Are Very Large Context-Free Grammars Tractable?

Pierre Boullier & Benoit Sagot
INRIA-Rocquencourt
Domaine de Voluceau, Rocquencourt BP 105
78153 Le Chesnay Cedex, France
{Pierre.Boul lier,Benoit.Sagot }@nria.fr

Abstract virtually all Tree Adjoining Grammars (TAG, see

e.g., (Schabes et al., 1988)) used in NLP applica-
In this paper, we present a method which, in tions can (almost) be seen as lexicalized Tree In-
practice, allows to use parsers for languages sertion Grammars (TIG), which can be converted
defined by very large context-free grammars into strongly equivalent CFGs (Schabes and Waters,
(over a million symbol occurrences). The 1995). Hence, the parsing techniques and tools de-
idea is to split the parsing process in two scribed here can be applied to most TAGs used for
passes. Afirst pass computes a sub-grammar NLP, with, in the worst case, a light over-generation
which is a specialized part of the large gram- which can be easily and efficiently eliminated in a
mar selected by the input text and various complementary pass. This is indeed what we have
filtering strategies. The second pass is atra- achieved with a TAG automatically extracted from
ditional parser which works with the sub- (villemonte de La Clergerie, 2005)’s large-coverage
grammar and the input text. This approach factorized French TAG, as we will see in Section 4.
is validated by practical experiments per- Even (some kinds of) non CFGs may benefit from
formed on a Earley-like parser running on the ideas described in this paper.

a test set with two large context-free gram- The reason why the run-time of context-free (CF)
mars. parsers for large CFGs is damaged relies on a theo-
) retical result. A well-known result is that CF parsers
1 Introduction may reach a worst-case running time@f| G| x n?)

More and more often, in real-word natural lan-Where|G|is thesizeof the CFG and: is thelength

guage processing (NLP) applications based up the source text. In typical NLP applications

grammars, these grammars are no more written tyy}nch mainly work at the sentence level, the length

hand but are automatically generated, this has se‘?/'i a sentencg dpes hot often go b(_eyond a value of
100, while its average length is around 20-30

eral consequences. This paper will consider one g > - i
ds¢ In these conditions, the size of the grammatr,

these consequences: the generated grammars = T) ;
be very large. Indeed, we aim to deal with grammar4€SPite its linear impact on the complexity, may be

that have, say, over a million symbol occurrencel® Prevailing factor: in (Joshi, 1997), the author re-
and several hundred thousands rules. Traditiong_farks that “the real limiting factor in practice is the
parsers are not usually prepared to handle thermiz€ of the grammar™. _ _

either because these grammars are simply too big "€ idea developed in this paper is to split the

(the parser's internal structures blow up) or the tim827SiNg process in two passes. A first pass called
spent to analyze a sentence becomes prohibitive. fIt€fiNg pass computes a sub-grammar which is the

This paper will concentrate on context-free gram- iThese two notions will be defined precisely later on.
mars (CFG) and their associated parsers. However, 2At least for French, English and similar languages.

sub-part of the large input grammar selected by the, with A € N anda € V*.

input sentence and various filtering strategies. The For a given stringa € V*, its size (length)
second pass is a traditional parser which works witls noted|«|. As an example, for the input string
the sub-grammar and the input sentence. The pui=a; - -- a,, a; € T, we havdw| = n. The empty
pose is to find a filtering strategy which, in typicalstring is denoted and we havéz| = 0. The sizgG|
practical situations, minimizes on the average thef a CFGG is defined by|G| = >" 4_, ,cp |Ac].

total run-time of the filtering pass followed by the For G, on strings ofl’*, we define the binary re-

parser pass. lation derive noted=-, by ~; A, A:;ﬁa Yayy if

A filtering pass may be seen as a (filtering) func-61 v a € Pandvy,q, € V*. The subscripG

tion that usis fthellnput.sen:eggz tcz)srelﬁgtj Sl;or even the superscript — o may be omitted. As
grammar out ot a farge inpu - DU pe, u usual, its transitive (resp. reflexive transitive) clo-

ing such a filter, is that the time saved by the parser . n X L
pass which uses a (smaller) sub-grammar will notre 1S notedg (resp. :G>)' We call derivation any
totally be used by the filter pass to generate this susequence of the formy = Z A complete
grammar. derivationis a derivation which starts with the ax-

It must be clear that this method cannot improvéom and ends with a terminal string. In that case
the worst-case parse-time because there exists grawe haveS :;> v :;> w, and~y is asentential form

mars for which the sub-grammar selected by the fil- 1,4 string languagedefined (generated, recog-

tering pass is the input grammar itself. In such Qizeq) py(is the set of all the terminal strings that
case, the'fllte.rlng pass is simply a waste pftlme. ngre derived from the axiomz(G) = {w | S N
purpose in this paper is to argue that this technigue _ G
may profit from typical grammars used in NLP, Tow,w € T"}. We say that a CFG is empty iff its
do that we put aside the theoretical view point anéftnguage is empty.

we will consider instead the average behaviour of A nonterminal symboM is nullableiff it can de-

our processors. rive the empty string (i.e.4 :Zg). A CFG ise-free
More precisely we will study on two large NL iff its nonterminal symbols are non-nullable.

CFGs the behaviour of our filtering strategies on a A CFG isreducediff every symbol of every pro-

set of test sentences. The purpose being to choaggction is a symbol of at least one complete deriva-

the bestfiltering strategy, if any. By best, we meantion. A reduced grammar is empty iff its production

the one which, on the average, minimizes the totaet is empty P =). We say that a non-empty

run-time of both the filtering pass followed by thereduced grammar is icanonical formiff its vocab-

parsing pass. ulary only contains symbols that appear in the pro-
Useful formal notions and notations are recalleductions ofP.34

in Section 2. The filtering strategies are presented Two CFGsG and G’ are weakly equivalentff

in Section 3 while the associated experiments at@ey generate the same string language. They are

reported in Section 4. This paper ends with somstrongly equivalentff they generate the same set of

concluding remarks in Section 5. structural descriptions (i.e., parse trees). It is a well
o known result (See Section 3.2) that every CEG
2 Preliminaries can be transformed in time linear w.rtG| into a

strongly equivalent (canonical) reduced CEG

2.1 Context-free grammars)) . o~
For a given input stringy € 7%, we define its

A CFG G is a quadruplg N, T, P, S) whereNis
a non_empty finite set afonterminal SymbolST’ is SWe may say that the canonical form of the empty reduced

o : : - is({S S) though the axions d t
a finite set ofterminal symbolsP is a finite set of ?nrzrﬁ;n ;L'jf,{(:ﬂé’n?’@’) though the axion®s does not appear

(context-free rewritingyules (or production3 and “Note that the pai P, 5) completely defines a reduced CFG
S is a distinguished nonterminal symbol called th(g: (N, T, R%) S f§?°r¥°a' f?{r)r(n slln():? we h;\l& :){(X0€|

. e . . 0o — « € y = % 0o — 1" Ap
axiom The setsV andT are disjointand” = NUT PA1<i<p}—N.Thus, inthe sequel, we often note simply

is thevocabulary The rules inP have the formd — G = (P, S) grammars in canonical form.

rangesas the selR* = {[i..j] | 1 < i < j < configurations, noted- by (q,tz) + (¢, z), iff
:) . A A

lw| + 1}, If w = witws € T* is a terminal string,

and ift € T U {e} is a (terminal or empty) sym-

bol, theinstantiation of ¢ in w is the triple noted

t[i..j] whereli..j] is a range withi = |w;| + 1 and

j =1+ [t|. More generally, thénstantiationof the

terminal stringws in w;wews is notedws[i..j] with

i = |w| + 1andj =i+ |w|. Obviously, the in-

stantiation ofw itself is thenw[1..1 + |w|]. "
Let us consider an input string = wjwaws co = cy.

and a CFGG. If V\f have a complete derivation 14he language £(A) defined(generated recog-
d=25 =;> wy Awg %a wiows =;> wiwaws, We nized by the FSAA is the set of all terminal strings

. + w for which there exists a complete derivation. We
see thatA deriveswsy (we haveA = ws). More- . e -)

G say that an FSA is empty iff its language is empty.
over, in this complete derivation, we also know aro FSAsA and A’ areequivalentiff they defined
range inR™, namely[i..j], which covers the sub- ihe same language.
string w, which is derived byA (i = |wi| + 1 An FSA ise-freeiff its transition relation has the
andj_ = i+ |wsl). _This is represented by the- 5rm s — {(gi.t,q))ai,q; € Q.t € S}, except per-
stantiated nonterminal symbal[i..j]. In fact, each 55 for a distinguished transition, theransition
symbol which appears in a complete derivation may;nich has the forn(qo, ,qs), ¢ € F and allows
be transformed into its instantiated counterpart. Wg,q empty string to be in£(A). Every FSA can be
thus talk of instantiated productions or (complete)ansformed into an equivalenifree FSA.
instantiated derivations. For a given input text AnFSAA = (Q., %, 5, g0, F) is reducediff every
and a CFGG, let P’ be the set of instantiated pro- glement ofs appears in a complete derivation. A
ductions that appears in all complete instantiatefhq,ced FSA is empty iff we have = (. We say
derivations? The pair(FP¢, S[L..|lw| + 1]) is the(re- that & non-empty reduced FSA isganonical form
duced) shared parse foreist canonical fornf iff its set of stateg) and its set of terminal symbols
3> only contain elements that appear in the transition
relationd.” It is a well known result that every FSA
A finite-state automatoFSA) is the 5-tupleA = A can be transformed in time linear witd | into an
(Q,%,0,q0, F) whereQ is a non empty finite set equivalent (canonical) reduced FSA.
of states X is a finite set ofterminal symbolsé is _ _
the transition relatiod = {(g;,t,q;)|gi,q; € Q A 2-3 Inputstrings and input DAGs
t € T U{e}}, qo is a distinguished element 6@ In many NLP applicatiorfsthe source text cannot
called theinitial stateand F" is a subset of) whose be considered as a single string of terminal symbols
elements are calletinal states The size ofA is but rather as a finite set of terminal strings. These
defined byl A| = |4]. sets are finite languages which can be defined by

As usual, we define bothanfigurationas an ele- particular FSAs. These particular type of FSAs are
ment of@ x T andderivea binary relation between called directed-acyclic graphgDAGSs). In a DAG
————)] o w=(Q,%,9,q, F), the initial statey is 1 and we

For example, in the previous complete derivation - . .
d, let the right-hand sidea be the (vocabulary) string assume that there is a single final staf@” = {f})'
X, --- X --- X, in which each symbolX, derives the ter- () is a finite subset of the positive integers less than
minal stringx, € T* (we have X :;> zr andwz = or equal tof: Q = {i|l < i < f}, ¥ is the set of

z1 -k - Tp), then the instantiated productiotfio..i] — terminal symbols. For the transition relationwe

X1 [’io..i1] e X [’Lk_llk] cee Xp[ipfy.ip] with 79 = |w1| +4 -

1,91 =d0+ |x1], .-+ yik = ig—1 + |Tk| ... @Ndip = 10 + |w2| "We may say that the canonical form of the empty reduced

is an element ofP . FSA is ({0}, 0,0, q0,0) though the initial state, does not
5The popular notion of shared forests mainly comes fronappear in any transition.

(Billot and Lang, 1989). 8Speech processing, lexical ambiguity representation, ...

(¢, t,q') € 6. If ww” € T*, we callderivationany
sequence of the forrfy’, w'w") Z : (¢",w").
If w € T, theinitial configurationis notedc, and
is the pair(go, w). A final configurationis notedc/
and has the fornigy,) with ¢y € F'. A complete
derivationis a derivation which starts with, and
ends in a final configuratiosy. In that case we have

2.2 Finite-state automata

require that its elements, ¢, j) are such that < j; every production inP is used in at least one com-
(there are no loops in a DAG). Without loss of genplete derivation. Now, if this process is viewed as
erality, we will assume that DAGs atefree reduced a filtering strategy that computes a filtering function
FSAs in canonical form and that any DAGis noted as introduced in Section 1, it is clear that this strat-
by a triple (%, 6, f) since its initial state is always egy issize-optimaln the sense tha® is of minimal
and its set of statesig | 1 <i < f}. size, we call it thegold strategy and the associated

For a given CFG4, the recognition of an input gold filtering function is noted). Since we do not
DAG w is equivalent to the emptiness of its inter-want that a filtering strategy looses parses, the result
section withG. This problem can be solved in time Gl = (Rﬁ, S) of any filtering functionf must be
linear in|G| and cubic inQ| the number of states of such that, for every sentenee P}, is a superset of
w. Pj. In other words theecall scoreof any filtering

If the input text is a DAG, the previous notions offunction f must be of 100%. We can note that the
range, instantiations and parse forest easily generglarsing pass which generaté$ may be led by any
ize: the indices and;j which in the string case locate filtering strategyf.
the positions of substrings are changed in the DAG As usual, theprecision scordprecision for short)
case into DAG states. For exampleAfiy..i,| — of a filtering strategyf (w.r.t. the gold case) is, for

Xilig..i1] -+ - Xp[ip—1..1p] is @an instantiated produc- 3 givenw, defined by the quotien‘&lii—fi} which ex-

tion of the parse forest fo& = (N, T, P,5) and ocs0q the number of useful productions selected by
w = (%,6,f), we haved — X ---X, € Pand 0 ¢or someq).

there is a path in the input DAG from stagto state However, it is clear that we are interested in strate-

ip ‘(’)'? statesy, ..., ip-1. o terminal stringe T gies that aréime-optimaland size-optimal strategies

lcj:our_se, a;y nongn:p y 5erm|ner1] s ”ggf ' are not necessarily also time-optimal: the time taken
may be ;/lew/e\ taes aT} (;EZ’ {’{,)tw, iri) ‘_ {t| at filtering-time to get a smaller grammar will not
w = witwsr s = /3 2 w = - .

A necessarily be won back at parse-time.

witwa At € TAi = 1+|wi|}andf = 1+|w|. If the . . o
input stringw is the empty string, the associated . Fora given CFG, an input DAGw an_d a filter
DAG is (3,6, f) whereS. — 0,5 — {(1,2,2)} and ing stra_teg)_/c, we only have to plot the times taken
F—9 Th&s’ in the sequel v’ve wil as’SL;me that thelzjy the filtering pass and by the parsing pass to make
inputs- of our’ parsers are n(’)t strings but DAGS. As gome estimations on their average (median, decile)

. : parse times and then to decide which is the winner.
consequence the size (ength) of a sentence is the However, it may well happens that a strategy which
size of its DAG (i.e., its number of transitions). ' y PP 9y

has not received the award (with the sample of CFGs
and the test sets tried) would be the winner in an-

3 Filtering Strategies
g g other context!

3.1 Gold Strategy All the following filtering strategies exhibit nec-
Let G = (N,T,P,S) be a CFGw = (3,4, f) essary cont_:litions that any production must hold in
be an input DAG of sizex = |§| and (F,) = Crdertobeinaparse.

((Pw),S[1..f]) be the reduced output parse for-
est in canonical form. FromZP,), it is pos-
sible to extract a set of (reduced) uninstantiAn algorithm which takes as input any CFG
ated productionsP) = {A — X;---X, | G = (N,T,P,S) and generates as output a
Alig..ip) — Xilio.i1)Xa[i1..i2] - - - Xplip—1..3p) € strongly equivalentreduced CFG G’ and which
(P,)}, which, together with the axiorfi, defines a runs in O(|G|) can be found in many text books
new reduced CFG?Y, = (P, S) in canonical form. (See (Hopcroft and Ullman, 1979) for example).
This grammar is called thgold grammar ofG for So as to eliminate from all our intermediate sub-
w, hence the superscrigt Now, if we useGy, to grammars all useless productions, each filtering
reparse the same input DAG, we will get the same strategy will end by a call to such an algorithm
output forest F,,). But in that case, we are sure thaihamedmake-a-reduced-grammar

3.2 Themake-a-reduced-grammar Algorithm

The make-a-reduced-grammaalgorithm works

as follows. It first finds alproductiv€ symbols. Af- S — AB Q)
terwards it finds alteachablé® symbols. A symbol S — BA 2)
is useful (otherwiseuselesyif it is both productive A = a 3)
and reachable. A productioh — X - -- X, is use-

ful (otherwiseuseleskiff all its symbols are useful. A — ab (4)
A last scan over the grammar erases all useless pro- B — b)
duction and leaves the reduced form. Tagonical B — bc (6)

formis reached in only retaining in the nonterminal
and terminal sets of the sub-grammar the symbols .
which occur in the (useful) production set. Table 1: A simple grammar
3.3 Basic Filtering Strategy: b-filter O(|G|) time if we assume that the access to the ele-
The basic filtering strategyfilter for short) which ments of the terminal sét is performed in constant
is described in this section will always be tried thgime. Unlexicalizedproductions whose right-hand
first. Thus, its input is the coupléG,w) where sides are inV* are kept. It also rejects productions
G = (N, T, P, S) is the large initial CFG and the in- in which several terminal symbol occurs, in an order
put sentencev is a reduced DAG in canonical form which is not compatible with the linear order of the
w = (2,6, f) of sizen. It generates a reduced CFGinput.
in canonical form noted?® = (P?, S) in whichthe Consider for example the set of productions
references to botli? andw are assumed. Besidesshown in Table 1 and assume that the source text
this b-filter, we will examine in Sections 3.4 and 3.5is the terminal stringib. It is clear that the-filter
two others filtering strategies namedndd. These Will erase production 6 sinceis not in the source
filters will always have as input a coupl&“,w) text.
whereG¢ = (P¢, S) is a reduced CFG in canonical The execution of the-filter produces a (non-
form which has already been filtered by a previouseduced) CFG> such thaiG’| < |G|. However, it
sequence of strategies notedThey generate a re- may be the case that some production&/ofire use-
duced CFG in canonical form notéd/ = (P¢/,S) less, it will thus be the task of thmake-a-reduced-
with f = a or f = d respectively. Of course it may grammaralgorithm to transforn@’ into its reduced
happens that:/ is identical toG¢ if the f-filteris canonical formG® in time O(|G’|). The worst-case
not effective. A filtering strategy or a combination oftotal running time of the wholé-filter pass is thus
filtering strategies may be applied several times an@(|G| x n).
lead to a filtered grammar of the form sgje’de We can remark that, after the execution of the
in which the sequencii®da explicits the order in filter, the set of terminal symbols @’ is a subset
which the filtering strategies have been performedf 7' N X.
We may even repeatedly appiyuntil a fixed point
is reached before applying and thus get something
of the formG?*™4, As explained before, we assume that the input to
The idea behind thefilter is very simple and has the adjacent filtering strategyifilter for short) de-
largely been used in lexicalized formalisms parsingscribed in this section is a couplé“,w) where
in particular in LTAG (Schabes et al., 1988) parsingG® = (N¢, T, P¢,S) is a reduced CFG in canon-
The filter rejects productions @ which contain ter- ical form. However, theu-filter would also work
minal symbols that do not occur i (i.e., that are for a non-reduced CFG. As usual, we define the
not terminal symbols of the DAG) and thus takes Symbols of G as the elements of the vocabulary
S Ve=NeuUT".
°X € V'is productive iff we haveX = w,w € T*. The idea is to erase productions that cannot be
"X € V is reachable iff we havé = w1 Xws,wiw> € part of any parses fap in using an adjacency crite-
T ria: if two symbols are adjacent in a rule, they must

3.4 Adjacent Filtering Strategy: a-filter

derive terminal symbols that are also adjacenwin Moore, 2000), hereafterC, is a well-known rela-

To give a (very) simple practical idea of what wetion since many parsing strategies are based upon it.
mean by adjacency criteria, let us consider again th&fe say thatX is in the LC of A and we writed o X
source stringib and the grammar defined in Table 1 %
) . g iff (A, X B)Y)| B Y PANa= e}
in which the last production has already been erased (4, X) E {(BY)|B—aYBe 4G e}
by theb-filter. We can writeA L X to enforce how the cou-

—aXg

The fact that theB-production ends with &and ple (A, X) may be produced.
that the A-productions all start with am, implies For its dual relationright-corner, noted., we say

that production 2 is in a complete parse only if the 4t ¥ isin the right corner oft and we writeX | A
source text is such thatis immediately followed

by a. Since it is not the case, production 2 can bf (X,4) € {(Y,B) | B — aY3 € PA S :;>
erased. e}. We can writeX ., A to enforce how the
More generally, consider a production of tr;e.formcouple(X, A) may be?)(rlodﬁuced.
A= - XV Iffor each couple(a,b) € T*in We also define thérst (resp. las) relation noted
whicha is a terminal symbol that can terminate (the;) (resp. <o) by <= {(X,t) | X € V At e
terminal strings generated by) andb is a terminal ¢ ooP-) DY ! ’
symbol that can lead (the terminal strings generate% nX Z? te Ao € T} (resp.—={(X, 1) [X €
by) Y, there is no transition oh that can follow a V At e T A X = xt Az € T*)).
transition oru in the DAGw, it is clear that the pro- ¢
ductionA — --- XY --- can be safely erased.
Now assume that we have the following (left) .
derivation Y :*> Y151 :*> Y.0;--- 01 :*> (Xv g, Y) S {(U¢ﬁ> V) | A— O‘Uﬁvﬁ)/ € P/\ﬁ ?
Yy_1—a,Y,P " e}. This means thak andY occur in that order in
TS VBB S VB b, tge right-hand side of some production and are sep-
with o, = ¢. If for each couple(a,?’) in which arated by a nullable string. Note thatX or Y may

a has the previous definition arld is a terminal OF May not be nullable.
symbol that can lead (the terminal strings gener- On the input DAGw = (%, 4, f), we define the
ated by)Y,, there is no transition obl that can fol- immediately precedeelation noted< and we write
low a transition oru in the DAG w, the production ¢ < b for a,b € ¥ iff wiabws € L(w), w1, ws €
Yp-1 — apY,0, can be erased if it is not valid in s
another context.

Moreover, consider a (right) derivation of the
form X :*> a1 Xq :*> [OéiXZ‘ :*>

. Xp—lgpxpﬁp

We define theadjacentternary relation on/ x
N* x V noted — and we writt X <& Y iff

We also define thprecederelation noted< and
we writea < b for a,b € X iff wiawsbws €
. L(w),w,ws, wg € L*.We can note tha is not
ap - apXpfp = ar-op X, . 1
the transitive closure of.

) o _ _ For each productio!d — aXyX;--- X,_1X,v
has the previous definition and is aterminal sym- i pe and for each symbol pairsYo, X,) of non-
bol that can terminate (the terminal strings geners ,,-11o symbols s.t.X; -~ X, ; §> e, we com-

ated by).X,, there is no transition ohthat can fol- .
low a transition oru’ in the DAG w, the production PUte two setsi; andA; of couples(a, b),a,b € T

with 8, = e. If for each couplg(a’,b) in which b

X, 1 — a,X,03, can be erased if it is not valid in defin;:d)E’_YAI = Uocicp = {(a,0) | a
another context. Xo ST Xy sy b} and Ay = Up<icp =

In order to formalize these notions we define sev- Xig1--Xp_1
eral binary relations together with their (reflexive)l(@0) | @ = Xi = Xp = b} Any
transitive closure. _

Within a CFGG = (N, T, P, S), we first define **Consider the source stririgab for which we havex Lo
left-corner noted .. Left-corner (Nederhof, 1993; but nota < c.

pair (a,b) of A; is such that the terminal symbol Z is non-empty, thug. is also non-empty*
a may terminate a phrase ofy while the terminal
symbol b may lead a phrase ok, --- X,. Since
Xo and X,, are not nullable,4; is not empty. If
none of its elements$a, b) is such thata < b, the

We can associate with each couple,b) <
L at least one (left) derivation of the form
XoY E*E woaw10Y g*i woawiwY =

Ge

productionA — aXoX;--- X,_1X,7 is useless wpawiwawsZy, Z_g%Uﬁ woawiwawzal Bys é%
and can be erased. Analogously, any fairb) of

Ay is such that the terminal symbal may termi- : o
nate a phrase akoX; - -- X,,_; while the terminal N Which wiwswswsws € T*. These derivations
symbolb may lead a phrase of,. SinceX, and contains all possible usages of the production-

X, are not nullable,A; is not empty. If none of U0 ina parse. If for every couplez, b) € L, the
its elements(a, b) is such thata < b, the produc- Statemené < b does not hold, we can conclude that

tion A — aXoX; --- X,_1X,7 is useless and can the productionZ — U@ is not used in any parse
be erased. Of course X, --- X,_; = ¢, we have @and canthus be deleted.

12
A=At Analogously, we can check that the order of ter-

The previous method has checked some adjacégiinal symbols is compatible with both a production
properties inside the right-hand sides of productiong,n its right grammatical context.

The following will perform some analogous checks o _

but at the beginning and at the end of the right-hand L&t Z — aU {3 be a production irP* in which U

sides of productions. is non-nullable ang3 ? e. If Y is a non-nullable
Let us go back to Table 1 to illustrate our pur-symbol, we compute tche sét = {(a,b) | a <

pose. Recall that, with source tedt, productions 6 7 |, 7% x &Y <, b}. SinceG® is reduced

and 2 have already been erased. Consider produc-#—aUf .
tion 4 whose left-hand side is an, the terminal and sinceS < §, we are sure that the sgt, X <

string ab that it generates ends By If we look for y~ js non-empty, thus is also non-empt}*

the occurrences ofl in the right-hand sides of the

(remaining) productions, we only find production 1 10 €ach couple(a,b) < R we can asso-

which indicates that! is followed by B. Since the Ciate at least one (right) derivation of the form

phrases of3 all start withb (See production 5) and XY o Xowibwg A Xwawybwo e

since in the source textdoes not immediately fol- Z—Up %

. Zwswow1bw = aU Bwswowibwy =

low anotherb, production 4 can be erased. TSt oo G naUpwswaunbuwo =

In order to check that the input sentengestarts v1aUwjwswawibwy = T ay2awswawswew bwo

and ends by valid terminal symbols, we augment which wswswswsw; € T<¢*. These deriva-
the adjacent relation with two elemerits <, 5) and - tions contains all possible usages of the production
(S,e,$) where$ is a new terminal symbol whichis 7z — U3 in a partial parse. If for every couple

supposed to start and to end every sentépce. (a,b) € L, the statement < b does not hold, we
Let Z — aUp be a production irP¢ in which U

is non-nullable andv C:} e. If X is a non-nullable

*
woawiwawswaU Bryo = woawi wawsw4wsbyy Bya

can conclude that the productidh — aU S is not
used in any parse and can thus be deleted.

syrr;bol, *We compute the sét - {(a’b.) [= Now, a call to themake-a-reduced-grammaai-
XYl Zz 4t U —; b}. SinceG* is reduced

—alpB gorithm produces a reduced CFG in canonical form
and since$ < S, we are sure that the sat < v namedG® = (N, T, P, S).

121t can be shown that the previous check can be performed
on (G¢, w) in worst-case timé& (|G°| XJZP) (recallthat®| <
n). This time reduces t®(|G°| x |X|?) if the input sentence This statement does not hold any more if we exclude from
is not a DAG but a string. P the productions that have been previously erased during the
3This is equivalent to assume the existence in the grammaurrenta-filter. In that case, an empty set indicates that the
of asuper-productiorwhose right-hand side has the fofiffi$. productionZ — U can be erased.

3.5 Dynamic Set Automaton Filtering matically generated CFG, the other one is the CFG
Strategy: d-filter equivalent of a TIG automatically extracted from a

In (Boullier, 2003) the author has presented ctorized TAG. ron _

method that takes a CFG and computes a FSA _ ' he first grammar, name@" =", is a variant of
that defines a regular supersett?). However his 1€ CFG backbone of a large-coverage LFG gram-
method would produce intractable gigantic FSAgNar for French used in the French LFG parser de-
Thus he uses his method to dynamically comput@cr'bed in (Boullier and Sagot, 2005). In this vari-
the FSA at parse time on a given source text. Bas@f'l: the seT’” of terminal symbols is the whole set of

on experimental results, he shows that his methdg€nch inflected forms present in thefitea large-
called dynamic set automatofDSA) is tractable. coverage syntactic lexicon for French (Sagot et al.,

He uses it toguide an Earley parser (See (Ear-2006)' This leads to as many as 407,863 different

ley, 1970)) and shows improvements over the nop?rminal symbols and 520,711 lexicalized prqduc—
guided version. The DSA method can directly bdons (hence, the average number of categories —
used as a filtering strategy since the states of the ufich are here non-terminal symbols — for an in-

derlying FSA are in fact sets dfems For a CFG flected form is_ 1.27). Moreover, this_CFG enta_LiIs
G = (N,T,P,S), an item (or dotted production) 2 non-'neglectlble amqunt of syntactlg cqnstralnts
is an element of [A — a.3] | A — af € P}. (mcluqllng ove_r—ge_'nergtlng sub-categorization frame
A completeitem has the form{A — ~.], it indi- cNecking), which implies as many g4, | = 19,028
cates that the productioA — ~ has been, in some non-lexicalized productlons. All in ali” =% has
sense, recognized. Thus, the complete items of tRe2: /39 productions. o
DSA states gives the set of productions selected by 1€ Second grammar, named ', is a CFG
the DSA. This selection can be further refined if wd¥Nich represents a TIG. To achieve this, we applied
also use the mirror DSA which processes the sourdBoullier, 2000)'s algorithm on the unfolded version
text from right to left and if we only select completeOf (Villemonte de La Clerger!e, 20022 factorlzed
items that both belong to the DSA and to its mirror. TAG- The numberToprroducnons G* " is com-
Thus, if we assume that the input to the DSA fiiparable to that ofs ! y Howeve'r, thTeISGe WO gram-
tering strategy d-filter) is a couple(G¢, w) where mars are _completely dn‘fere_nt. Firgt '~ has ml]JVch
G¢ = (P°,S) is a reduced CFG in canonical form,les_s terminal and non-termlpal symbols th@h> -
we will eventually get a set of productions which isThIS Yrggans that thf ?Vasm filter may bg less Tefféc'ent
a subset ofPe. If it is a strict subset, we then ap-°" € than onG" . Second, the size a¥ v
ply the make-a-reduced-grammaggorithm which 'S €normous (more than 10 times that @f="),

. . . IG,
produces a reduced CFG in canonical form name§ich shows that right-hand sides 6! 1s pro-
Ged = (P, §). ductions are huge (the average number of right-hand

3ide symbols is more than 24). This may increase
the usefulness af- andd-filtering strategies.

Global quantitative data about these grammars is
shown in Table 2.
4 Experiments Both grammars, as evoked in the introduction,

have not been written by hand. On the contrary, they

The measures presented in this section have begfe automatically generated from a more abstract
taken on a 1.7GHz AMD Athlon PC with 1.5 Gb and more compact level (a meta-level over LFG for
of RAM running Linux. All parsers are written in C G7>~ and a metagrammar f67¢). These gram-
and have been compiled with gcc 2.96 with B8 mars are not artificial grammars set up only for this
optimization flag. experiment. On the contrary, they are automatically
generated huge real-life CFGs that are variants of
grammars used in real NLP applications.
We have performed experiments with two large Our test suite is a set of 3093 French journalistic
grammars described below. The first one is an autgsentences. These sentences arg#merallemonde

The Section 4 will give measures that may help t
compare the practical merits of theandd-filtering
strategies.

4.1 Grammars and corpus

L [N] o | el [Ird | 16l] Strategy| Average precision
GT>N T 7,862 [407,863 539,739] 19,028 1,123,062 GT>N \GTIG
GTIG | 448 173 | 493,408| 4,338 | 12,455,767 no filter 1 0.04% 1 0.03%

b 62.87%| 39.43%
bd 74.53% | 66.56%
ba 77.31%| 66.94%
ba™> 77.48% | 67.48%

Table 2: Sizes of the grammaés’ >N and GT1¢
used in our experiments

part of the EASy parsing evaluation campaign cor- bad 80.27%| 77.16%
pus. Raw sentences have been turned into DAGSs ba®d | 80.30%| 77.41%
of inflected forms known by both grammar/lexicon gold | 100% | 100%

couples'® This step has been achieved by the pre-
syntactic processing chairk®ipe (Sagot and Boul- Table 3: Average precision of six different filtering
lier, 2005). They are all recognized by both gramstrategies on our test corpus with >~ andGT7¢,
marsi® The resulting DAGs have a median size of
28 and an average size of 31.7.

Before entering into details, let us give here th
first important result of these experiments: it wa

i i >N
actually possible to build parsers out@f =" and the a-filter still removes a non-neglectible amount

G and to parse efficiently with the resulting ¢ productions’ each technique is able to eliminate
parsers (we shall detail later on efficiency results%

lier, 2003), at least as precision is concerned. We
hall see later that this is still the case on global
?)arsing times. However, applying tlkfilter after

: . . yroductions that are kept by the other one. The result
Given the fact that we are dealing with grammar

.) f these filters is suprisingly good: in average, after
whose sizes are respectively over 1,000,000 and ovi [i :
fil I . 20% of th h
12,000,000, this is in itself a very satisfying result. a lters, only approx. 20% of the productions that

have been kept will not be successfully instantiated
4.2 Precision results in the final parse forest. Third, the adjacency filter
can be used in its one-pass mode, since almost all

.L et uts rf[ecall !nf;)r:mally th? the ?remjlorl_of af”t?;'the benefit from the full (fix-point) mode is already
ing strategy 1S the proportion ot productions In M&.q, -ney after the first application. This is practically
resulting sub-grammar that are in the gold gramm

o that have effectively instantiated nterpart allra[]f very valuable result, since the one-pass mode is
€., Ihathave etiectively instantiated counterparts obviously faster than the full mode.
the final parse forest.

. . . However, all these filters do require computing
We have applied different strategies so as to COMime, and it is necessary to evaluate not only the pre-
pare their precisions. The results 67>~ and ’ y ythep

TIG : . cision of these filters, but also their execution time
G are summed up in Table 3. These results give . .
. as well as the influence they have on the global (in-
several valuable results. First, as we expected, tr(‘:?uding filtering) parsing time
basich-filter drastically reduces the size of the gram- '

mar. The result is even better 6 > thanks toits 4 3 Parsing time and best filter
large number of terminal symbols. Second, both the

adjacencyu-filter and the DSAd-filter efficiently re- Filter execution times for the six filtering strategies
duce the size of the grammar: 6>, thea-filter introduced in Table 3 are illustrated f&’>" in

eliminates 20% of the productions they receive a5'9ure 1. These graphics show three extremely valu-
input, a bit less for thel-filter. Indeed, theu-filter able pieces of information. First, filtering times are

performs better than thefilter introduced in (Boul- EXémely low: the average filtering time for the
slowest filter {a°d, i.e., basic plus full adjacency

°As seen above, inflected forms are directly terminal symplus DSA) on 40-word sentences is around 20 ms.

bols of GT>¥, while GT'¢ uses alexiconto map these in- e .
flected forms into its own terminal symbols, thereby pogsibl Second, on small sentences, f”termg times are virtu-

introducing lexical ambiguity. ally zero. This is important, since it means that there
16Approx. 15% of the original set of sentences were notrec-—___

ognized, and required error recovery techniques; we dedile ’Although not reported here, applying thebefored leads

discard them for this experiment. to the same conclusion.

Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

o 60) 60) 60
Sentence length Sentence length Sentence length

b-filter bd-filter ba-filter

Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

w w w w w w
Sentence length Sentence length Sentence length

ba>-filter bad-filter ba™ d-filter

Figure 1: Filtering times for six different strategies witH >

is almost no fixed cost to pay when we use thesg °: "o fler only

filters (let us recall that without any filter, building & onepass oyl -
efficient parsers for such a huge grammar is highlﬁ e R ey and O3 e —
problematic). Third, all these filters, at least wheng
used withGT>" | are executed in a time which is <
linear w.r.t. the size of the input sentence (i.e., th

size of the input DAG).

The results o’ 7€ lead to the same conclusions, £
with one exception: with this extremely huge gram—g
mar with so long right-hand sides, the basic filterg
is not as fast as o> (and not as precise, as < ol = . . o .
we will see below, which slows down theake-a- Sentence length
reduced-grammaialgorithm since it is applied on
a larger filtered grammars). For example, the merigure 2: Global (filtering+parsing) times for six
dian execution time for the basic filter on sentencedifferent strategies witia” >
whose size is approximately 40 is 0.25 seconds,

to be compared with the 0.00 seconds reached on

GT>N (this zero value means a median time strictly One can see that the results are completely differ-
lower than 0.01 SecondS, which is the granl."arity Oént, Showing a strong dependency on the character-
our time measurments). istics of the grammar. In the case@f>", the huge
Figure 2 and 3 show the global (filtering+parsinghumber of terminal symbols and the reasonable av-
execution time for the 6 different filters. We only erage size of right-hand sides of productions, the ba-
show median times computed on classes of senic filtering strategy is the best strategy: although it
tences of lengthl0: to 10(s + 1) — 1 and plotted is fast because relatively simple, it reduces the gram-
with a centered:-coordinate {0(¢ + 1/2)), but re- mar extremely efficiently (it has a 60.56% precision,
sults with other percentiles or average times on th® be compared with the precision of the void filter
same classes draw the same overall picture. which is 0.04%). Hence, foa&™>", our only result

on

0.1

al eerBt

0.05 |

T
Basic filter only

: Many parsers process their inputs from left to
—_— Oiju:?}d:}gi right but we can find in the literature other parsing
"R 3R 20 o5 | strategies. In particular, in NLP, (van Noord, 1997)
and (Satta and Stock, 1994) propose bidirectional al-
gorithms. These parsers have the reputation to have
a better efficiency than their left-to-right counterpart.
This reputation is not only based upon experimental
results (van Noord, 1997) but also upon mathemat-
ical arguments in (Nederhof and Satta, 2000). This
is specially true when the productions of the CFG
strongly depend on lexical information. In that case
the parsing search space is reduced because the con-
straints associated to lexical elements are evaluated
Figure 3: Global (filtering+parsing) times for six as early as possible. We can note that our filtering
different strategies witl” /¢ strategies try to reach the same purpose by a totally
different mean: we reduce the parsing search space
by eliminating as many productions as possible, in-

is that this basic filter does allow us to build an eﬁ"cluding possibly non-lexicalized productions whose

cggi_pars?rf_(lihg mos';t etfflc_lent one),tbut t?"’}t reflneﬁ]relevance to parse the current input can not be di-
additionnal filtering strategies are not useful. rectly deduced from that input.

The plcturigi completely different witt . We can also remark that our results are not in con-
Contrary toG , this grammar has comparatlvely%

15

05

Average global execution time (seconds)

‘
40 60 80 100
Sentence length

.) radiction with the claims of (Nederhof and Satta,
very few terminal and non-terminal symbols, an

| iaht-hand sid Th ¢ | 000) in which they argue that “Earley algorithm
Very ‘ong g t'."’!” sides. c_ese'two acts lea nd related standard parsing techniques [...] can
to a lower precision of the basic filter (39.43%),

which keeps many more productions when appliegm be directly extended to allow left-to-right and
orrect-prefix-property parsing in acceptable time
on GTE than when applied o67>", and leads, prefiXproperty parsing | P I

h lied al he | fici Thbound". First, as already noted in Section 1, our
when applied alone, to the less efficient parser. Wethod does not work for any large CFG. In order

gives to the adjacency filter much more opportunity, q well, the first step of our basic strategy must
to Improve the global execution time. However, t_h%Iter out a great amount of (lexicalized) productions.
complexity OT the grammar makes the' Co.nStrUCt'.o% do that, it is clear that the set of terminals in the
of the DSA filter relatively costly despite its preci- input text must select a small ratio of lexicalized pro-

sion, leading to the following conclusion: @' ductions. To give a more concrete idea we advo-

(and probably on any grammar with similar Characéate that the selected productions produce roughly a

ter.istics), the best filtering' strategy is the One'pasﬁrammar ofnormal size out of the large grammar.
adjacency strategy. In particular, thls leads to an IrT§econd, our method as a whole clearly does not pro-
provgment over the work Of. (Boulller,_ 2003) Wh'Chcess the input text from left-to-right and thus does
only mtroqluced tpr DSA filter. InCId.entaIIy, the not enter in the categories studied in (Nederhof and
extreme size of leads to much higher pars'rﬁatta, 2000). Moreover, the authors bring strong evi-
o :) . ences that in case of polynomial-time off-line com-
GT>].V’ which is (_:on3|stent with the ratio betv"eenpilation of the grammar, left-to-right parsing cannot
the sizes of both involved grammars. be performed in polynomial time, independently of
the size of the lexicon. Once again, if our filter pass
is viewed as an off-line processing of the large input
It is a well known result in optimization techniquesgrammar, our output is not a compilation of the large
that the key to practically improve these processes ggammar, but a (compilation of a) smaller grammar,
to reduce their search space. This is also the casedpecialized in (some abstractions of) the source text
parsing and in particular in CF parsing. only. In other words their negative results do not

5 Conclusion

necessarily apply to our specific case. 171-182, Trento, ltaly. Revised version at
The experiment campaign as been conducted in http://wwv. cogs. susx. ac. uk/ 1 ab/nl p/
using an Earley-like pars&f.We have also success- 270!/ cfg-resources/iwpt2000-rev2. ps.

fuly tried the coupling of our filtering strategies with Mark-Jan Nederhof and Giorgio Satta. 2000. Left-to-

a CYK parser (Kasami, 1967; Younger, 1967) as right parsing and bilexical context-free grammars. In
_or r. However th lina with LR Proceedings of the first conference on North American

post-processo owever the coupling t aG chapter of the ACLpages 272-279, San Francisco,

parser (See (Satta, 1992) for example) is perhapsCA, USA. Morgan Kaufmann Publishers Inc.

more problematic since the time taken to build up

the underlying nondeterministic LR automaton fronfVark-Jan Nederhof. 1993. Generalized left-corner pars-
the sub-grammar can be prohibitive. ing. In Proceedings of the sixth conference on Euro-

. pean chapter of the AClpages 305—-314, Morristown,
Though no definitive answer can be made to the N3 ysa. ACL.

question asked in the title, we have shown that, in _ .
some cases, the answer is certaiyig Benoit Sagot and Pierre Boullier. 2005. From raw cor-
' pus to word lattices: robust pre-parsing processing. In
Proceedings of L&TC 20Q5ages 348—-351, Poznah,

Poland.
References

Sylvie Billot and Bernard Lang. 1989. The structure ofB egfg:giﬁgognlal%?:rlrg :scz?ﬁl?e%”go\gge?ﬁgtfegﬁezLs?m_
shared forests in ambiguous parsing. Mieeting of 5 ic lexicon for french: architecture, acquisition, use
the Association for Computational Linguistigsages In Proc. of LREC'06
143-151. '
. . N . Giorgio Satta and Oliviero Stock. 1994. Bidirectional
Pierre Boullier and Benoit Sagot. 2005. Efficient and ro- cogntext-free grammar parsing for natural language
bust LFG parsing: SxLfg. IRroceedings of IWPT'Q5 processingArtif. Intell., 69(1-2):123-164.
pages 1-10, Vancouver, Canada.
. . _ _ Giorgio Satta. 1992. Review of "generalized Ir parsing”
Pierre Boullier. 2000. On TAG parsingraitement Au- " masaru tomita. kluwer academic publishers 1991.
tomatique des Langues (T.A.14)1(3):759-793. Comput. Linguist.18(3):377-381.

Pierre Boullier. 2003. Guided Earley parsing. Ro- vyeg Schabes and Richard C. Waters. 1995. Tree in-
ceedings of IWPT Qpages 43-54, Nancy, France. sertion grammar: Cubic-time, parsable formalism that
lexicalizes context-free grammar without changing the

Jay Earley. 1970. An efficient context-free parsing algo- trees producedComput. Linguist.21(4):479-513.

rithm. Communication of the ACM.3(2):94-102.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ’lexicalized’ grammars:
Application to tree adjoining grammars. Rroceed-
ings of the 12th International Conference on Comput.
Linguist. (COLING’88) Budapest, Hungary.

Jeffrey D. Hopcroft and John E. Ullman. 197®tro-
duction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, Mass.

Aravind Joshi. 1997. Parsing techniques. Snor-

vey of the state of the art in human language techgertian van Noord. 1997. An efficientimplementation of
nology, pages 351-356. Cambridge University Press, ihe head-corner parseEomput. Linguist.23(3):425—
New York, NY, USA. 456.

Tadao Kasami. 1967. An efficient recognition and syntakic villemonte de La Clergerie. 2005. From metagram-

algorithm for context-free languages. Scientific Re- 4rs to factorized TAG/TIG parsers. Rroceedings
port AFCRL-65-758, Air Force Cambridge Research s IWPT'05 pages 190-191, Vancouver, Canada.
Laboratory, Bedford, Massachusetts, USA. ' ’

Daniel H. Younger. 1967. Recognition and parsing of

Robert C. Moore. = 2000. Improved left-comer context-free languages in time’. Information and
chart parsing for large context-free gram- control 10(2):189-208.

mars. In Proceedings of IWPT 2000 pages

8Contrarily to classical Earley parsers, firedictor phase
uses a pre-computed structure which is roughly an LC relatio
Note that this feature forces our filters to compute an LC-rela
tion on the generated sub-grammar. This also shows that LC
parsers may also benefit from our filtering techniques.

