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Abstract

This paper describes the design of a multilingual lexicalized discriminative shift reduce phrase
structure based parser used to parse the SPMRL 2014 shared task data set. It reports the results
of one of the first massively multilingual lexicalized phrase structure parser and shows that it
behaves surprisingly well on a multilingual setting.

1 Introduction

This paper describes the design of a multilingual lexicalized discriminative shift-reduce phrase structure
based parser used to parse the SPMRL 2014 shared task data set. Phrase structure parsing of a large range
of morphologically rich languages is a relatively uncommon type of task: few parsers have actually been
used for parsing wide range of languages at once1. The first one is that of Petrov et al. (2006) and has
been used on the SPMRL 2013 dataset (Seddah et al., 2013b) by Björkelund et al. (2013) and Szántó and
Farkas (2014) as a well as a baseline by the organizers. A second parser has been recently developed by
Hall et al. (2014).

As a matter of fact, training dependency parsers on automatically converted dependency trees causes a
loss of information and approximations during conversions can indeed have some impact on the resulting
models (Simkó et al., 2014). Thus the paper investigates to which extent we can parse morphologically
rich languages such as Arabic, German, French, Hungarian, Hebrew, Korean where the datasets are
originally encoded as phrase structure trees and thus less susceptible to contain erroneous artifacts due
to conversion errors.

Leaving aside the Hall et al. (2014)’s work, parsing experiments on the SPMRL dataset have been
mainly carried out with the Berkeley parser (Björkelund et al., 2013; Szántó and Farkas, 2014). As this
parsing model is generative, the inclusion of multiple morphological features typical to Morphologically
rich languages into the model is not trivial, although it can be done with reasonable success, via a full
rewrite of the original Petrov et al. (2006) lexical model, as shown in (Huang and Harper, 2011). One
strategy otherwise often used is to simulate a feature model by extending the POS tagset with relevant
morphological features (Crabbé and Candito, 2008; Dehdari et al., 2011; Szántó and Farkas, 2014).

The discriminative parsing model we use here (Crabbé, 2014) allows to take advantage of those fea-
tures for parsing these languages reasonably accurately and significantly more efficiently2 than the sys-
tem engineered by Björkelund et al. (2013). The discriminative model allows to express several layers of
backoff very naturally through features of different granularities. It should in principle be well suited for
modelling morphologically rich languages with increased data sparsity issues. This paper thus describes
a (very) preliminary work attempting to design a generic cross lingual parsing model into which we can
plug features specific to each language.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1See (Tsarfaty et al., 2010; Tsarfaty et al., 2013) for references therein on previous works on Arabic, French, Hebrew,
Czech, German among others.

2The parsing system used here has linear time complexity whereas (Björkelund et al., 2013) builds upon the polynomial
parser of (Petrov et al., 2006).



The paper is organized as follows. In Section 2, we describe the lexicalized parser of (Crabbé, 2014).
Since it is a lexicalized parser, it belongs to a family of algorithms that require the datasets to be annotated
with heads. Since these annotations are not naturally present in the datasets, we provide a way to satisfy
these requirements in Section 3. We describe there a method for assigning heads to the phrase structure
treebanks automatically, by taking advantage of the alignment of phrase structure and dependency tree-
banks in the SPRML dataset. In Section 4, we describe a set of preliminary and still crude experiments
designed to test the lexicalized framework in a multilingual setting. We report a very reasonable baseline
on several languages without real feature engineering and then we quickly report results where the model
attempts to take advantage of morphological and semi-supervised information for parsing morphologi-
cally rich languages.

2 Parsing System

The system used is an LR-inspired shift reduce phrase structure parser and has been described in
(Crabbé, 2014). The parser relies on a binary head-markovized grammar which include all relevant
morpho-syntactic feature information at the token level and latent syntactic information at the phrasal
node level (eg. syntactic heads).

The parser itself is a shift reduce parser driven by an LR automaton. Given a configuration made of a
stack and a queue C = hS, Qi, the transition system is equipped with four groups of actions (Sagae and
Lavie, 2006):

• A SHIFT action, which pushes the first element of the queue on the stack
• A set of reduce left(X) actions which pops the the two top elements of the stack and replaces them

with the X element. X is a non terminal grammatical symbol. The X head element is its leftmost
child.

• A set of Reduce Right(X) actions which pops the the two top elements of the stack and replaces
them with the X element. The X head element is its righmost child.

• A set of Reduce Unary(X) actions which pops the top element from the stack and pushes an X
element on top of the stack.

Given a current configuration Ci the parser has to to select a valid action for moving to the next configura-
tion. Since this choice is naturally non-deterministic, each derivation C0)k = C0

a0) C1 ) . . .
ak�1) Ck

is weighted by a function of the form:

W (C0)k) =
k�1X

i=1

w · �(ai, Ci)

The parser does not explore the full exponential space of derivations, instead it uses a beam, that is an
approximate search heuristic restricting the number of active configurations at each time step. The best
parse returned is the one that satisifies the equation:

C̃ = argmax
C0)3n�12GENK

3n�1(T )

W (C0)3n�1)

where GENK
3n�1 is the content of the beam after 3n � 1 derivation steps. In other words, the parser

returns the highest weighted parse in the beam at the last derivation step.
The feature functions �(a, C) have access to the top three elements of the stack and to the queue

tokens, that is to the symbol categories and to their head tokens (Figure 1). Like dependency parsers,
the parser uses structured lexical tokens, that is tokens made of a word form, but also features associated
with this token such as morphological features.

The weight vector is estimated by a global perceptron model with early update and weight averaging
(Collins, 2002).



s0.ct[s0.wt]

s0.cr[s0.wr]s0.cl[s0.wl]

s1.ct[s1.wt]

s1.cr[s1.wr]s1.cl[s1.wl]

s2.ct[s2.wt]

Figure 1: Information available to feature functions

3 Data set preprocessing

We describe here two essential preprocessing operations we run on the SPMRL data set. First, in order
to make a lexicalized phrase structure parser operational over a large set of languages, we need to add
head annotations. Second we normalized some morphological features recurring accross languages in
order to facilitate their modelling across languages.

3.1 Head assignation procedure
In order to annotate phrase structure trees with heads, we take advantage of the aligned nature of the
SPMRL datasets: for each language, dependency and constituency treebanks are aligned word-wise.

Since head annotation encodes projective dependencies in phrase structure trees, it seems natural to
transfer the head information encoded in the dependency treebanks to their constituent counterparts.

However, the word aligned treebanks do not encode exactly the exact same structural information. We
found that some dependency relations cannot be encoded directly in the corresponding phrase structure
trees and vice-versa. This sometimes comes from two different treebanks that have been manually edited
after automatic conversion such as the Hungarian treebank (Simkó et al., 2014), sometimes conversions
add or remove information such that a node in a phrase structure tree has no matching node in the
dependency tree with the same set of dependency relations. In other words a straightforward transfer is
not possible in general.

We solved the problem in two steps. First, we ran a naive algorithm proceeding bottom up. The
basis is that the leaf nodes are marked as heads of the unary rules introducing them. The recursion
proceeds bottom up : for each rule ↵ ! �1[h1] . . . �n[hn] of a phrase structure tree extract the set D of
dependencies, (hi, h

0) or (h0, hi) involving the headwords h1 . . . hn from the dependency tree. If there
is exacly one hi dominating every hj 2 D (i 6= j) then hi is set as head of the rule. Otherwise the
procedure fails and it stops processing the tree. The naive algorithm is then run on a full treebank, and it
collects the set R of rules together with their head index h(r) for which the procedure succeeded.

The second step attempts to infer the heads for those trees where the naive algorithm fails. We pro-
cesses again every tree bottom up. If the current rule r belongs to R then it is assigned h(r) as head. In
case r 62 R, we select the subset Rk ✓ R such that Rk = K-argminr02R D(r, r0). D(r, r0) is defined as
the Levenshtein distance between the respective list of symbols of r and r0. Finally, the head index h(r)
is assigned to r by majority voting among the members of Rk

3. In other words, the head assignation
procedure can be seen as a variant of a k�nn procedure using the Levenshtein distance. In practice, we
set K to 5.

We report in Table 1 the proportion of times the head assignation algorithm had to call the k�nn like
guessing procedure for each SPMRL scenario. This metric roughly indicates how straightforward the
head induction process is. As it can be seen this proportion is relatively low.

DATASET ARABIC BASQUE FRENCH GERMAN HEBREW HUNGARIAN KOREAN POLISH SWEDISH

Gold (%) 0.9 6.7 0.01 2.3 0.06 0.6 0 0.01 0.1

Table 1: Proportion of guessed rules occurrences with respect to the total number of rule occurrences
3In case a nearest neighbor r0 is a rule with a different arity than r, we initially designed a procedure aiming to enforce both

rules to have the same arity using the Needleman-Wunsch alignment algorithm. However we observed that this case almost
never occurs in practice, so we skip this detail here.



NORMALIZED ARABIC BASQUE FRENCH GERMAN HEBREW HUNGARIAN KOREAN POLISH SWEDISH

subcat subcat AZP subcat - - SubPOS tag - -
mood mood MDN mood mood - Mood verb-type - verbform
gen gen - g gender gen - - gender gender
num num NUM n number num Num - number number
case case KAS - case - Cas case-type case case
lem lem lem lemma lem - lemma lem lem -

Table 2: Approximative feature normalization across languages

3.2 Cross lingual feature normalization
In order to design generic cross lingual models that can take into account some morphological infor-
mation inherent to the task, we performed a superficial normalisation of the features encoded on the
pre-terminals of the SPMRL phrase structure trees. We selected these features for normalisation since
they are relatively recurrent accross languages and under the assumption that they could play a role for
parsing purposes. We provide in table 2 the approximative mappings designed. The normalized features
given in the left column are mood, gen, num, case, lem,subcat encoding respectively the mood, the gen-
der, the number, the case, the lemma4 and to some additional fine grained part of speech information
found in several treebanks such as the definiteness of determiners. The values indicated in the table are
the names of the features found in the actual datasets. These are tentative and approximate mappings that
we inferred as well as we could from the documentation and the datasets themselves. When a treebank
does not encode one of these normalised features, we added it to every token of this treebank with a
constant dummy value. It should be noted that these mappings are preliminary and should be improved.

To ease comparison accross treebanks and accross models, we should at least normalize the tagsets.
For instance, the Polish treebank encodes the mood within part of speech tags. The Korean tagset en-
codes far more information than the tagsets of other languages. Thus there is here plenty of room for
improvement.

4 Experiments

The experiments are driven by the motivation of designing a generic parsing model common to every
language expressed as a set of templates. Given such a model we would like to plug-in extensions
specific to each language. In this shared task we mainly ran baseline experiments incorporating gradually
along several models the information encoded in the data sets. We focused exclusively on the predicted
morphology full size scenario.

We made five runs of experiments. The first experiment is a baseline model using a simplified set of
templates described by (Zhu et al., 2013) for Chinese. The second adds some smoothing by attempting
to improve the modelling of unknown words inspired by (Björkelund et al., 2013). The third and fourth
models attempt to incorporate morphological information directly into the parsing model. While the fifth
run attempts to address sparsity issues by incorporating clusters into the model.

The experiments use the implementation of the algorithm described by (Crabbé, 2014) which has been
improved for efficiency and robustness. The parser beam is set to 8 and the perceptron is trained with an
early update for 25 iterations. The final parsing model is not systematically averaged after 25 epochs. It
is averaged from an epoch n such that the trainer score on the development set is maximal over all other
epochs. Times are reported as average processing times in seconds per sentence over the development
set. Times have been computed on a 2.4 ghz Intel iCore 7.

4.1 Baseline experiments
The first experiment uses a set of templates described in Figure 2 which is similar to those of Zhu et al.
(2013). The templates can be read as follows: before the dot si and qi denote respectively the position

4Note that the lemma feature used in the Arabic data set actually encodes the vocalized version of a token. Lemmas were
not provided as part of the original treebank.



s0t.wc & s0t.c s0t.wf & s1t.wf s0t.c& s1t.c& s2t.c s0t.c& q2.wc & q3.wc

s0t.wf & s0t.c s0t.wf & s1t.c s0t.wf & s1t.c& s2t.c s0t.c& q2.wf & q3.wc

s1t.wc & s1t.c s0t.c& s1t.wf s0t.c& s1t.wf & q0.wc s0t.c& q2.wc & q3.wf

s1t.wf & s1t.c s0t.c& s1t.c s0t.c& s1t.c& s2t.wf s0t.c& s0r.c& s1t.c
s2t.wc & s2t.c s0t.wf & q0.wf s0t.c& s1t.c& q0.wc s0t.c& s0r.c& s1t.wf

s2t.wc & s2t.c s0t.c& q0.wf s0t.wf & s1t.c& q0.wc s0t.w& s0r.c& s1t.wf

q0.wc & q0.wf s0t.c& q0.wc s0t.c& s1t.wf & q0.wc s0t.c& s0l.wf & s1t.c
q1.wc & q1.wf q0.wf & q1.wf s0t.c& s1t.c& q0.wf s0t.c& s0l.c& s1t.wf

q2.wc & q2.wf q0.wf & q1.wc s0t.c& q0.wc & q1.wc s0t.c& s0l.c& s1t.c
q3.wc & q3.wf q0.wc & q1.wc s0t.c& q0.wf & q1.wc

s0l.wf & s0l.c s1t.wf & q0.wf s0t.c& q0.wc & q1.wf

s0r.wf & s0r.c s1t.wf & q0.wc s0t.c& q1.wc & q2.wc

s1l.wf & s1l.c s1t.c& q0.wf s0t.c& q1.wf & q2.wc

s1r.wf & s1r.c s1t.c& q0.wc s0t.c& q1.wc & q2.wf

Figure 2: Baseline templates

One may wonder why the parser has to manage such a huge set of actions for some languages. Let |N |
be the number of non terminals in the grammar, then we have that |A| = 3|N | + 1: three families of
reductions and 1 shift. The sometimes large size of |N | is mainly due to a large number of unary rules
that are encoded as non terminal symbols by our treebank preprocessing function. There are several ways
to improve the situation in the future, most notably by structuring the set of actions at inference time.
This could improve speed drastically for languages with a large number of symbols and maybe also the
accurracy.

4.4 Licence Statement
To avoid the need for sending signed copyright hand-over forms to the organisers or publishers, we
require that authors license their camera-ready papers under a Creative Commons Attribution 4.0 In-
ternational Licence (CC-BY). This means that authors (or their employers) retain copyright but grant
everybody the right to adapt and re-distribute their paper as long as the authors are credited and modifi-
cations listed, see http://creativecommons.org/licenses/by/4.0/ for the licence terms.

Depending on whether you use American or British English in your paper, please include one of
the following as an unmarked (unnumbered) footnote on page 1 of your paper. The LATEX style file
(coling2014.sty) adds a command blfootnote for this purpose, and usage of the command is prepared
in the LATEX source code (coling2014.tex) at the start of Section 1 “Introduction”.

• This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page
numbers and proceedings footer are added by the organisers. Licence details: http://
creativecommons.org/licenses/by/4.0/

• This work is licenced under a Creative Commons Attribution 4.0 International License. Page
numbers and proceedings footer are added by the organizers. License details: http://
creativecommons.org/licenses/by/4.0/

We cannot accept the restrictions “NonCommercial” (NC) and “ShareAlike” (SA) as they would limit
our options for an on-demand printing service (we hope to find a partner for this after the conference)
and the restriction “NoDerivatives” (ND) as it may impede our ability to add page numbers and a footer,
as well as our ability to combine papers into volumes. We intend to publish the proceedings before the
conference on the ACL Anthology and to hand out a memory stick copy at the conference. Mentioning in
the footnote that we, the organisers, add page numbers and proceedings footer is a requirement stemming
from the CC-BY licence terms.

5 Translation of non-English Terms

It is also advised to supplement non-English characters and terms with appropriate transliterations and/or
translations since not all readers understand all such characters and terms. Inline transliteration or trans-
lation can be represented in the order of: original-form transliteration “translation”.

Figure 3: Correlation of times and number of actions

in the stack and in the queue of the adressed node as described in Figure 1. t, l, r denote the top, left and
right nodes of the local trees in the stack. After the dot wc, wf denote a word category (tag) and a word
form, while c is a constituent category.

This experiment involves two runs differing only on the management of low frequency words. The
first run does not perform any explicit lexical smoothing while the second replaces word forms with a
low frequency (f  2) in the training set by its predicted part of speech. Results are reported in table 4

It can be seen that the effect of naive smoothing of low frequency words ranges from almost no effect
to mild improvements on parsing accurracy accross languages.

More importantly the first run illustrates two key properties of the parser. First it is robust: parsing
coverage reaches 100% for every language. Second it is efficient: parsing times are close to 0.01 second
per sentence for all languages. There are however quite a few problematic cases such as German where
our preprocessing methods turned out to be too simplistic: the closure of unary rules induces a very
large number of non terminal symbols and therefore a huge number of parsing actions. This entails a
significant loss of efficiency and it is very likely to be detrimental for accurracy too altough we did not
try any alternative grammatical representation for this shared task.

We observe that the parsing complexity is a function of the form O(K|A|n) where K is the size of
the beam, |A|, the number of actions and n the length of the sentence. Although it is common to express
complexity as a function of n, hence O(n). And indeed the parsing time is linear in practice as a function
of H . Across languages, we observe however from Figure 3 that the constant |A| is the most correlated
factor to parsing times r = 0.92 whereas the correlation of parsing times with sentence length is almost
non existent (r =?). This is caused by the fact that for most languages |A| >> n̄. One may wonder
why the parser has to manage such a huge set of actions for some languages. Let |N | be the number
of non terminals in the grammar, then we have that |A| = 3|N | + 1: three families of reductions and 1



shift. The sometimes large size of |N | is mainly due to a large number of unary rules that are encoded
as non terminal symbols by our treebank preprocessing function. There are several ways to improve
the situation in the future, most notably by structuring the set of actions at inference time. This could
improve speed drastically for languages with a large number of symbols and maybe also the accurracy.

4.2 Extended experiments
The extended experiment aims at introducing additional source of information in the parsing model.
Since the SPMRL data set provides morphological features for all languages we included them in the
parsing model. We did it in two steps. First we added morphological features to the baseline model.
Second we also added lemmatized forms to the morphological parsing model by duplicating templates
accessing word forms with templates accessing lemmas.

s0t.ws & s0t.c q3.wm & q0.wf s0t.wf & s1t.c& q0.ws

s0t.wm & s0t.c q3.wcs & q0.wf s0t.wf & s1t.wf & q0.ws

s0t.wcs & s0t.c s0t.c& q0.ws s0t.c& q0.ws & q1.ws

s1t.ws & s0t.c s0t.c& q0.wm s0t.c& q0.wf & q1.ws

s1t.wm & s0t.c s0t.c& q0.wcs s0t.c& q0.ws & q1.wf

s1t.wcs & s0t.c q0.wf & q1.ws s0t.c& q1.ws & q2.ws

s2t.ws & s0t.c q0.wf & q1.wm s0t.c& q1.wf & q2.ws

s2t.wm & s0t.c q0.wf & q1.wcs s0t.c& q1.ws & q2.wf

s2t.wcs & s0t.c q0.wc & q1.ws s0t.c& q1.ws & q2.ws

q0.ws & q0.wf q0.wc & q1.wm s0t.c& q2.wf & q3.ws

q0.wm & q0.wf q0.wc & q1.wcs s0t.c& e(s0t.agr, s1t.agr)& s1t.c
q0.wcs & q0.wf s1t.wc & q0.ws s0t.c& e(s0t.num, s1t.num)& s1t.c
q1.ws & q0.wf s1t.wc & q0.wm s0t.c& e(s0t.gen, s1t.gen)& s1t.c
q1.wm & q0.wf s1t.wc & q0.wcs s0t.c& e(s0t.agr, q0.agr)& q1.wc

q1.wcs & q0.wf s1t.c& q0.ws s0t.c& e(s0t.gen, q0.gen)& q1.wc

q2.ws & q0.wf s1t.c& q0.wm s0t.c& e(s0t.num, q0.num)& q1.wc

q2.wm & q0.wf s1t.c& q0.wcs s0t.c& e(s0t.agr, q1.agr)& q1.wc

q2.wcs & q0.wf s0t.c& s1t.wf & q0.ws s0t.c& e(s0t.num, q0.num)& q1.wc

q3.ws & q0.wf s0t.c& s1t.c& q0.ws

Table 3: Additional morphological related templates

We added morphological information from the normalized representation described in table 2. We add
templates with access to subcat, mood, case, gender, number using the following notations at the right
of the dot : ws, wm, wcs, wg, wn. For modelling gender, number and agreement we additionally use the
function e(·, ·) to denote an equality function returning true if the values of both its arguments are equal.

Thus the model extended with morphology is made of the baseline model templates augmented with
the morphological templates described in Table 3. We also designed a last model where we duplicated
every template involving a word form (suffixed by .wf in our notation) by a templates involving word
lemmas. The result on the development set are reported in table 4.

From these results we observe that situations are different accross languages. For some languages,
additional morphological information helps the parser (e.g. Basque, Hungarian, Polish, Swedish) for
some others it is detrimental. These first observations should be interpreted with extreme care since
the datasets have very different properties. An inspection of the learning curves revealed that these raw
numbers hide very different situations. For instance, for some languages such as French and notably
German, the learner seems to fit the training data poorly. This suggests that the current model lacks
some critical information to actually account for these languages: adding more features does not help
to improve accurracy. For other languages such as Swedish the model overfits the training data in the
baseline setup: for such languages the additional features generally provided some mild to significant
improvements.

More generally adding more and more features is likely to create overfitting situations and we actually
do not know which ones help to get better generalisations. In further work, we definitely need to set up a
more solid feature selection procedure such as described by (Ballesteros, 2013) or by using regularized
models (L1 regularized models) in order to avoid the burden of manually engineering such features. In
the current state of the parser, we are quite sure that our results remain far from being optimal.



(Models) ARABIC BASQUE FRENCH GERMAN HEBREW HUNGARIAN KOREAN POLISH SWEDISH
Unsmoothed 78.91 76.05 80.14 81.73 86.78 83.57 79.18 91.66 76.27

Smoothed 79.35 76.02 79.83 81.23 86.89 83.96 79.66 92.12 77.66
Time(unsmoothed) 0.0162 0.0034 0.013 0.0285 0.0198 0.007 0.0022 0.0048 0.0057

Morph 79.23 83.82 79.47 76.09 87.18 86.23 79.51 92.93 77.93
Lemmas 79.43 84.13 79.93 75.28 86.93 85.96 79.63 93.33 77.53

Time(morph) 0.0162 0.0056 0.0189 0.0297 0.0273 0.0102 0.0038 0.0074 0.008

Table 4: Baseline (up) and Morphologically-informed Models Results on the Dev Set. (down)
Models in Bold were used for submitting fully supervised run (run0 in Table 5)

4.3 Semi-supervised experiments
We took advantage of the unlabeled data set released by the organizers to generate Brown clusters (Brown
et al., 1992) using Liang (2005) implementation. We generate 1,000 word clusters from both the unla-
beled and training data sets, for words appearing at least 100 times (except for Korean and Swedish
where the threshold was set to 60 given the relatively small size of these data set – resp. 40 and 24
millions tokens, compared to above 100 millions for the others). As opposed to our previous works
on semi-supervized parsing where we replaced all tokens with morphologically-enriched clusters in a
PCFG-LA framework (Candito and Crabbé, 2009; Candito and Seddah, 2010; Seddah et al., 2013a), we
decided to test the impact of the clusters as single features to be combined with other-morpho syntactic
and lexical information.
We integrated them following three schemes: (run1) simple scheme where cluster features are added
to the baseline feature template exposed in Fig. 2; (run2) a brute force scheme: the baseline feature
template is extended with a replacement of all word (resp. pos tag) features by cluster features. Leading
to a three time increase in feature size; (run3) same as run3 with lexical smoothing.
Results (Table 5) show a disappointing but recurring trend among the shared task participants (Seddah et
al., 2014), using hard clusters fails to improve over a rich morphological feature model (run0). The only
case where it brings an slight gain is for Korean using cluster features and lexical smoothing. Strangely,
the run1 and run2 configurations perform roughly the same, while the generic cluster templates con-
stantly under-perform with a large margin on Arabic, Basque, German, Hebrew, Hungarian and Korean.
The only difference between the run2 and run3 models being the added small lexical smoothing for the
latter, we believe that better performance would have been obtained on clusters built on lemmatized
corpora (as shown by (Versley, 2014) on German and Swedish and by Candito and Seddah (2010) on
French). By lack of time we could not test those configurations.

(Models) ARABIC BASQUE FRENCH GERMAN HEBREW HUNGARIAN KOREAN POLISH SWEDISH
run0 77.66 85.35 79.68 77.15 86.19 87.51 79.35 91.6 82.72
run1 77.28 79.91 78.68 76.56 85.62 86.62 79.19 90.90 81.92
run2 74.25 75.9 78.39 74.75 83.53 82.48 61.57 90.01 80.56
run3 77.36 80.12 79.13 76.14 85.71 86.59 79.50 90.6 81.51

Table 5: Results of Submitted Models on the Test Set

5 Conclusion and perspectives

Our question for the shared task was to test to which extent approximative shift reduce lexicalized parsing
scales up to the multilingual setting. To our knowledge, this is one of the first lexicalized parser to be
run on a multilingual setting. This comes from two facts: (1) contrary to (Charniak, 2000) and (Collins,
2003) parsers our implementation does not hard code any language specific features and (2) we were able
to generate head annotations for a wide range of languages using a systematic procedure which remains
partly tied to the design of the SPMRL data sets.

From the current state of our system we observe that we can get a very efficient parser which is also
reasonably accurate. For most languages we get comparable results to the baseline Berkeley parser with
relatively few efforts spent on feature engineering. There is however room for improving accurracy if we
compare with the results reported by the IMS-WROCLAW team that engineered the Berkeley parser in



order to maximize its accurracy: their setup involves products of grammars and reranking among others.
However we expect our parser to be at least an order of magnitude faster than theirs.

We highlight some problems observed and some possible solutions for achieving a truly cross-lingual
system. The first problem is to improve the management of unary rules that triggered some difficult
situations for some languages. When the parser needs to decide among several thousand of actions at
each time step, it is not surprising that the results are getting worse.

Another important issue will be to design a more stable learning procedure. We believe that improving
the modelling of rare events is a key issue to the accurate modelling of morphologically rich languages.
In the future we plan to dedicate some specific efforts to regularizing the parsing model. We specifically
plan to replace the current perceptron model with a large margin estimation procedure and we also plan
to automate feature selection in order to reduce feature engineering efforts.

Although related to the modelling of rare events, the third issue is related to the use of external semi-
supervised kind of information. We could not, in most cases, take advantage of them. Even though it was
a bit early to tackle this issue at this stage of development of the system, taking advantage of unlabelled
data will be one of our major research directions in the future.
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Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas, Thomas Mueller, and Wolfgang Seeker. 2013. (Re)ranking
meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 134–144, Seattle, WA.

Peter F. Brown, Vincent J. Della, Peter V. Desouza, Jennifer C. Lai, and Robert L. Mercer. 1992. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479.
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Reut Tsarfaty, Djame Seddah, Yoav Goldberg, Sandra Kübler, Marie Candito, Jennifer Foster, Yannick Versley,
Ines Rehbein, and Lamia Tounsi. 2010. Statistical parsing for morphologically rich language (SPMRL): What,
how and whither. In Proceedings of the First workshop on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL), Los Angeles, CA.
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