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Main Topic: Semantic Parsing

I Task: mapping text to formal meaning representations (ex., from Herzig
and Berant (2017)).

Text: Find an article with no more than two authors.
→

LF: Type.Article u R[λx .count(AuthorOf.x)] ≤ 2

”Machines and programs which attempt to answer English
question have existed for only about five years.... Attempts
to build machine to test logical consistency date back to at
least Roman Lull in the thirteenth century... Only in recent
years have attempts been made to translate mechanically
from English into logical formalisms...”

R.F. Simmons. 1965, Answering English Question by Computer: A Survey.
Communications of the ACM
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Classical Natural Language Understanding (NLU)

I Conventional pipeline model: focus on capturing deep inference and
entailment.

input sem
List samples that contain
every major element

database
JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

Lunar QA system of Woods (1973)
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Why and How? Analogy with Compiler Design

NL text

Syntax

Logic/Semantics

Model

Programs

Translation

Interpretation

pos := i + rate * 60

Syntax :=

+

*

60id3

id2

id1

Semantics :=

+

*

int2real

60

id3

id2

id1

Code

MOVF id2, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1,id1

Programs

lex: id1 := id2 + id3 * 60

Translation

Generation

I NLU model is a kind of compiler, involves a transduction from NL to a
formal (usually logical) language.
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Data-driven Semantic Parsing and NLU

input sem
List samples that contain
every major element

database
JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

machine learning
(FOR EVERY X /

MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

I Data-driven NLU: Asks an empirical question: Can we learn NLU
models from examples? Building a NL compiler by hand is hard....
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Data-driven Semantic Parsing and NLU

input sem
List samples that contain
every major element

database
JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

machine learning
(FOR EVERY X /

MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

I Semantic Parser Induction: Learn semantic parser (weighted
transduction) from parallel text/meaning data, constrained SMT task.
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Data-driven Semantic Parsing in a Nutshell

challenge 1: Getting data?
2014[LREC],2017c[INLG]
2017b[ACL],2017a[EMNLP]

Training challenge 2: Missing Data?
2018[NAACL]

challenge 3: Deficient LFs?
2012[COLING]
2016[TACL]

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

input Semantic Parsing sem

x decoding z

world
reasoning

model

I Desiderata: robust and domain agnostic models that require minimal
amounts of hand engineering and data supervision.
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<Challenge 1>

challenge 1: Getting data?

Training challenge 2: Missing Data?
2018[NAACL]

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

...
model
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Semantic Parsing and Parallel Data

input x What state has the largest population?

sem z (argmax (λx . (state x) λx . (population x)))

I Learning from LFs: Pairs of text x and logical forms z, D = {(x, z)i}n
i ,

learn sem : x→ z
I Modularity: Study the translation independent of other semantic issues.

I Underlying Challenge: Finding parallel data tends to require
considerable hand engineering effort (cf. Wang et al. (2015)).
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Source Code and API Documentation

* Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static Long max(long a, long b)

I Source Code Documentation: High-level descriptions of internal
software functionality paired with code.

I Idea: Treat as a parallel corpus (Allamanis et al., 2015; Gu et al., 2016;
Iyer et al., 2016), or synthetic semantic parsing dataset.
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Source Code as a Parallel Corpus
I Tight coupling between high-level text and code, easy to extract

text/code pairs automatically.

* Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static Long max(long a, long b)w� extraction

text Returns the greater...
code lang.Math long max( long... )

(ns ... clojure.core)

(defn random-sample
"Returns items from coll with random
probability of prob (0.0 - 1.0)"
([prob] ...)
([prob coll] ...))w� extraction

text Returns items from coll...
code (core.random-sample prob...)

I Function signatures: Header-like representations, containing function
name, arguments, return value, namespace.

Signature ::= lang︸︷︷︸
namespace

Math︸︷︷︸
class

long︸︷︷︸
return

max︸︷︷︸
name

( long a, long b )︸ ︷︷ ︸
named/typed arguments
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Resource 1: Standard Library Documentation (Stdlib)

Dataset #Pairs #Symbols #Words Vocab. Example Pairs (x, z)

Java 7,183 4,072 82,696 3,721 x : Compares this Calendar to the specified Object.
z : boolean util.Calendar.equals(Object obj)

Ruby 6,885 3,803 67,274 5,131 x : Computes the arc tangent given y and x.
z : Math.atan2(y,x) → Float

PHPen 6,611 8,308 68,921 4,874 x : Delete an entry in the archive using its name.
z : bool ZipArchive::deleteName(string $name)

Python 3,085 3,991 27,012 2,768 x : Remove the specific filter from this handler.
z : logging.Filterer.removeFilter(filter)

Elisp 2,089 1,883 30,248 2,644 x : Returns the total height of the window.
z : (window-total-height window round)

Geoquery 880 167 6,663 279 x : What is the tallest mountain in America?
z : (highest(mountain(loc 2(countryid usa))))

I Documentation for 16 APIs, 10 programming languages, 7 natural
languages, from Richardson and Kuhn (2017b).

I Advantages: zero annotation, highly multilingual, relatively large.
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Resource 2: Python Projects (Py27)
Project # Pairs # Symbols # Words Vocab.
scapy 757 1,029 7,839 1,576
zipline 753 1,122 8,184 1,517
biopython 2,496 2,224 20,532 2,586
renpy 912 889 10,183 1,540
pyglet 1,400 1,354 12,218 2,181
kivy 820 861 7,621 1,456
pip 1,292 1,359 13,011 2,201
twisted 5,137 3,129 49,457 4,830
vispy 1,094 1,026 9,744 1,740
orange 1,392 1,125 11,596 1,761
tensorflow 5,724 4,321 45,006 4,672
pandas 1,969 1,517 17,816 2,371
sqlalchemy 1,737 1,374 15,606 2,039
pyspark 1,851 1,276 18,775 2,200
nupic 1,663 1,533 16,750 2,135
astropy 2,325 2,054 24,567 3,007
sympy 5,523 3,201 52,236 4,777
ipython 1,034 1,115 9,114 1,771
orator 817 499 6,511 670
obspy 1,577 1,861 14,847 2,169
rdkit 1,006 1,380 9,758 1,739
django 2,790 2,026 31,531 3,484
ansible 2,124 1,884 20,677 2,593
statsmodels 2,357 2,352 21,716 2,733
theano 1,223 1,364 12,018 2,152
nltk 2,383 2,324 25,823 3,151
sklearn 1,532 1,519 13,897 2,115
geoquery 880 167 6,663 279

I 27 English Python projects from Github (Richardson and Kuhn, 2017a).
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New Task: Text to Signature Translation
text Returns the greater of two long values

signature lang.Math long max( long a, long b )

I Task: Given text/signatures training pairs, learn a (quasi) semantic
parser: text→ signature (Richardson and Kuhn, 2017b)

I Assumption: predicting within finite signature/translation space.

I Code Retrieval Analogy: train/test split, at test time, retrieve function
signature that matches input specification (Deng and Chrupa la, 2014):

Gets the total cache size

× string APCIterator::key(void)
× int APCIterator::getTotalHits(void)
× int APCterator::getSize(void)
int APCIterator::getTotalSize(void)
× int Memcached::append(string $key)
...

Accuracy @i? (exact match)

Semantic Parser

signature translations
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Text to Signature Translation: How Hard Is It?

I Initial approach: noisy-channel (nc) classical translation:

semparnc(x, z) = pθ(x | z)︸ ︷︷ ︸
trans model

× plm(z)︸ ︷︷ ︸
valid expression (yes/no)?

I lm: convenient for making strong assumptions about our output
language, facilitates constrained decoding.

I code case: make assumptions about what constitutes a valid
function in a given API.

14



Text to Signature Translation: How Hard Is It?

I Initial approach: noisy-channel (nc) classical translation:

semparnc(x, z) = pθ(x | z)︸ ︷︷ ︸
trans model

× plm(z)︸ ︷︷ ︸
valid expression (yes/no)?

I lm: convenient for making strong assumptions about our output
language, facilitates constrained decoding.

I code case: make assumptions about what constitutes a valid
function in a given API.

14



Text to Signature Translation: How Hard Is It?

I Initial approach: noisy-channel (nc) classical translation:

semparnc(x, z) = pθ(x | z)︸ ︷︷ ︸
trans model

× plm(z)︸ ︷︷ ︸
valid expression (yes/no)?

I lm: convenient for making strong assumptions about our output
language, facilitates constrained decoding.

I code case: make assumptions about what constitutes a valid
function in a given API.

14



Text to Signature Translation: How Hard Is It?

I Our Approach: Lexical translation model (standard estimation),
discriminative reranker, hard constraints on p(z).

text Returns a string representing the given day-of-week
Moses (second day-of-week ignore string)
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I Our Approach: Lexical translation model (standard estimation),
discriminative reranker, hard constraints on p(z).

text Returns a string representing the given day-of-week
Moses (second day-of-week ignore string)

I Result: achieving high accuracy is not easy, not a trivial problem.
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Text to Signature Translation: How Hard Is It?
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Text to Signature Translation: How Hard Is It?

I Our Approach: Lexical translation model (standard estimation),
discriminative reranker, hard constraints on p(z).

text Returns the index of the first occurrrence of char in the string
Moses (start end occurrence lambda char string string string)

I Observation: semantic parsing is not an unconstrained MT problem.
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What do these results mean? Code Retrieval Again

Dataset(Avg.) Accuracy @1 (average) Accuracy @10 (average)
Stdlib 31.1 71.0
Py27 32.3 73.5

16



so far: Semantic parsing as constrained translation, API as parallel corpus.

</Challenge 1>
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Challenge 2: Insufficient and Missing Data

(en,PHP)
(en,Lisp)
(de, PHP)

(ja, Python)
(en, Haskell)

...

θen → PHP

θen → Lisp

θde → PHP

θja → Python

θen → Haskell

I Traditional approaches to semantic parsing train individual models for
each available parallel dataset.

I Underlying Challenge: Datasets tend to be small, hard and unlikely to
get certain types of parallel data, e.g., (de,Haskell).
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Code Domain: Projects often Lack Documentation

I Ideally, we want each dataset to have tens of thousands of documented
functions.

I Most projects have 500 or less documented functions.
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Polyglot Models: Training on Multiple Datasets

(en,PHP)
(en,Lisp)
(de, PHP)

(ja, Python)
(en, Haskell)

...

θpolyglot

I Idea: concatenate all datasets into one, build a single-model with shared
parameters, capture redundancy (Herzig and Berant, 2017).

I Polyglot Translator: translates from any input language to any output
(programming) language.

1. Multiple Datasets: Does this help learn better translators?

2. Zero-Short Translation (Johnson et al., 2016): Can we translate
between different APIs and unobserved language pairs?
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Graph Based Approach

0.00

s0

∞5

s5

∞1

s1

∞6

s6

∞2

s2
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s7
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s82C
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numeric
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math

math
ceil

atan2

atan2

ceil

x

x
arg

y

I Requirements: must generate well-formed output, be able to translate to
target languages on demand.

I Idea: Exploit finite-ness of translation space, represent full search space
as directed acyclic graph (DAG), add artifical language tokens.

I Decoding (test time): Reduces to finding a path given an input x:

x : The ceiling of a number

We formulate search in terms of single source shortest shortest-path
(SSSP) search (Cormen et al., 2009) on DAGs.
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Shortest Path Decoding in a Nutshell

I Standard SSSP: Traverse labeled edges E (label z) in order (e.g., sorted
or best-first order), and solve for each node v the following recurrence:

d [v ]︸︷︷︸
↑

node score

= min
(u,v ,z)∈E

{
d [u]︸︷︷︸
↑

incoming node score

+ w(u, v , z)︸ ︷︷ ︸
↑

edge score

}

I Use trained translation model to dynamically weight edges, general
framework for directly comparing models (Richardson et al., 2018).

I constrained decoding: ensure that output is well-formed, related
efforts: (Krishnamurthy et al., 2017; Yin and Neubig, 2017).
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DAG Decoding for Neural Semantic Parsing (Example)

I Seq2Seq: popular in semantic parsing (Dong and Lapata, 2016), variants
of (Bahdanau et al., 2014), direct decoder model (unconstrained):

p(z | x) = ConditionalRNNLM(z)

=
|z|∏
i

pΘ(zi | z<i , x)

I DAGs G = (V ,E), numerically sorted nodes (acyclic), trained decoder.

0: d[b]← 0.0
1: for vertex u ∈ V in topologically sorted order
2: do d(v) = min

(u,v,z)∈E

{
d(u) + w(u, v , z)

}
3: s[v ]← RNN state for min edgeandzj
4: return min

v∈V

{
d(v)

}
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|z|∏
i

pΘ(zi | z<i , x)

I DAGs G = (V ,E), numerically sorted nodes (acyclic), trained decoder.

0: d[b]← 0.0
1: for node v ∈ V in topologically sorted order
2: do d(v) = min

(u,v,z)∈E

{
d(u) + w(u, v , z)

}
3: s[v ]← RNN state for min edgeandzj
4: return min

v∈V

{
d(v)

}
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Training on Multiple Datasets: Does this help?

I Strategy: train models on multiple datasets (polyglot models), decoding
to target languages and check for improvement.

Method Acc@1 (averaged)

M
ul

til
in

gu
al

G
eo

qu
er

y

m
on

o.

UBL Kwiatkowski et al. (2010) 74.2
TreeTrans Jones et al. (2012) 76.8
Lexical SMT SSSP 68.6

po
ly.

Best Seq2Seq SSSP 78.0
Lexical SMT SSSP 67.3
Best Seq2Seq SSSP 79.6

Method Acc@1 Acc@10 MRR

st
dl

ib

mono. Best Monolingual Model 29.9 69.2 43.1
poly. Lexical SMT SSSP 33.2 70.7 45.9

Best Seq2Seq SSSP 13.9 36.5 21.5

py
27

mono. Best Monolingual Model 32.4 73.5 46.5
poly. Lexical SMT SSSP 41.3 77.7 54.1

Best Seq2Seq SSSP 9.0 26.9 15.1

I Findings: Polyglot modeling can help improve accuracy depending on the
model used, Seq2Seq models did not perform well on code datasets.
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New Tasks: Any/Mixed Language Decoding

I Any Language Decoding: translating between multiple APIs, letting the
decoder decide output language.

1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Translation: public string Throwable::getMessage ( void )

Language: Java Translation: public String lang.getMessage( void )
Language: Clojure Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Translation: String#toutf16 => string
Language: Haskell Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Translation: tools.pinv2( a,cond=None,rcond=None )

Challenge 2: Can be used for finding missing data, data augmentation.

25



New Tasks: Any/Mixed Language Decoding

I Any Language Decoding: translating between multiple APIs, letting the
decoder decide output language.

1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Translation: public string Throwable::getMessage ( void )

Language: Java Translation: public String lang.getMessage( void )
Language: Clojure Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Translation: String#toutf16 => string
Language: Haskell Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Translation: tools.pinv2( a,cond=None,rcond=None )

Challenge 2: Can be used for finding missing data, data augmentation.

25



New Tasks: Any/Mixed Language Decoding

I Any Language Decoding: translating between multiple APIs, letting the
decoder decide output language.

1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Translation: public string Throwable::getMessage ( void )

Language: Java Translation: public String lang.getMessage( void )
Language: Clojure Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Translation: String#toutf16 => string
Language: Haskell Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Translation: tools.pinv2( a,cond=None,rcond=None )

Challenge 2: Can be used for finding missing data, data augmentation.

25



New Tasks: Any/Mixed Language Decoding

I Mixed Language Decoding: translating from input with NPs from
multiple languages, introduced a new mixed GeoQuery test set.

Mixed Lang. Input: Wie hoch liegt der höchstgelegene punkt in Αλαμπάμα?
LF: answer(elevation 1(highest(place(loc 2(stateid(’alabama’))))))

Method Accuracy (averaged)
Mixed Best Monolingual Seq2Seq 4.2

Polyglot Seq2Seq 75.2
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</Challenge 2>
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<Challenge 3>

Training challenge 2: Missing Data? challenge 3: Deficient LFs?

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

input Semantic Parsing sem

x decoding z

world
reasoning

model

27



Semantic Parsing and Entailment

I Entailment: One of the basic aims of semantics (Montague, 1970).
I Representations should be grounded in judgements about entailment.

input sem

All samples that contain
a major element

→
Some sample that contains
a major element

database
JsemK ={S10019,S10059,...} ⊇ {S10019}

Semantic Parsing

Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation
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Semantic Parsing and Entailment

I Entailment: One of the basic aims of semantics (Montague, 1970).
I Representations should be grounded in judgements about entailment.

Entailment as a Unit Test: For a set of target sentences,
check that our semantic model (via some analysis for each
sentence, e.g., an LF) accounts for particular entailment pat-
terns observed between pairs of sentences; modify our model
when such tests fail.

sentence analysis
t All samples that contain a major element LFt
h Some sample that contains a major element LFh

inference t→ h Entailment (RTE1)
inference h→ t Unknown (RTE)

1Would a person reading t ordinarily infer h? (Dagan et al., 2005)
28



Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers?
I Sportscaster: ≈1,800 Robocup soccer descriptions paired with logical

forms (LFs) (Chen and Mooney, 2008).

sentence analysis
t Pink 3 passes to Pink 7 pass(pink3,pink7)
h Pink 3 quickly kicks to Pink 7 pass(pink3,pink7)
inference (human) t→ h Unknown (RTE)
inference (LF match) t→ h Entail (RTE)
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Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers?
I Sportscaster: ≈1,800 Robocup soccer descriptions paired with logical

forms (LFs) (Chen and Mooney, 2008).

sentence analysis
t The pink goalie passes to pink 7 pass(pink1,pink7)
h Pink 1 kicks the ball kick(pink1)
inference (human) t→ h Entail (RTE)
inference (LF match) t→ h Contradict (RTE)
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Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers?
I Sportscaster: ≈1,800 Robocup soccer descriptions paired with logical

forms (LFs) (Chen and Mooney, 2008).

Inference Model Accuracy
Majority Baseline 33.1%
RTE Classifier 52.4%
LF Matching 59.6%
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Challenge 3: Deficient LFs, Missing Knowledge

I Underlying Challenge: Semantic representations are underspecified, fail
to capture entailments, background knowledge missing.

I Goal: Capture the missing knowledge and inferential properties of text,
incorporate entailment information into learning.

I Solution: Use entailment information (EI) and logical inference as weak
signal to train parser, jointly optimize model to reason about entailment.

Paradigm and Supervision Dataset D = Learning Goal

Learning from LFs {(inputi , LFi )}N
i input

Trans.
−−−−→ LF

Learning from Entailment {(inputt , input′
h)i , EIi )}N

i (inputt , input′
h)

Proof
−−−→ EI
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Learning from Entailment: Illustration
I Entailments are used to reason about target symbols and find holes in the

analyses.

input: (t,h) t pink3 λ passes to pink1

a

h pink3 quickly kicks λ

y
pink3 ≡ pink3

I
pink3 ≡ pink3

λ wvc
I

λ w quickly

pass v kick, pink1 v λ
./

passes to pink1 v kicks
./

passes to pink 1 # quickly kicks
./

pink3 passes to pink1 # pink3 quickly kicks

EI z Uncertain

world

pink3/pink3

λ/wc

pass/kick

pink1/λ

Data: D = {((t, h)i , zi )}N
i=1, generic logical calculus. Task: learn (latent) proof y
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Grammar Approach: Sentences to Logical Form

I Use a semantic CFG, rules constructed from target representations using
small set of templates (Börschinger et al. (2011))

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (rule extraction)

Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple7c

purple7w

purple 10

kick(purple10) kick(purple10) block(purple7) block(purple9)
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small set of templates (Börschinger et al. (2011))

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (rule extraction)

X X × ×
Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple9c

purple9w

purple 10

kick(purple10) kick(purple10) block(purple7) block(purple9)

32



Semantic Parsing as Grammatical Inference

I Rules used to define a PCFG Gθ, learn correct derivations.
I Learning: EM bootstrapping approach (Angeli et al., 2012), maximum

(marginal) likelihood with beam search.

input d

Purple 7 kicks to Purple 4

world
z = {pass(purple7,purple4)}

Beam Parser θt

Interpretation

d1

Semsv

play-transitive

playerarg2

purple4c

purple 4

passr

passc

passes to

playerarg1

purple7c

purple 7

d2

Semsv

play-transitive

playerarg2

purple4c

purple 4

turnoverr

turnoverc

passes to

playerarg1

purple7c

purple 7

d3

Semsv

play-transitive

playerarg2

purple8c

purple 8

kickr

passc

passes to

playerarg1

purple7c

purple 7

d4

Semsv

playerarg1

play-transitive

passr

passc

purple 4

playerarg2

purple4c

passes to

playerarg1

purple7c

purple 7

... ... dk ...

k-best list
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Semantic Parsing as Grammatical Inference

I Rules used to define a PCFG Gθ, learn correct derivations.
I Learning: EM bootstrapping approach (Angeli et al., 2012), maximum

(marginal) likelihood with beam search.

input d

Purple 7 kicks to Purple 4

world
z = {pass(purple7,purple4)}

Beam Parser θt

Interpretation

d1

Semsv

play-transitive

playerarg2
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passr

passc
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d4
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play-transitive

passr

passc

purple 4

playerarg2
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passes to

playerarg1

purple7c

purple 7

... ... dk ...

k-best list

θt+1
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Joint Entailment Modeling and Reasoning

I Weakly-supervised semantic parsing (Liang et al., 2013; Berant et al.,
2013), treat as partially-observed random process (Guu et al., 2017).

x = (t, h), z ∈ {Entail, Contradict, Unknown}

p(z | x) =
∑

y∈Yx︸︷︷︸
proofs

p(z | y)︸ ︷︷ ︸
↑

valid inference?

× pθ(y | x)︸ ︷︷ ︸
↑

proof score

I p(z | y) : 1 if proof derives correct entailment, 0 otherwise

I pθ(y | x): Model proof structures and rules as PCFG, use variant of
natural logic calculus (MacCartney and Manning, 2009).

I Results in an interesting probabilistic logic, efficient proof
search via reduction to (P)CFG search.
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Learning Entailment Rules
I Integrates a symbolic reasoner directly into the semantic parser, allows for

joint training using a single generative model.
I Learning: Grammatical inference problem as before, maximum

(marginal) likelihood with beam search (Yx ≈ kbest(x)).

input d
t: pink 1 kicks
h: pink 1 quickly passes to pink 2

world

z = Uncertain

Beam Parser θt

Interpretation

d1

w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

wc

λ/ v

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d2

w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d3

|

|

w

λ/pink2

λ/ pink2

|

|

kick/pass

kicks / passes to

wc

λ/ v

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

d4

|

|

w

λ/pink2

λ/ pink2

|

|

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

... ... dk ...

k-best list

θt+1
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Reasoning about Entailment
I Improving the internal representations (before, a, after, b).

a.

Semsv

play-transitive

playerarg2

purple6c

6c

6 under pressure

purplec

purple

passr

passc

passp

passes to

playerarg1

purple9c

purple 9

b

Semsv

play-transitive

playerarg2

vc

vp

under pressure

purple6c

purple 6

passr

passc

passp

passes to

playerarg1

purple9c

purple 9
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Reasoning about Entailment
I Learned modifiers from example proofs trees.

(t, h): (a beautiful pass to,passes to) (gets a free kick,freekick from the)

analysis:

vc ./≡play-tran=vplay-tran

modifier
≡play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /λ

“a beautiful”/λ

≡c ./≡game-play=≡game-play

modifier
≡game-play

freekick/freekick

“free kick” / “freekick from the”

≡c

≡c /λ

“gets a”/λ

generalization: beautiful(X) v X get(X) ≡ X

(t, h): (yet again passes to,kicks to) (purple 10,purple 10 who is out front)

analysis:

vc ./≡play-tran.=vplay-tran

modifier

≡play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /λ

“yet again”/λ

≡playerarg2 ./wc=wplayerarg2

modifier

wc

λ/ vc

λ/“who is out front”

≡playerarg2

purple10/purple10

“purple 10”/“purple 10”

generalization: yet-again(X) v X X w out front(X)
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Reasoning about Entailment
I Learned lexical relations from example proof trees

(t, h): (pink team is offsides,purple 9 passes) (bad pass.., loses the ball to)

analysis:

|teamarg1

substitute

pink team/purple9

“pink team’/“purple 9”

vplay-tran

substitute

bad pass/turnover

“bad pass .. picked off by”/“loses the ball to”

relation: pink team | purple9 bad pass v turnover

(t, h): (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)

analysis:

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

vplay-tran.

substitute

pass/kick

“kicks to”/“kicks’

relation: free kick| steal pass v kick
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Learning from Entailment: Summary

I New Evaluation: Evaluating semantic parsers on recognizing textual
entailment, check if we are learning the missing information.

Inference Model Accuracy
Majority Baseline 33.1%
RTE Classifier 52.4%
LF Matching 59.6%
Logical Inference Model 73.4%

I Entailments prove to be a good learning signal for learning improved
representations (joint models also achieve SOTA on original semantic
parsing task).
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</Challenge 3>
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Conclusions and Looking Ahead
challenge 1: Getting data?
Solution: Look to the technical docs,
source code as a parallel corpus.

Training
challenge 2: Missing Data?
Solution: Polyglot modeling
over multiple datasets.

challenge 3: Deficient LFs?
Solution: Learning from
entailment, RTE training.

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

input Semantic Parsing sem

x decoding z

model

I Technical topics: graph-based constrained decoding, (probabilistic)
logics for joint semantic parsing and reasoning.

I Looking ahead: more work on end-to-end NLU, neural learning from
entailment?, structured decoding frameworks, code retrieval.
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Source Code and NLU: Beyond Text-to-Code Translation
Returns the greater of two long valuesy

Signature (informal) lang Math long max(long a,long b)
Normalized java lang Math::max(long:a,long:b) -> long

Expansion to Logic

Jjava lang Math::max(long:a,long:b) -> longK
m

λx1λx2∃v∃f ∃n∃c eq(v, max(x1, x2)) ∧ fun(f , max) ∧ type(v ,long)
∧ lang(f ,java)
∧ var(x1,a) ∧ param(x1,f ,1) ∧ type(x1,long)
∧ var(x2,b) ∧ param(x2,f ,2) ∧ type(x2,long)
∧ namespace(n,lang) ∧ in namespace(f ,n)
∧ class(c,Math) ∧ in class(f ,c)

I What do signature actually mean? Signatures can be given a formal
semantics (Richardson, 2018).

I Might prove to a good resource for investigating end-to-end NLU and
symbolic reasoning, APIs contain loads of declarative knowledge.

I see Neubig and Allamnis NAACL18 tutorial Modeling NL,
Programs and their Intersection. and Allamanis et al. (2018).
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Thank You
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