validation on the training sets using the
base parsers (including blending and rescoring with all models).

We tuned the feature sets for each language individually by running greedy forward and backward fea-
ture selection on the training folds, starting from a baseline feature set. Features were added or removed
based on improvements in the micro-averaged LAS across all folds. Most of the feature templates we
use originate from our submission last year (Björkelund et al., 2013). Both the baseline and optimized
feature sets are listed in Table 9. The corresponding abbreviations are described below.

default B, M, T, GB, GM, GT, I default B, M, T, GB, GM, GT, I
Basque B, M, T, GB, GM, GT, I, ptbp, L, FL, GL Hungarian B, M, T, GB, GM, GT, I, ptbp, L, FL, Blend
French B, M, T, GB, GM, GT, I, ptbp, L, FL Korean B, M, T, GB, GM, GT, I, ptbp, L, FL
German B, M, T, GB, GM, GT, I, ptbp, L, FL, BTProd Polish B, M, T, GB, GM, I, ptbp, L, FL, GL
Hebrew B, M, T, GB, GM, GT, I, ptbp, L, FL, Blend Swedish B, M, T, GB, GM, GT, I, ptbp, L, FL, U

Table 9: Feature sets for the ranker for each language. Italics indicate features based on unlabeled data.



Scores from the base parsers – denoted B, M, and T, for the BestFirst, mate, and TurboParser, respec-
tively. We also have additional indicator features that indicate whether a parse was the best according
to each model, denoted GB, GM, and GT, respectively. Since the mate parser uses an approximate
algorithm to handle non-projective dependencies, the greedy parse according to mate may not have the
highest score. The GM feature is therefore a ternary feature, that indicates whether a parse was better,
worse, or equal to the greedy parse. We additionally include the scores from the mate parser trained on
unlabeled data and the mate parser trained on labeled and unlabeled data, denoted U and L, respectively,
as well as the corresponding indicator feature for the parser trained on labeled and unlabeled data – de-
noted GL. Similar to last year we also experimented with non-linear combinations of the scores from
various parsers. The only such feature that had a clear positive effect was the product of the scores from
the BestFirst and TurboParser, denoted BTProd.

Blend features – indicator features that mark whether a tree was the output of the parser blender or
not. This template additionally includes conjunctions that pair it with the indicator features from the
other parsers (e.g., whether it was the blend and the best parse according to TurboParser).

Constituency features extracted from the constituency trees. Specifically, for every head-dependent
pair, we extract the path in the constituency tree between the nodes, denoted ptbp.

Function label uniqueness – marks the number of dependents of a head with a certain label that should
typically only occur once. We extracted lists on the training sets of labels that never occur more than
once as the dependent of a word (e.g., subjects). Features are then extracted on heads that have one or
multiple dependents with any of the labels in this list. This feature template is denoted FL.

The performance of the ranker on the development sets are shown in Table 10. The table also shows
the baseline (i.e., the blended trees) as well as the oracle scores. Three feature sets are evaluated –
the default feature set (Rankeddflt), the optimized feature set (Rankedopt), and the optimized feature
set but without features that are based on unlabeled data (Rankedno-ulbl). The table shows that ranking
provides a strong boost over the baseline, ranging from about 0.5 (German) to 1.7 (Basque) in LAS. The
contribution of the features based on unlabeled data is extremely modest.10 Interestingly, however, we
do see a considerable contribution from the features that are based on unlabeled data for Swedish. This
is in line with the performance of these parsers on the development set (cf., Table 8) and suggests that if
the self-trained parsers are good enough, they can make a valuable contribution.

Basque French German Hebrew Hungarian Korean Polish Swedish
Baseline 89.61/84.71 88.75/85.10 93.93/92.19 87.46/80.65 88.09/84.24 88.93/86.83 92.21/86.97 84.72/78.23
Rankeddflt 90.22/85.80 88.68/85.00 93.92/92.19 87.21/80.49 88.12/84.34 89.52/87.41 92.70/87.59 84.37/77.98
Rankedno-ulbl 90.61/86.40 89.36/86.00 94.23/92.72 88.55/81.96 88.67/84.99 89.96/87.89 93.13/88.00 85.38/79.02
Rankedopt 90.66/86.46 89.35/86.01 94.28/92.75 88.58/81.93 88.72/85.08 89.91/87.85 93.19/88.07 85.73/79.64
Oracle 95.02/91.66 92.97/90.31 97.95/97.15 92.37/87.07 91.91/88.37 96.33/94.72 97.36/95.30 90.02/85.40

Table 10: UAS/LAS of the ranker on the development sets for the predicted setting. Baseline denotes the
blended trees. The highest number in each column is indicated in bold.

5 Test Set Results

We apply our systems on the test sets and present our scores in this section. For both tracks we also
compare our results with the baselines provided by the organizers and with the best ST competitor.

The constituency parsing results are given in Table 11. The Replace system outperforms the ExtendLex
system across all languages with the only exception of 0.01 difference in French. We have the highest
accuracies for all languages except Polish.

Table 12 displays our results in the dependency track. We achieve the best accuracies for all languages.
Our baseline system, i.e., blended trees, comes third for Hungarian, and second for all other languages.
Ranking systematically helps, up to 1.7% absolute LAS in Basque.

10Sometimes Rankedno-ulbl even does slightly better than Rankedopt. We remind the reader that the feature sets were tuned
on cross-validation over the training set. Hence such deviations are to be expected, especially when the contribution of these
features is as minor as observed here.



Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 74.74 80.38 78.30 86.96 85.22 78.56 86.75 80.64
Other 85.35 79.68 77.15 86.19 87.51 79.50 91.60 82.72
ExtendLex Reranked 83.78 82.53 79.76 89.75 90.76 - 89.19 82.94
Replace Reranked 88.24 82.52 81.66 89.80 91.72 83.81 90.50 85.50

Table 11: Final PARSEVAL F1 scores for constituents on the test sets for the predicted setting. ST
Baseline denotes the best baseline provided by the ST organizers. Other denotes the best competitor.

Basque French German Hebrew Hungarian Korean Polish Swedish
ST Baseline 79.77/70.11 82.49/77.98 81.51/77.81 76.49/69.97 80.72/70.15 85.72/82.06 82.19/75.63 80.29/73.21
Other 88.58/83.46 88.02/84.51 90.80/88.66 82.79/75.55 88.76/84.90 85.33/81.88 88.42/80.13 87.26/81.23
Baseline 88.76/83.97 88.45/84.83 91.03/88.62 86.63/80.77 88.79/84.51 88.37/86.42 90.93/86.21 87.72/81.42
Ranked 89.96/85.70 89.02/85.66 91.63/89.58 87.41/81.65 89.57/85.59 89.10/87.27 91.48/86.75 88.48/82.75

Table 12: Final UAS/LAS scores for dependencies on the test sets for the predicted setting. ST Baseline
denotes the MaltParser baseline provided by the ST organizers (Ballesteros, 2013). Other denotes the
best competitor.

6 Conclusion

We discuss our contribution to this year’s Shared Task from two perspectives: How well we did as
compared to last year and how we made use of unlabeled data.

Comparison to last year. While our entry for this year was generally the strongest among all par-
ticipants, it should be noted that we did not entirely outperform our own submission from last year
(Björkelund et al., 2013).11 Broadly, this difference can be attributed to the lower quality of POS tags
and morphological predictions compared to last year, as described in Section 2. This affected our models
for the constituency and the dependency track.

For dependency parsing, the introduction of supertags could compensate the effect to some extent.
For constituency parsing, our strongest system (Replace) also relies on predictions from the

POS/morphological tagger in its input, whose lower quality was partly compensated by a richer feature
set in the ranker.

Utility of unlabeled data. One objective of this year’s shared task was to leverage unlabeled data
in the parsing systems. This appears to have been a rather tough challenge, judging both from our own
experience as well as other participants.12 While unlabeled data has been shown to be helpful for domain
adaptation (Bacchiani et al., 2006; Blitzer et al., 2006; McClosky and Charniak, 2008), it should be noted
that the experimental setting in the shared task is not a domain adaptation setting.13 On the contrary, our
training and test sets are drawn from the same domain, while the unlabeled data typically originate from
some other domain.

Besides the inclusion of parser scores from parsers trained on unlabeled or a combination of labeled
and unlabeled data in the dependency ranker, and the use of Brown cluster features in the constituency
reranker, we had no success exploiting the unlabeled data. The extended lexicons in constituency pars-
ing did help, but overall could not beat the Replace method. Initial experiments on using collocations
extracted from the unlabeled data in the (re)rankers did not bring any improvements, although time pre-
vented us from exploring this path conclusively.

In the dependency track, we saw extremely modest improvements from including scores drawn from
self-trained parsers. A peculiar exception was the case of Swedish, where these features improve the
scores of the ranker by more than half a point. This improvement aligns well with the surprisingly good
self-trained parser for Swedish. Further research is required to understand the reasons for this.

11We achieved better constituency scores for Basque, German, Polish, and Korean; and better dependency scores for Basque,
French, Hebrew, Korean, and Swedish. We refer the reader to our paper from last year for a detailed comparison.

12p.c., Djamé Seddah.
13i.e., an annotated data set from one domain, a test set from another, and unlabeled data from the same domain as the test set.
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Dóra Csendes, Janós Csirik, Tibor Gyimóthy, and András Kocsor. 2005. The Szeged treebank. In Václav Ma-
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