
Linguistic facts

as predicates over ranges of the sentence

Benôıt Sagot

INRIA-Rocquencourt, Projet Atoll, Domaine de Voluceau, Rocquencourt B.P. 105
78 153 Le Chesnay Cedex, France

Abstract. This paper introduces a novel approach to language process-
ing, in which linguistic facts are represented as predicates over ranges of
the intput text, usually, but not limited to, ranges of the current sentence.
Such an approch allows to build non-linear analyses with a polynomial
parsing complexity that take into account simultaneously and with the
same technical status morphological, syntactical and semantical proper-
ties, this list being non limitative. Classical analyses, such as constituency
trees, dependency graphs, topological boxes and predicate-arguments se-
mantics are then obtained as partial projection of a complete analysis.
The formalism presented here is based upon Range Concatenation Gram-
mars (hereafter RCG), and has been successfully implemented, thanks to
a previously existing RCG parser and a syntactico-semantical grammar
for French.

1 Introduction

The definition of an adequate formalism for natural language processing consists
in the search of an optimal balance between linguistic validity and computational
efficiency. Moreover, a newly defined formalism can be considered interesting
only if it is really implemented, with a complete parser and a large-coverage
grammar for an example language, and if it shows interesting properties that
are not present in other formalisms, or at a more expensive computational cost.

In this paper, we introduce a new formalism that, we think, has all the
above-mentioned properties. This formalism relies on the hypothesis that lin-
guistic properties are best described as predicates over continuous ranges of
the input sentence1 or of a bounded amount of extra tokens (e.g. contextual
syntagms2). Range Concatenation Grammars (hereafter RCGs), introduced by
Boullier, provide a appropriate basis to develop such a formalism. In the remain-
der, we will present RCGs and their most important properties. Then we will
introduce our formalism, called Meta-RCG, whose grammars can be converted
into RCGs. Finally we will present a fragment of our grammar for French through

1 In itself this idea is not new, and has been used for example in Datalog grammars [1]
or in the constraint logic programming implementations of Property Grammars [2].
However, as made clear later, our formalism relies also on three fundamental prop-
erties of RCGs: range concatenation, non-linearity and parsing time polynomiality.

2 This possibility, already implemented, will not be treated in this paper.

two examples, in order to show how morphological, syntactical and semantical
properties interact continuously with each other, leading to global analyses from
which classical analyses (constituency tree, dependency graph, topological boxes,
predicate-arguments semantics) can be extracted.

It is worth saying that one of the most important motivations for this work is
to develop a formalism in which the two following major constraints are satisfied:

– Morphology, syntax, and, more originally, lexical semantics (and if possible
more general semantics) are dealt with simultaneously during parsing; in par-
ticular, there must be no artificial boundary between a syntactic backbone,
syntactic features (or decorations) and lexical semantics.

– Parsing must be computationally tractable, and we make the hypothesis that
we can assume a polynomial parsing time.

We discuss these hypotheses more deeply at the beginning of section 3.

2 Range Concatenation Grammars

Range Concatenation Grammars (RCGs) have been introduced by Boullier (see
for example [3], and applications thereof in [4]). They defined a class of languages,
Range Concatenation Langages (RCLs), that covers exactly PTIME, the class
of all languages recognizable in deterministic polynomial time. Therefore, RCGs
are more powerful than all Mildly Context-Sensitive formalisms, such as Linear
Context-Free Rewriting Systems (LCFRS) or Multi-Component Tree-Adjoining
Grammars (MC-TAGs), while remaining computationally tractable. We shall
now define formally RCGs, following [3].

2.1 Positive RCGs

A positive RCG is a 5-tuple G = (N,T, V, P, S) in which:

– N is a finite set of predicate names,
– T is a finite set of terminal symbols,
– V is a finite set of variable symbols such as T ∩ V = ∅,
– S ∈ N is the axiom,
– P is a finite set of clauses, which are defined hereafter.

A clause C has the form ψ0 → ψ1 . . . ψj . . . ψm, where m ≥ 0 and each ψj is a
predicate of the form A(α1, . . . , αi, . . . , αp), where p ≥ 1 is its arity, A ∈ N , and
each αi is an argument of A. Each argument αi of A has the form X1 . . .Xl . . .Xq,
where each Xl is in V ∪ T . The left-hand part of C is ψ0, its right-hand part is
ψ1 . . . ψj . . . ψm. The predicates of the right-hand side form a set of predicates,
which means that order does not matter and that duplicating a predicate is
useless. In the following, we will abusively denote a predicate by its name, thus
speaking of the predicate A. The arity of the axiom has to be 1, and the arity of a
predicate A is fixed. We call A-clause a clause whose left-hand side predicate is A.

We define the arity of an A-clause by the arity of A, and the arity of a grammar
by the maximal arity of its predicates. An RCG of arity k is a k-RCG.

As said before, the definition of a language by an RCG relies on the notion
of range of the input string. Given a string w = a1 . . . an of terminal symbols
(w ∈ T ∗), each pair of integers (i, j) such as 0 ≤ i ≤ j ≤ n is called a range of w
and is denoted 〈i..j〉w or i..j if w can be omitted, i and j being respectively the
lower and upper bound of the range, and j−i its size. If i = j, the range is empty.
Two ranges are equal if and only if their lower and upper bounds are respectively
equal3. A range 〈i..j〉w corresponds to a substring of w, namely ai+1 . . . aj . The
concatenation of two ranges i..j and k..l is defined if and only if j = k and is in
this case the range i..l.

Variable symbols and terminal symbols denote ranges. A terminal symbol
t denotes a range of length 1 corresponding to a substring of w that is the
symbol t. The concatenation XY of two variable or terminal symbols X and Y

(X,Y∈ V ∪ T) denotes the range resulting from the concatenation of the ranges
denoted respectively by X and Y, and is therefore defined if and only if these
ranges can be concatenated. We often (abusively) denote by the range X, where
X is a variable symbol, the range that is denoted by X.

Given w ∈ T ∗, we call w-instantiated predicate or simply instantiated predi-
cate a predicate in which all variable and terminal symbols have been replaced
by ranges of w, and all ranges of the same argument of the same predicate have
then been replaced by the range resulting from their concatenation. If this is
possible, the predicate is said to be instantiable by w. For example, if the length
of w is 3 (w = a1a2a3), a possible instantiation for the predicate A(XY,a3,a2Y)

is A(0..3, 2..3, 1..3). We define in the same way instantiated clauses. The argu-
ments of a predicate (but not different variables of the same argument) can of
course be replaced by discontinuous, or even overlapping ranges, since the same
variable can occur in several arguments of several predicates of a clause. This is
denoted as the non-linerarity of RCGs, and allows to express different points of
view or properties on a given range that interact with each other. As we will see
below, this is a major advantage of RCGs for linguistic use. More generally, it is
because of this non-linearity that RCGs have the necessary expressive power to
cover all PTIME.

For a given positive RCG G and an input string w, a binary derive relation,
denoted by =⇒

G,w
, and having as operands sets of instantiated predicates, by the

following. Let Γ1 γ Γ2 be an instantiated right-hand side of some clause (and
thus a set of predicates, as said before), where γ is also the left-hand side of the
instantiated clause γ → Γ . We have then Γ1 γ Γ2 =⇒

G,w
Γ1 Γ Γ2.

A string w ∈ T ∗ of length n is recognized by the grammar G if and only an
empty list of predicates can be derived from the instantiated predicate S(0..n)

(S being the axiom), i.e. if and only if S(0..n)
+

=⇒
G,w

ε, the binary relation
+

=⇒
G,w

being the transitive closure of =⇒
G,w

.

3 Therefore, if i1 6= i2, the ranges i1..i1 and i2..i2, while both empty, are not equal.

For example, let us consider the non semi-linear language L = {a2p

| p ≥ 0}.
The following positive RCG recognizes this language:

S(XY) → S(X) EQ(X,Y)

S(a) → ε

EQ(aX,aY)→ EQ(X,Y)

EQ(ε,ε) → ε

Indeed, this grammar recognizes the input string a thanks to the second
clause. And an input string consisting of 2p times a (p ≥ 1) is decomposed by
the first clause in two ranges that must have the same length (predicate EQ4)
and denote a (same) substring that has to be in L as well (of length 2p−1).

2.2 Negative RCGs

Positive RCGs cover PTIME. Therefore, the set of languages that can be rec-
ognized by a positive RCG is closed under complementation. For this reason,
it is only for practical reasons, and not to increase the expressing power of the
formalism, that negative predicate can be introduced.

Indeed, we call negative predicate a predicate marked as such, either by a
bar over the predicate (A(. . .)), or by the symbol ! in front of it (!A(. . .)),
the intended meaning being based on ”negation by failure”: the empty list of
instantiated predicates can be derived from an instantiated negative predicate
if and only if it can not be derived from its positive counterpart.

We call negative RCG an RCG that has at least one clause containing in its
right-hand part at least one negative predicate. A negative RCG is consistent if,
for any w ∈ T ∗, there is no w-instantiated predicate A(. . .) such that the empty
list of predicates can be derived from both A(. . .) and !A(. . .).

2.3 Closure properties

It can be shown easily [3] that RCLs are closed under union, concatenation,
Kleene iteration, and, more interestingly, intersection and complementation. The
grammars recognizing the operand languages need not be modified. One or two
more suffices. In a rather informal way, and with S1 and S2 being the axioms of
RCGs recognizing respectively the languages L1 and L2, we can get the closures
by adding the following clauses, S being the axiom of the resulting language:

Union S(X) → S1(X)

S(X) → S2(X)

Concatenation S(XY) → S1(X) S2(Y)

Intersection S(X) → S1(X) S2(X)

Kleene iteration S(ε) → ε

S(XY) → S1(X) S(Y)

Complementation S(X) → !S1(X)

4 The notation ε groups in a rather confusing way two different things, as visible in the
last clause of the grammar given as example: it can denote either an empty string,
i.e. an element of T

∗, or an empty list (or set) of predicates.

2.4 Parsing

Range Concatenation Languages can be recognized and analysed in polynomial
time. More precisely, let |G| be the size of the k-RCG G, defined as the sum of
the number of right-hand side predicates over all its clauses, and l the maximum
number of right-hand side predicates in the longest clause. In [3], Boullier gives
an algorithm that is O(|G|n2k(1+l)) in time.

Moreover, Boullier has developed an efficient RCG-parser that has been al-
ready used to build TAG and MC-TAG parsers after an appropriate conversion
step, with excellent efficiency results [7].

3 Introducing Meta-RCGs

Range Concatenation Grammars are a powerful though efficient formalism that
can be seen as logic programming on ranges of the input string. For this reason,
and for others (see [5]), it is a suitable basis to develop a linguistic formalism,
but is not satisfying as such. Indeed, a linguistic formalism is almost always
twofold, since on the one hand it builds the structure of the sentence, and on the
other hand it computes features on this structure. In most formalisms, such as
TAGs, LFGs, HPSGs, Dependency Grammars or Categorial Grammars, these
two aspects are processed with different operators or even different mechanisms,
not necessary simultaneous. In some cases, this leads to imprecise or excessive
expressive power for the resulting formalism, and, if the separation between
these two aspects is too strict, this also leads to problems concerning, for exam-
ple, combinatorial explosion, error recovery algorithms, or automatic learning
(dealing with unknown words).

Moreover, the limit between the structural backbone (often purely syntactic)
and the features computed over it (often referred to as decorations), is hardly
linguistically justified. Its position is not precisely and uniquely defined: a given
formalism or implementation of a formalism can implement a linguistic property
in the backbone, an other one treating it as a feature. On the other side, the
linearity of most formalisms, i.e. their non-ability to reuse several times the same
range of the sentence, makes it impossible to include additional information
inside the grammar, such as lexical semantic constraints, in a satisfying way
(i.e. not only as a limited set of ”semantic” features that are not avoidable for
linguistic reasons, but really as a complete set of semantic predicates).

For all these reasons, it seems appropriate to implement, if it is possible,
all linguistically-motivated ”decorations” inside the grammatical formalism that
describes the structural backbone. Furthermore, we make the hypothesis that
parsing natural language is possible in a polynomial time5. Thus, our linguistic

5 Even the parsing of the syntax only of natural language probably needs the expressive
power of RCGs, i.e. all PTIME. Indeed, it can be shown (see for example [5] and
references therein) that some specific phenomena in some languages are beyond the
expressive power of Mildly Context-Sensitive languages, and thus by formalisms as
powerful as LCFRS (e.g. Chinese numbers, genitives in old Georgian, scrambling in
German, or multiple verbs coordinates in Dutch).

formalism can be seen as decorated RCGs that can be compiled into pure RCGs.
In the remaining of this section, we shall define our formalism, called Meta-RCGs
(or MRCG), which defines over RCGs these decorations and the way they can be
converted into RCG predicates and/or arguments. The borderline between the
structure and the decorations is defined precisely by the following: a decoration
is a property of (a portion of) an analysis, and the structure retains all properties
of ranges.

The main idea underlying this approach is that the non-linearity of RCGs
allows to treat as structural predicates (and not as decorations) several different
linguistic facts over the same ranges. For example, syntactic and lexical semantic
facts are used simultaneously. However, in a linguistic grammar, the analysis
of a given range of the input string can be ambiguous. Therefore, the use we
make of non-linearity has to be able to guarantee that all facts expressed in
a global analysis about a given range are compatible: we have to prevent the
apparition of analyses where such a range is analysed in a first way in one
part of the global analysis, and in an other incompatible way in an other part
of the analysis. However, it is not possible in a polynomial way to label the
complete analysis of a range for later identification and re-use. Therefore, it is
necessary to define a polynomial amount of information that will be exported
by ranges to other parts of the analysis. This is what is done in our formalism,
where this amount of information regroups the heads of a syntagm and features
(decorations) associated to it, which will be made accessible at different parts of
the analysis thanks to contexts. The remainder of the analysis of this syntagm
will be inaccessible from the ”outside”.

Let GRCG = (N,T, V, P, S) be a classic RCG, as defined above. We will
define an associated Meta-RCG (hereafter MRCG) GMRCG extending GRCG

(the extension concerns grammars, not necessarily associated languages). For
this, we will first go through preliminary remarks and new definitions.

3.1 Heads

While controversial by many aspects, the notion of head of a syntagm is widespread
in linguistic literature, and has been intensively used by many grammatical
frameworks, such as HPSG [6], but also LFG, Dependency Grammars, and oth-
ers. We introduce heads (and coordinating items separating them) by extending
the notion of argument in the following way: we call MRCG-argument, or more
simply argument one of the following items:

– an (RCG-)argument, i.e. as said before the concatenation of elements of
V ∪ T ,

– a head-coordination argument or hc-argument, i.e. an element of V followed
by the operator ∧ or the operator !,

– a single-head argument, or sc-argument, i.e. an element of V followed by the
operator +,

– a head-adding argument or ha-argument, i.e. an argument of the form V1
+V2

+V3
∧.

An argument that is not a classical RCG-argument is called a syntagmatic argu-
ment. The intended meaning is the following. If Syntagm is a range denoting a
syntagm, Syntagm∧ denotes a pair of lists, the first one being the list of its heads
and the second one the list of the coordinating items that are between them.
Hence, if the substring corresponding to Syntagm is ”an apple or a pear”, a rea-
sonable grammar will give an analysis such as Syntagm∧ includes a list of heads
covering ”apple” and ”pear” and a list of coordination items covering ”or”. The
argument Syntagm! is the same thing, but with a number of heads (respectively
coordination items) that is exactly 1 (respectively 0). A single-head argument
V+ creates a syntagmatic argument made out of a list of heads containing only
one element, V (thus, it has to be of length 1), and an empty list of coordinat-
ing items. Finally, a ha-argument V1

+V2
+V3

∧ is a syntagmatic argument whose
heads list is the concatenation of V1 and the heads list of V∧3 , and whose coor-
dination items list is the concatenation of V2 and the coordination items list of
V∧3 .

For example, and for illustration purposes only, a clause analysing (recur-
sively) as a nominal group6 a simple coordination of basic nominal groups could
look like the following:

NP(Det Head Coord Np2,Head+Coord+Np2∧)

→ NOUN(Head) DET(Det,Head) COORD(Coord) NP(Np2,Np2∧).

3.2 Features and homonym numbers

A feature (or attribute) can be defined as a (finite) vector F = (f1, . . . , fn).
A constant value of the feature F is an element of F. A variable value of the
feature F is the concatenation of the operator $ and an element of a set of
variable feature-values symbol, Vf (for example, if g ∈ Vf , $g is a valid variable
value for F). We call features list a list of feature names. An attribute-value pair,
or av-pair, is of the form F = v, where F is the name of a feature and v is a
constant or variable value of F. Finally, an attribute-value pairs list, or av-list,
is a sequence of av-pairs in which an attribute can appear at most once in an
av-pair.

We call homonym number a vector similar to a feature, defined as HN =
(0, . . . , hmax). First, we define a terminal argument as an argument that has
at most one variable, and that denotes a range of maximal length 1. The role
of a homonym number is then to associate some terminal arguments of some
predicates a special number that allows to distinguish between two homonymous
terminals (i.e. words). For each predicate, a special function homonymous-args
gives the list of the positions of its arguments that have such an homonym
number. But these numbers are not apparent in MRCG-clauses.

3.3 Contexts

We define a contextual item as an element Ctxt of the set V of variable symbols
possibly followed by the operator / or by the operator ∧, and possibly followed

6 We do not use here the phrase noun phrase for a reason that will be explained later.

by the operator : and a features list. The role of contextual items is to modelize
long-distance dependencies. For this reason, and although declarative as our
whole formalism, the intended meaning of contexts is more easily described with
an operational point of view. Long distance dependencies will be treated in 2
steps that share common points with the Slash feature of HPSG: at one point
of the analysis, a contextual item is built out of the concerned syntagm and
”pushed” into the predicate-dependant context of the concerned predicate, A. All
predicates related to A that can accept this context and for which no new value
is explicitly given will inherit this value, thus transporting the context to other
parts of the analysis. At some (arbitrarily distant) other point of the analysis,
this contextual item, its heads and/or its features can be put into arguments (or
”dropped”, or ”popped”) and used.

Hence both operators, with the following meanings: the / operator means
that the features list associated to the range Ctxt (this features list is in this
case mandatory) is pushed into the context, but not Ctxt itself. The operator
∧ means that the range Ctxt is a syntagm, and that its heads and coordination
items, i.e. Ctxt∧, have also to be pushed along with the range Ctxt in the
context.

The percolation of contextual items from one point of the analysis to an
other is allowed by a special function that needs to be defined, called context-
of. This function is defined over the set N of predicate names and, for a given
predicate, returns a list of contextual items. The meaning of this function is the
following: given a predicate name A, the contextual items in context-of(A) are
associated to all occurrences of A predicates. Suppose that, in a given clause, the
same contextual item Ctxt (or its heads, or some of its associated features) is
associated to more than one predicate. All such predicates that are on the right-
hand side and that explicitly re-define the value of Ctxt will get this value. And
all such predicates that are on the right-hand side and that do not re-define the
value of Ctxt will share its value with the one of the left-hand side predicate. On
the left-hand side, the value of Ctxt (or of Ctxt∧ or of some of its features) can
be equated to a real range (or to a feature value, if appropriate). For example, if
a contextual item Ctxt is associated to both predicate names A and B, and if no
specific equation redefines a new value of Ctxt for predicate B, then a clause such
as A(X) → B(X) will ensure that the contextual item denoted by Ctxt is passed
to the predicate B in the same way as the range denoted by X. We define only one
operation on contexts, denoted by the operator =. When applied to a contextual
range or contextual heads/coordinations, it is a range-equality operator. When
applied to contextual features, it is a value-equality operator. The feature F of
a contextual item Ctxt is accessible through a special dot operator with the
following syntax: Ctxt.F. The distinction between a ”push” and a ”drop” (or
”pop”) lies only in the fact that the = operation is done on the left-hand side
predicate (”drop”) or on a right-hand side predicate (”push”), a direct use of
Ctxt as a standard range in the right-hand side corresponding also to a ”drop”.

Finally, we call context-value pair, cv-pair or contextual equation, an expres-
sion of the form Ctxt=Range or Ctxt.F=v. We will see examples when we have

defined the complete MRCG syntax.

3.4 MRCG

MRCG clauses are an extension of RCG clauses, since predicates are replaced
by meta-RCG predicates of the following form:

A(α1, . . . , αi, . . . , αp)[φ1 . . . φj . . . φq]{κ1 . . . κk . . . κr},

where αi are MRCG-arguments, φj are av-pairs (equations on features), and
κk are cv-pairs (contextual equations). The features part and the contextual
part are facultative. For example, using LDDep as a shortcut for ”long-distance
dependency syntagm”, here is a valid MRCG-clause, assuming that context-
of(NP)= (LDDep∧:number,case):

VP(Verb,Verb+){LDDep.case=accusative} →
VERB(Verb)

OBJ(LDDep, LDDep∧,Verb)[number=LDDep.number]{LDDep=0},

where LDDep=0 is syntactic sugar for ”LDDep is a 0-length range”. The meaning
of such a clause is the following: we can build with the range Verb a VP in a
context where we have a long distance dependency LDDep with an accusative
case if Verb is a verb, and if we can make of LDDep the direct object of this verb
(this object having the same number than the one of LDDep), in a context where
no long distance dependency is available any more for use.

3.5 Conversion from MRCG to RCG

As said before, the MRCG formalism can be converted into a strongly-equivalent
RCG. This allows to use Boullier’s efficient RCG parser, but also to avoid
problems explained in the first paragraphs of this section that arise when the
analysing process is decomposed in more than one step. However, the details
of this conversion are not very interesting, and will not be presented here. We
have designed and realized such a converter, that we call MRCG-compiler. As a
side effect, this compiler produces an information file about the conversion that
can be used to rebuild the MRCG-analysis of a sentence from the RCG-analysis
given by the RCG parser.

3.6 Grammar and lexicon

An important part of the design of a grammatical formalism for natural language
is the design of the interface between the grammar and the lexicon. Although it
is possible, there is no reason to limit an RCG to be lexicalized, i.e. to include in
every clause at least one left-hand side argument that has at least one terminal

symbol. However, a lot of information is given by the terminals, here words7,
that has to be both represented and used in a way which, as for all parts of the
formalism, has to be both computationally efficient and linguistically acceptable.

Several options could be thought of, taking advantage of the properties of
closure of RCGs:

1. Compile a huge grammar with as many terminals as there are different in-
flected forms in the language, leading to an enormous grammar,

2. Compile separately the non-lexicalized part of the grammar and one or more
lexical modules with only lexicalized clauses, either with the RCG parser gen-
erator or with a specific module that profits from the hierarchical structure
of lexical information, uses appropriate algorithms to deal with the enormous
amount of inflected forms and that is able to append the RCG parse forest
with consistent sub-forests.

3. Compile the non-lexicalized part of the grammar, and, for each sentence,
generate and compile dynamically the set of lexicalized clauses involving
terminals present in the input sentence.

Independently of this choice, lexicalized clauses can be represented either as such,
or be computable as the result of an inheritance process inside an ontology.

4 Parsing French with Meta-RCGs: two examples

As said before, the aim of the Meta-RCG formalism is to allow the design of
grammars that take into account at the same time and with the same technical
status morphological, syntactical and (lexical) semantics information. This is
achieved by different predicates, thanks to the non-linearity of RCGs and hence
Meta-RCGs.

We have developed, and still do, a large-coverage grammar for French lan-
guage in the Meta-RCG formalism. To show how this formalism can be used
for what it has been designed for, we will show how two sentences are analysed.
The first sentence, Un avocat mange un avocat (”A lawyer eats an avocado”),
shows how homonym numbers and lexical semantics work together to fully dis-
ambiguate ambiguous inflected forms. The second sentence, Pierre veut une bière
et dormir (”Pierre wants a beer and [wants to] go to bed”), is an example of het-
erogeneous coordination (between a noun phrase and an infinitive verb phrase)
and of subject control verb. Of course, both for place and complexity reasons, the
whole analyses will not be shown, but only simplified parts of them to present
the involved mechanisms.

In the following, instantiated MRCG-clauses will respect the following con-
vention: a range 〈i..j〉w covering the substring s will be represented as si..j . If

7 Since we want to include lexical semantic properties inside the grammar, the tradi-
tional approach of a lot of formalisms, which associate to all words a category, whose
value is used as terminal symbol in the grammar, is not satisfactory. It would lose
too much information or would require such a big amount of categories that there
would not be any advantage over the direct use of words as terminals.

this range has an homonym number h, it will be represented as sh
i..j . If it has

heads, the corresponding terminals will be underlined, and its homonym number
will be indicated as an exponent.

4.1 Lexical ambiguity and semantics: Un avocat mange un avocat

Let us consider the following sentence:
(1) Un avocat mange un avocat

A lawyer eats an avocado
This sentence is syntactically extremely simple. We use it as an example

only to give an insight into the top-level clauses of our grammar and to show
the role of homonym numbers. Moreover, grammar rules will be simplified. In
particular, predicates and clauses dealing with non-existent topological places
(e.g. sentence modifiers, adverbs, clitics, long-distance dependencies and so on)
will be ignored. Finally, for space reasons, features will not be displayed, except
when absolutely necessary, and terminals are abbreviated by their first charac-
ters followed by a dot when necessary. Some parts of the analysis, that are not
very important for its global understanding, are replaced by textual descriptions
printed in italics. This being said, here is how our grammar analyses this sen-
tence (VK stands for verbal kernel, VC for verbal complex, and dth=act resp. pass
for diathesis=active resp. passive):

PHRASE(un av. mange un av.0..5) → VSEM IND(mange0
2..3)

PHRASE2(un av. mange0 un av.0..5) .

VSEM IND(mange0

2..3) → VERBE(mange0

2..3)

LEX(mange0
2..3)[mode=Ind] .

VERBE(mange0
2..3) → .

LEX(mange0

2..3)[mode=Ind] → .

PHRASE2(un av. mange0 un av.0..5) → SUBJECT(un avocat0
1..2,mange

0
2..3)

VP(mange0 un avocat2..5){Subj=un av.0
1..2} .

VP(mange0 un avocat2..5) → VK(mange0
2..3,un avocat3..5) .

VK(mange0

2..3,un avocat3..5) → VC(mange0,3..3,3..3)

ROLES(2..2,2..2,2..2,un av.3..5,mange
0

2..3) .

ROLES(2..2,2..2,2..2,un av.3..5,m.
0
2..3) → OBJECT(un avocat1

3..5,m.
0
2..3)

ROLES(un avocat1
3..5,2..2,2..2,5..5,m.

0
2..3) .

Before going on with the remainder of the analysis, it is necessary to clarify the
meaning of the arguments of the predicate ROLES. In fact, the 3 first arguments
(they are 5 in the real grammar) denotes the syntactico-semantic roles associated
with the verb. The first role is the accusative one, the second role is the dative
one, and the last one is the genitive one. The recursive predicate ROLES ”eats” at
each call a complement in the list of not-yet-parsed complements (4th argument),
analyses it, and, if it fills a not-yet-filled role, fills the corresponding argument
of the right-hand side call of ROLES with it. When the range of not-yet-parsed
arguments is empty, roles filling is completed, and verifications can be done
about mandatory or impossible roles. This being said, here is how the analysis
goes on:

un avocat mange un avocat

S

un avocat_0 mange un avocat_1

NP

VP

Noun

NDET

Determiner Noun

N

NP

DET

Determiner

V

Verb

Fig. 1. Constituency view of the analysis of sentence (1).

ROLES(un avocat1

3..5,2..2,2..2,5..5,m.
0

2..3) → True because mange0 is a transitive

verb and the first argument of

ROLES, i.e. the accusative

role, is filled by un avocat1

3..5

SUBJECT(un avocat0
0..2,mange

0
2..3) → SUBJ SEM(avocat0

1..2,mange
0
2..3)

NP(un avocat0
0..2) .

SUBJ SEM(avocat0

1..2,mange
0

2..3)[d.=act] → AGENT(avocat0

1..2,mange
0

2..3)

AGENT(avocat0
1..2,mange

0
2..3) → ANIMATED(avocat0

1..2) .

OBJECT(un avocat1
3..5,mange

0
2..3) → OBJ SEM(avocat1

4..5,mange
1
2..3)[dth=pass]

NP(un avocat1

3..5) .

OBJ SEM(avocat1
4..5,mange

0
2..3)[d.=pas] → PATIENT(avocat1

4..5,mange
0
2..3)

PATIENT(avocat0
1..2,mange

0
2..3) → EDIBLE(avocat1

4..5) .

NP(un avocat0

0..2) → True because un avocat0

1..2

is a valid noun phrase

NP(un avocat1
3..5) → idem

As can be seen, the process can be summed up as follows:

– Identify the semantic part of the main verb (the past participle if there is
one or more auxiliarie(s)), and make of it the head of the sentence,

– Identify the whole verbal kernel (verbal components, clitics, and adverbs
that are inbetween),

– Analyse the subject, which is a noun phrase (NP clause ; noun phrases can be
infinitives or propositions) and a semantic argument of the verb (SUBJ SEM

clause), and put it in the context (not used in this sentence),
– Identify one after the other all post-verbal complements (here only one), and

analyse it both as a noun phrase (NP clause) and as a semantic argument of
the verb (* SEM clauses).

Of course, this simplified presentation doesn’t explain how are treated attributes
of the subject or of a complement, clitics, long-distance dependencies, modifiers,
relatives, and so on. It is only the basic skeleton of the grammar.

For illustration purposes, we give in Figure 1 the constituency tree extracted
automatically from the global analysis.

4.2 Heterogeneous coordination and control verb: Pierre veut une

bière et dormir

Let us consider the following sentence:
(2) Pierre veut une bière et dormir

Pierre wants a beer and [wants to] sleep
As said before, this sentence exemplifies two phenomena: heterogeneous co-

ordination between a nominal syntagm (une bière) and an infinitive (dormir),
and subject control verb (veut, which controls the subject Pierre for the infini-
tive dormir). We will not give the whole analysis of this sentence, but only the
most interesting parts.

First, we will see how the heterogeneous coordination is treated. In fact, we
make the distinction between a noun phrase and a nominal group. For us, a noun
phrase is a phrase that plays the role which is canonically fulfilled by a phrase
built around a noun. Such a phrase is a nominal group. Thus, a nominal group, an
infinitive or a proposition are noun phrases. This distinction makes it possible to
explain several facts, including the fact that an infinitive and a nominal group
can indeed be coordinated, as in (2). It can also deal with the fact that, for
example, several verbs accept an infinitive as a direct object. Predicates such as
OBJ SEM can nevertheless constraint the object of a verb to be an infinitive, or
on the contrary prevent it from being an infinitive. But in our grammar, this is a
matter of constraints over the object, and not a fundamental difference between
different kinds of syntagms, at least at the level of the object relation. Hence the
following analysis for this relation, in which contexts are not shown, since they
will be useful and thus shown later (NG stands for nominal group):

OBJECT(une bière et dormir2..6) → OBJ SEM(bière0
3..4,veut

0
1..2)

OBJ SEM(dormir0
5..6,veut

0
1..2)

NP(une bière0 et dormir0

2..6) .

OBJ SEM(bière0
3..4,veut

0
1..2) → NOUN(bière0

3..4) .

OBJ SEM(dormir0
5..6,veut

0
1..2) → [See below]

NP(une bière0 et dormir0

2..6) → NP(une bière0

2..4)

NP(dormir0

5..6)

COORD(et0
4..5)

[other predicates

for features processing] .

NP(une bière0
2..4) → NG(une bière0

2..4) .

NG(une bière0
2..4) → [Standard analysis for a nominal group]

NP(dormir0

5..6) → INFINITIVE(dormir0

5..6) .

INFINITIVE(dormir0
5..6) → [See below]

In our grammar, any noun phrase can potentially be an infinitive. The fact
that veut is a subject control verb has only one impact: it allows the predi-
cate OBJ SEM(dormir0

5..6,veut
0
1..2) to be true. Thus, the noun phrase that is

the object of veut0 can really be an infinitive. The analysis of this infinitive,
here dormir, uses the contextual item Subject in the following way. As for the
sentence studied in the previous paragraph, the analysis of the subject, here
Pierre0

0..1 (see the PHRASE2-clause in the previous example), ”pushes” this syn-
tagm in a contextual item named Subj. Then, the predicate INFINITIVE, which

Pierre veut une bière et dormir

veut

Subject

Direct object Direct object

Pierre

bière dormir

Subject

Fig. 2. Dependency view of the analysis of sentence (2).

inherits this context through respectively VP, VK, ROLES, OBJECT and NP, uses
it to build the syntactico-semantical dependency thanks to the following clause
(VK INF stands for verbal kernel of an infinitive, and the context of INFINITIVE
is now shown):

INFINITIVE(dormir0
5..6){Subj=Pierre

0
0..1 Subj.gender=masc Subj.number=sing}

→ VK INF(dormir0
5..6,Pierre

0
0..1)[gender=masc number=sing] .

For illustration purposes, we give in Figure 2 the dependency graph extracted
automatically from the global analysis.

5 Conclusion

We have presented a new formalism, called Meta-RCG, and based on Range Con-
catenation Grammars. This formalism, thanks to the non-linearity of RCGs,
allows the development of grammars that implement linguistic facts as predi-
cates over ranges of the input sentence. These facts can deal for example with
morphology, syntax, lexical semantics, combinaisons thereof. The non-linearity
makes it unnecessary to put in costly and numerous features all the linguistic
information that doesn’t fit an insufficient backbone. Moreover, the very concept
of predicates over ranges of the input string seems very intuitive from a linguistic
point of view.

We have shown thanks to two small examples the way linguistic Meta-RCGs
can be developed. As said before, we are currently developing such a grammar
for French. The development is already quite advanced, and we can deal with
phenomena like subject, object or indirect-object control verbs, raising verbs,
infinitives, completives (either modifiers or arguments), light verbs, homogeneous
and heterogeneous coordination, participial modifiers, attributes of the subject or
of the object, auxiliaries, arguments of nouns (”Peter’s departure”) or adjectives,
negation (which can be discontinuous in French), relatives (including relatives
in ”dont” that can modify the subject or the object of an arbitrarily deep verb
inside the relative) and many other less complicated phenomena. Parsing times
are very satisfying8. We are currently using the Eurotra corpus of French
sentences [8], which gives a good set of simple to very complicated sentences: we
proceed sentence by sentence in an exhaustive manner, and modify the grammar
so as to get only the appropriate parse (or the appropriate parses if the sentence
is really ambiguous). We have currently reached the second half of the file, but
we have already implemented several phenomena that appear later on in this
corpus. Moreover, we have developed filters that allow to project our analysis

8 We use a ”benchmark-sentence” which has simultaneously a relative in ”dont” that
modifies the coordinated object of a verb of the relative, with a coordinated subject,
and which is an object-controlled verb inside a completive. Parsing time, depending
on the state of the grammar, has oscillated in the last months between 0.7 and 2.5
seconds. This sentence is the following: Paul aime la Normandie dont je sais que

Pierre regarde Marie et Paul manger une pomme et une poire verte

into different views, including (for now) a constituency tree, a dependency graph,
topological boxes, and predicate-arguments semantics.

For all these reasons, we believe that we have designed a formalism that
virtually satisfies the constraints given in the introduction of this paper to char-
acterize an interesting formalism. Further work includes the continuation of the
extension of our grammar for French thanks to this Eurotra corpus, a more
precise definition of the abstract foundations of our formalism, an in-depth lin-
guistic analysis of its properties and of the grammars it allows to write, and a
more precise definition of the interface between lexicon and grammar. It also
includes the extension of our grammar to other components of the linguistic
analysis of a sentence, such as discourse analysis or Montague-like semantics.

References

1. Dahl, V., Tarau, P. and Huang Y.-N.: Datalog Grammars. In: GULP-PRODE 2
(1994) 268–282

2. Blache, P.: Parsing with Constraint Graphs: a Flexible Representation for Robust
Parsing. In Di Sciullo, A.M., ed.: Grammars and NLP LNCS, Springer-Verlag (2001)

3. Boullier, P: Range Concatenation Grammars. In Bunt, H., Carroll, J., Satta, G.,
ed.: New developments in parsing technology. Kluwer Academic Publishers (2004)
269–289

4. Boullier, P.: Counting with range concatenation grammars. Theoretical Computer
Science 293 (2003) 391–416

5. Sagot, B., Boullier, P.: Les RCG comme formalisme grammatical pour la linguis-
tique. In: Proceedings of TALN ’04, Fez, Marocco (2004) 403–412

6. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar, University of
Chicago Press and CSLI Publications (1994)

7. Barthélémy, F., Boullier, P., Deschamp, P., Villemonte de La Clergerie, É.: Guided
Parsing of Range Concatenation Languages. In: Proceedings of ACL ’01, Toulouse,
France (2001) 42–49

8. Danlos, L., Laurens, O.: Présentation du Projet Eurotra et des grammaires
d’Eurotra-France. Technical Report n 1, Université Paris 7 - Talana/LISH (1991)

This article was processed using the LATEX macro package with LLNCS style

