
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 1–10,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

Efficient and robust LFG parsing: SXLFG

Pierre Boullier and Benoît Sagot
INRIA-Rocquencourt, Projet Atoll,

Domaine de Voluceau, Rocquencourt B.P. 105
78 153 Le Chesnay Cedex, France

{pierre.boullier, benoit.sagot}@inria.fr

Abstract

In this paper, we introduce a new parser,
called SXLFG, based on the Lexical-
Functional Grammars formalism (LFG).
We describe the underlying context-free
parser and how functional structures are
efficiently computed on top of the CFG
shared forest thanks to computation shar-
ing, lazy evaluation, and compact data
representation. We then present vari-
ous error recovery techniques we imple-
mented in order to build a robust parser.
Finally, we offer concrete results when
SXLFG is used with an existing gram-
mar for French. We show that our parser
is both efficient and robust, although the
grammar is very ambiguous.

1 Introduction

In order to tackle the algorithmic difficulties of
parsers when applied to real-life corpora, it is nowa-
days usual to apply robust and efficient methods
such as Markovian techniques or finite automata.
These methods are perfectly suited for a large num-
ber of applications that do not rely on a complex rep-
resentation of the sentence. However, the descriptive
expressivity of resulting analyses is far below what
is needed to represent, e.g., phrases or long-distance
dependencies in a way that is consistent with seri-
ous linguistic definitions of these concepts. For this
reason, we designed a parser that is compatible with
a linguistic theory, namely LFG, as well as robust
and efficient despite the high variability of language
production.

Developing a new parser for LFG (Lexical-
Functional Grammars, see, e.g., (Kaplan, 1989)) is
not in itself very original. Several LFG parsers al-
ready exist, including those of (Andrews, 1990) or
(Briffault et al., 1997). However, the most famous
LFG system is undoubtedly the Xerox Linguistics
Environment (XLE) project which is the successor
of the Grammars Writer’s Workbench (Kaplan and
Maxwell, 1994; Riezler et al., 2002; Kaplan et al.,
2004). XLE is a large project which concentrates a
lot of linguistic and computational technology, relies
on a similar point of view on the balance between
shallow and deep parsing, and has been successfully
used to parse large unrestricted corpora.

Nevertheless, these parsers do not always use in
the most extensive way all existing algorithmic tech-
niques of computation sharing and compact infor-
mation representation that make it possible to write
an efficient LFG parser, despite the fact that the LFG
formalism, as many other formalisms relying on uni-
fication, is NP-hard. Of course our purpose is not to
make a new XLE system but to study how robust-
ness and efficiency can be reached in LFG parsing
on raw text.

Building constituent structures (c-structures) does
not raise any particular problem in theory,1 be-
cause they are described in LFG by a context-free
grammar (CFG), called (CF) backbone in this pa-
per. Indeed, general parsing algorithms for CFGs
are well-known (Earley, GLR,. . .). On the other
hand, the efficient construction of functional struc-
tures (f-structures) is much more problematic. The
first choice that a parser designer must face is that
of when f-structures are processed: either during CF

1In practice, the availability of a good parser is sometimes
less straightforward.

1

parsing (interleaved method) or in a second phase
(two-pass computation). The second choice is be-
tween f-structures evaluation on single individual
[sub-]parses ([sub-]trees) or on a complete represen-
tation of all parses. We choose to process all phrasal
constraints by a CF parser which produces a shared
forest2 of polynomial size in polynomial time. Sec-
ond, this shared forest is used, as a whole, to de-
cide which functional constraints to process. For
ambiguous CF backbones, this two pass computa-
tion is more efficient than interleaving phrasal and
functional constraints.3 Another advantage of this
two pass vision is that the CF parser may be easily
replaced by another one. It may also be replaced
by a more powerful parser.4 We choose to evalu-
ate functional constraints directly on the shared for-
est since it has been proven (See (Maxwell and Ka-
plan, 1993)), as one can easily expect, that tech-
niques which evaluate functional constraints on an
enumeration of the resulting phrase-structure trees
are a computational disaster. This article explores
the computation of f-structures directly (without un-
folding) on shared forests. We will see how, in some
cases, our parser allows to deal with potential com-
binatorial explosion. Moreover, at all levels, error
recovering mechanisms turn our system into a robust
parser.

Our parser, called SXLFG, has been evaluated
with two large-coverage grammars for French, on
corpora of various genres. In the last section of this
paper, we present quantitative results of SXLFG us-
ing one of these grammars on a general journalistic
corpus.

2 The SXLFG parser: plain parsing

This section describes the parsing process for fully
grammatical sentences. Error recovery mechanisms,
that are used when this is not the case, are described
in the next section.

2Informally, a shared forest is a structure which can repre-
sent a set of parses (even an unbounded number) in a way that
shares all common sub-parses.

3This fact can be easily understood by considering that func-
tional constraints may be constructed in exponential time on
a sub-forest that may well be discarded later on by (future)
phrasal constraints.

4For example, we next plan to use an RCG backbone (see
(Boullier, 2004) for an introduction to RCGs), with the func-
tional constraints being evaluated on the shared forest output by
an RCG parser.

2.1 Architecture overview

The core of SXLFG is a general CF parser that pro-
cesses the CF backbone of the LFG. It is an Earley-
like parser that relies on an underlying left-corner
automaton and is an evolution of (Boullier, 2003).
The set of analyses produced by this parser is rep-
resented by a shared parse forest. In fact, this parse
forest may itself be seen as a CFG whose produc-
tions are instantiated productions of the backbone.5

The evaluation of the functional equations is per-
formed during a bottom-up left-to-right walk in this
forest. A disambiguation module, which discards
unselected f-structures, may be invoked on any node
of the forest including of course its root node.

The input of the parser is a word lattice (all words
being known by the lexicon, including special words
representing unknown tokens of the raw text). This
lattice is converted by the lexer in a lexeme lattice
(a lexeme being here a CFG terminal symbol asso-
ciated with underspecified f-structures).

2.2 The context-free parser

The evolutions of the Earley parser compared to that
described in (Boullier, 2003) are of two kinds: it ac-
cepts lattices (or DAGs) as input and it has syntac-
tic error recovery mechanisms. This second point
will be examined in section 3.1. Dealing with DAGs
as input does not require, at least from a theoreti-
cal standpoint, considerable changes in the Earley
algorithm.6 Since the Earley parser is guided by
a left-corner finite automaton that defines a regular
super-set of the CF backbone language, this automa-
ton also deals with DAGs as input (this corresponds
to an intersection of two finite automata).

5If A is a non-terminal symbol of the backbone, Aij is an in-

stantiated non-terminal symbol if and only if Aij
+⇒
G

ai+1 . . . aj

where w = a1 . . . an is the input string and
+⇒
G

the transitive

closure of the derives relation.
6If i is a node of the DAG and if we have a transition on the

terminal t to the node j (without any loss in generality, we can
suppose that j > i) and if the Earley item [A → α.tβ, k] is
an element of the table T [i], then we can add to the table T [j]
the item [A → αt.β, k] if it is not already there. One must
take care to begin a PREDICTOR phase in a T [j] table only if
all Earley phases (PREDICTOR, COMPLETOR and SCANNER)
have already been performed in all tables T [i], i < j.

2

2.3 F-Structures computation

As noted in (Kaplan and Bresnan, 1982), if the num-
ber of CF parses (c-structures) grows exponentially
w.r.t. the length of the input, it takes exponential
time to build and check the associated f-structures.
Our experience shows that the CF backbone for large
LFGs may be highly ambiguous (cf. Section 4).
This means that (full) parsing of long sentences
would be intractable. Although in CF parsing an ex-
ponential (or even unbounded) number of parse trees
can be computed and packed in polynomial time in
a shared forest, the same result cannot be achieved
with f-structures for several reasons.7 However, this
intractable behavior (and many others) may well not
occur in practical NL applications, or some tech-
niques (See Section 2.4) may be applied to restrict
this combinatorial explosion.

Efficient computation of unification-based struc-
tures on a shared forest is still a evolving research
field. However, this problem is simplified if struc-
tures are monotonic, as is the case in LFG. In such
a case the support (i.e., the shared forest) does not
need to be modified during the functional equation
resolution. If we adopt a bottom-up left-to-right
traversal strategy in the shared forest, information
in f-structures is cumulated in a synthesized way.
This means that the evaluation of a sub-forest8 is
only performed once, even when this sub-forest is
shared by several parent nodes. In fact, the effect
of a complete functional evaluation is to associate
to each node of the parse forest a set of partial f-
structures which only depends upon the descendants
of that node (excluding its parent or sister nodes).

The result of our LFG parser is the set of (com-
plete and consistent, if possible) main f-structures
(i.e., the f-structures associated to the root of the
shared forest), or, when a partial analysis occurs,

7As an example, it is possible, in LFG, to define f-structures
which encode individual parses. If a polynomial sized shared
forest represents an exponential number of parses, the number
of different f-structures associated to the root of the shared for-
est would be that exponential number of parses. In other words,
there are cases where no computational sharing of f-structures
is possible.

8If the CF backbone G is cyclic (i.e., ∃A s.t. A
+⇒
G

A), the

forest may be a general graph, and not only a DAG. Though our
CF parser supports this case, we exclude it in SXLFG. Of course
this (little) restriction does not mean that cyclic f-structures are
also prohibited. SXLFG does support cyclic f-structures, which
can be an elegant way to represent some linguistic relations.

the sets of (partial) f-structures which are associated
with maximal internal nodes). Such sets of (partial
or not) f-structures could be factored out in a single
f-structure containing disjunctive values, as in XLE.
We decided not to use these complex disjunctive val-
ues, except for some atomic types, but rather to asso-
ciate to any (partial) f-structure a unique identifier:
two identical f-structures will always have the same
identifier throughout the whole process. Experi-
ments (not reported here) show that this strategy is
worth using and that the total number of f-structures
built during a complete parse remains very tractable,
except maybe in some pathological cases.

As in XLE, we use a lazy copying strategy during
unification. When two f-structures are unified, we
only copy their common parts which are needed to
check whether these f-structures are unifiable. This
restricts the quantity of copies between two daughter
nodes to the parts where they interact. Of course,
the original daughter f-structures are left untouched
(and thus can be reused in another context).

2.4 Internal and global disambiguation

Applications of parsing systems often need a dis-
ambiguated result, thus calling for disambiguation
techniques to be applied on the ambiguous output
of parsers such as SXLFG. In our case, this im-
plies developing disambiguation procedures in order
to choose the most likely one(s) amongst the main f-
structures. Afterwards, the shared forest is pruned,
retaining only c-structures that are compatible with
the chosen main f-structure(s).

On the other hand, on any internal node of the for-
est, a possibly huge number of f-structures may be
computed. If nothing is done, these numerous struc-
tures may lead to a combinatorial explosion that pre-
vents parsing from terminating in a reasonable time.
Therefore, it seems sensible to allow the grammar
designer to point out in his or her grammar a set of
non-terminal symbols that have a linguistic property
of (quasi-)saturation, making it possible to apply
on them disambiguation techniques.9 Hence, some
non-terminals of the CF backbone that correspond

9Such an approach is indeed more satisfying than a blind
skimming that stops the full processing of the sentence when-
ever the amount of time or memory spent on a sentence exceeds
a user-specified limit, replacing it by a partial processing that
performs a bounded amount of work on each remaining non-
terminal (Riezler et al., 2002; Kaplan et al., 2004).

3

to linguistically saturated phrases may be associ-
ated with an ordered list of disambiguation meth-
ods, each of these non-terminals having its own list.
This allows for swift filtering out on relevant internal
nodes of f-structures that could arguably only lead
to inconsistent and/or incomplete main f-structures,
or that would be discarded later on by applying the
same method on the main f-structures. Concomi-
tantly, this leads to a significant improvement of
parsing times. This view is a generalization of the
classical disambiguation method described above,
since the pruning of f-structures (and incidentally
of the forest itself) is not reserved any more to the
axiom of the CF backbone. We call global disam-
biguation the pruning of the main f-structures, and
internal disambiguation the same process applied
on internal nodes of the forest. It must be noticed
that neither disambiguation type necessarily leads
to a unique f-structure. Disambiguation is merely
a shortcut for partial or total disambiguation.

Disambiguation methods are generally divided
into probabilistic and rule-based techniques. Our
parsing architecture allows for implementing both
kinds of methods, provided the computations can
be performed on f-structures. It allows to asso-
ciate a weight with all f-structures of a given in-
stantiated non-terminal.10 Applying a disambigua-
tion rule consists in eliminating of all f-structures
that are not optimal according to this rule. Each op-
tional rule is applied in a cascading fashion (one can
change the order, or even not apply them at all).

After this disambiguation mechanism on f-
structures, the shared forest (that represent c-
structures) is filtered out so as to correspond exactly
to the f-structure(s) that have been kept. In partic-
ular, if the disambiguation is complete (only one f-
structure has been kept), this filtering yields in gen-
eral a unique c-structure (a tree).

10See (Kinyon, 2000) for an argumentation on the impor-
tance of performing disambiguation on structures such as TAG
derivation trees or LFG f-structures and not constituent(-like)
structures.

3 Techniques for robust parsing

3.1 Error recovery in the CF parser

The detection of an error in the Earley parser11 can
be caused by two different phenomena: the CF back-
bone has not a large enough coverage or the input is
not in its language. Of course, although the parser
cannot make the difference between both causes,
parser and grammar developers must deal with them
differently. In both cases, the parser has to be able
to perform recovery so as to resume parsing as well
as, if possible, to correctly parse valid portions of
incorrect inputs, while preserving a sensible relation
between these valid portions. Dealing with errors
in parsers is a field of research that has been mostly
addressed in the deterministic case and rarely in the
case of general CF parsers.

We have implemented two recovery strategies in
our Earley parser, that are tried one after the other.
The first strategy is called forward recovery, the
second one backward recovery.12 Both generate a
shared forest, as in the regular case.

The mechanism is the following. If, at a certain
point, the parsing is blocked, we then jump forward
a certain amount of terminal symbols so as to be able
to resume parsing. Formally, in an Earley parser
whose input is a DAG, an error is detected when,
whatever the active table T [j], items of the form
I = [A → α.tβ, i] in this table are such that in the
DAG there is no out-transition on t from node j. We
say that a recovery is possible in k on β if in the suf-
fix β = β1Xβ2 there exists a derived phrase from
the symbol X which starts with a terminal symbol
r and if there exists a node k in the DAG, k ≥ j,
with an out-transition on r. If it is the case and if
this possible recovery is selected, we put the item
[A → αtβ1.Xβ2, i] in table T [k]. This will ensure

11Let us recall here that the Earley algorithm, like the GLR
algorithm, has the valid prefix property. This is still true when
the input is a DAG.

12The combination of these two recovery techniques leads to
a more general algorithm than the skipping of the GLR* algo-
rithm (Lavie and Tomita, 1993). Indeed, we can not only skip
terminals, but in fact replace any invalid prefix by a valid pre-
fix (of a right sentential form) with an increased span. In other
words, both terminals and non-terminals may be skipped, in-
serted or changed, following the heuristics described later on.
However, in (Lavie and Tomita, 1993), considering only the
skipping of terminal symbols was fully justified since their aim
was to parse spontaneous speech, full of noise and irrelevances
that surround the meaningful words of the utterance.

4

S2

S

NP

N

pn

Jean

V

v

essaye

PVP

prep

de

VP

ε

spunct

...

Figure 1: Simplified constituents structure for in-
complete sentence Jean essaye de... (“Jean tries
to...”). The derivation of VP in the empty string is
the result of a forward recovery, and will lead to
an incomplete functional structure (no “pred” in the
sub-structure corresponding to node VP).

at least one valid transition from T [k] on r. The ef-
fect of such a recovery is to assume that between
the nodes j and k in the DAG there is a path that is a
phrase generated by tβ1. We select only nodes k that
are as close as possible to j. This economy principle
allows to skip (without analysis) the smallest pos-
sible number of terminal symbols, and leads pretty
often to no skipping, thus deriving β1 into the empty
string and producing a recovery in k = j. This re-
covery mechanism allows the parsing process to go
forward, hence the name forward recovery.

If this strategy fails, we make use of backward
recovery.13 Instead of trying to apply the current
item, we jump backward over terminal symbols that
have already been recognized by the current item,
until we find its calling items, items on which we
try to perform a forward recovery at turn. In case
of failure, we can go up recursively until we suc-
ceed. Indeed, success is guaranteed, but in the worst
case it is obtained only at the axiom. In this ex-
treme case, the shared forest that is produced is only
a single production that says that the input DAG
is derivable from the axiom. We call this situation
trivial recovery. Formally, let us come back to the
item I = [A → α.tβ, i] of table T [j]. We know
that there exists in table T [i] an item J of the form
[B → γ.Aδ, h] on which we can hazard a forward

13This second strategy could be also used before or even in
parallel with the forward recovery.

recovery in l on δ, where i ≤ j ≤ l. If this fails, we
go on coming back further and further in the past,
until we reach the initial node of the DAG and the
root item [S′ → .S$, 0] of table T [0] ($ is the end-
of-sentence mark and S′ the super-axiom). Since
any input ends with an $ mark, this strategy always
succeeds, leading in the worst case to trivial recov-
ery.

An example of an analysis produced is shown in
Figure 1: in this case, no out-transition on spunct is
available after having recognized prep. Hence a for-
ward recovery is performed that inserts an “empty”
VP after the prep, so as to build a valid parse.

3.2 Inconsistent or partial f-structures

The computation of f-structures fails if and only
if no consistent and complete main f-structure is
found. This occurs because unification constraints
specified by functional equations could not have
been verified or because resulting f-structures are
inconsistent or incomplete. Without entering into
details, inconsistency mostly occurs because sub-
categorization constraints have failed.

pred = ’essayer <subj, de-vcomp>’, v[2..3]

subj =

pred = ’Jean <(subj)>’, pn[1..2]
det = +
hum = +

Aij =
{
R182

9 , R177
26 , R170

28

}

F68

de-vcomp =

pred = ’de <obj|...>’, prep[3..4]

vcomp =

[
subj = []F68

Aij =
{
R162

84

}
2

]
F69

pcase = de
Aij = {}2

F70

number = sg
person = 3
mode = indicative
tense = present
Aij =

{
R130

33 , R119
48 , R134

49

}

Figure 2: Simplified incomplete functional structure
for incomplete sentence Jean essaye de... (“Jean
tries to...”). Sub-structure identifiers are indicated as
subscripts (like F70). In the grammar, a rule can tell
the parser to store the current instantiated production
in the special field Aij of its associated left-hand
side structure. Hence, atoms of the form Rq

p rep-
resent instantiated production, thus allowing to link
sub-structures to non-terminals of the c-structure.

5

A first failure leads to a second evaluation of f-
structures on the shared forest, during which consis-
tency and completeness checks are relaxed (an ex-
ample thereof is given in Figure 2). In case of suc-
cess, we obtain inconsistent or incomplete main f-
structures. Of course, this second attempt can also
fail. We then look in the shared forest for a set of
maximal nodes that have f-structures (possibly in-
complete or inconsistent) and whose mother nodes
have no f-structures. They correspond to partial
disjoint analyses. The disambiguation process pre-
sented in section 2.4 applies to all maximal nodes.

3.3 Over-segmentation of unparsable sentences

Despite all these recovery techniques, parsing some-
times fails, and no analysis is produced. This can
occur because a time-out given as parameter has ex-
pired before the end of the process, or because the
Earley parser performed a trivial recovery (because
of the insufficient coverage of the grammar, or be-
cause the input sentence is simply too far from being
correct: grammatical errors, incomplete sentences,
too noisy sentences, . . .).

For this reason, we developed a layer over SXLFG

that performs an over-segmentation of ungrammat-
ical sentences. The idea is that it happens fre-
quently that portions of the input sentence are ana-
lyzable as sentences, although the full input sentence
is not. Therefore, we split in segments unparsable
sentences (level 1 segmentation); then, if needed,
we split anew unparsable level 1 segments14 (level
2 segmentation), and so on with 5 segmentation lev-
els.15 Such a technique supposes that the grammar
recognizes both chunks (which is linguistically jus-
tified, e.g., in order to parse nominal sentences) and
isolated terminals (which is linguistically less rele-
vant). In a way, it is a generalization of the use of a
FRAGMENT grammar as described in (Riezler et al.,
2002; Kaplan et al., 2004).

14A sentence can be split into two level 1 segments, the first
one being parsable. Then only the second one will be over-
segmented anew into level 2 segments. And only unparsable
level 2 segments will be over-segmented, and so on.

15The last segmentation level segments the input string into
isolated terminals, in order to guarantee that any input is parsed,
and in particular not to abandon parsing on sentences in which
some level 1 or 2 segments are parsable, but in which some parts
are only parsable at level 5.

4 Quantitative results

4.1 Grammar, disambiguation rules, lexicon

To evaluate the SXLFG parser, we used our system
with a grammar for French that is an adaptation of an
LFG grammar originally developed by Clément for
his XLFG system (Clément and Kinyon, 2001). In
its current state, the grammar has a relatively large
coverage. Amongst complex phenomena covered
by this grammar are coordinations (without ellip-
sis), juxtapositions (of sentences or phrases), inter-
rogatives, post-verbal subjects and double subjects
(Pierre dort-il ?), all kinds of verbal kernels (in-
cluding clitics, auxiliaries, passive, negation), com-
pletives (subcategorized or adjuncts), infinitives (in-
cluding raising verbs and all three kinds of control
verbs), relatives or indirect interrogatives, including
when arbitrarily long-distance dependencies are in-
volved. However, comparatives, clefts and elliptical
coordinations are not specifically covered, inter alia.
Moreover, we have realized that the CF backbone is
too ambiguous (see below).

Besides the grammar itself, we developed a set of
disambiguation heuristics. Following on this point
(Clément and Kinyon, 2001), we use a set of rules
that is an adaptation and extension of the three sim-
ple principles they describe and that are applied
on f-structures, rather than a stochastic model.16

Our rules are based on linguistic considerations and
can filter out functional structures associated to a
given node of the forest. This includes two special
rules that eliminate inconsistent and incomplete f-
structures either in all cases or when consistent and
complete structures exist (these rules are not applied
during the second pass, if any). As explained above,
some non-terminals of the CF backbone, that corre-
spond to linguistically saturated phrases, have been
associated with an ordered list of these rules, each of
these non-terminal having its own list.17.

16As sketched before, this could be easily done by defining a
rule that uses a stochastic model to compute a weight for each
f-structure (see e.g., (Miyao and Tsujii, 2002)) and retains only
those with the heaviest weights (Riezler et al., 2002; Kaplan
et al., 2004). However, our experiments show that structural
rules can be discriminative enough to enable efficient parsing,
without the need for statistical data that have to be acquired on
annotated corpora that are rare and costly, in particular if the
considered language is not English.

17Our rules, in their order of application on main f-structures,
i.e. on the axiom of the backbone, are the following (note that

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100N
um

be
r

of
 s

en
te

nc
es

 in
 th

e
sa

m
e

cl
as

s
(le

ng
th

 b
et

w
ee

n
10

i a
nd

 1
0(

i+
1)

-1
)

Sentence length (number of transitions in the corresponding word lattice)

Figure 3: Repartition of sentences of the test corpus
w.r.t. their length. We show the cardinal of classes
of sentences of length 10i to 10(i + 1) − 1, plotted
with a centered x-coordinate (10(i + 1/2)).

The lexicon we used is the latest version of
Lefff (Lexique des formes fléchies du français18),
which contains morphosyntactic and syntactic infor-
mation for more than 600,000 entries corresponding
to approximately 400,000 different tokens (words or
components of multi-word units).

The purpose of this paper is not however to val-
idate the grammar and these disambiguation rules,
since the grammar has only the role of enabling eval-
uation of parsing techniques developed in the current
work.

4.2 Results

As for any parser, the evaluation of SXLFG has been
carried out by testing it in a real-life situation. We
used the previously cited grammar on a raw journal-
istic corpus of 3293 sentences, not filtered and pro-

when used on other non-terminal symbols than the axiom, some
rules may not be applied, or in a different order):
Rule 1: Filter out inconsistent and incomplete structures, if

there is at least one consistent and complete structure.
Rule 2: Prefer analyses that maximize the sum of the weights

of involved lexemes; amongst lexical entries that have a
weight higher than normal are multi-word units.

Rule 3: Prefer nominal groups with a determiner.
Rule 4: Prefer arguments to modifiers, and auxiliary-

participle relations to arguments (the computation is
performed recursively on all (sub-)structures).

Rule 5: Prefer closer arguments (same remark).
Rule 6: Prefer deeper structures.
Rule 7: Order structures according to the mode of verbs (we

recursively prefer structures with indicative verbs, sub-
junctive verbs, and so on).

Rule 8: Order according to the category of adverb governors.
Rule 9: Choose one analysis at random (to guarantee that the

output is a unique analysis).

18Lexicon of French inflected forms

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0 20 40 60 80 100

N
um

be
r

of
 tr

ee
s

in
 th

e
C

F
G

 p
ar

se
 fo

re
st

 (
lo

g
sc

al
e)

Sentence length (number of transitions in the corresponding word lattice)

Median number of trees
Number of trees at percentile rank 90
Number of trees at percentile rank 10

Figure 4: CFG ambiguity (medians are computed on
classes of sentences of length 10i to 10(i+1)−1 and
plotted with a centered x-coordinate (10(i + 1/2)).

cessed by the SXPipe pre-parsing system described
in (Sagot and Boullier, 2005). The repartition of sen-
tences w.r.t. their length is plotted in Figure 3.

In all Figures, the x-coordinate is bounded so as
to show results only on statistically significant data,
although we parse all sentences, the longest one be-
ing of length 156.

However, in order to evaluate the performance of
our parser, we had to get rid of, as much as possible,
the influence of the grammar and the corpus in the
quantitative results. Indeed, the performance of the
SXLFG parser does not depend on the quality and
the ambiguity of the grammar, which is an input for
SXLFG. On the contrary, our aim is to develop a
parser which is as efficient and robust as possible
given the input grammar, and in spite of its (possibly
huge) ambiguity and of its (possibly poor) intrinsic
coverage.

4.2.1 CFG parser evaluation

Therefore, Figure 4 demonstrates the level of am-
biguity of the CF backbone by showing the median
number of CF parses given the number of transitions
in the lattice representing the sentence. Although
the number of trees is excessively high, Figure 5
shows the efficiency of our CF parser19 (the max-
imum number of trees reached in our corpus is as
high as 9.12 1038 for a sentence of length 140, which

19Our experiments have been performed on a AMD Athlon
2100+ (1.7 GHz).

7

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

C
F

G
 p

ar
si

ng
 ti

m
e

(m
ill

is
ec

on
ds

)

Sentence length (number of transitions in the corresponding word lattice)

Median CFG parsing time
CFG parsing time at percentile rank 90
CFG parsing time at percentile rank 10

Figure 5: CF parsing time (same remark as for Fig. 4).

is parsed in only 0.75 s). Moreover, the error re-
covery algorithms described in section 3.1 are suc-
cessful in most cases where the CF backbone does
not recognize the input sentences: out of the 3292
sentences, 364 are not recognized (11.1%), and the
parser proposes a non-trivial recovery for all but 13
(96.3%). We shall see later the relevance of the pro-
posed recovered forests. We should however notice
that the ambiguity of forests is significantly higher
in case of error recovery.

4.2.2 Evaluation of f-structures computation

Although the CF backbone is massively ambigu-
ous, results show that our f-structures evaluation
system is pretty efficient. Indeed, with a timeout of
20 seconds, it takes only 6 301 seconds to parse the
whole corpus, and only 5, 7% of sentences reach the
timeout before producing a parse. These results can
be compared to the result with the same grammar on
the same corpus, but without internal disambigua-
tion (see 2.4), which is 30 490 seconds and 41.2%
of sentences reaching the timeout.

The coverage of the grammar on our corpus with
internal disambiguation is 57.6%, the coverage be-
ing defined as the proportion of sentences for which
a consistent and complete main f-structure is output
by the parser. This includes cases where the sen-
tence was agrammatical w.r.t. the CF backbone, but

for which the forest produced by the error recov-
ery techniques made it possible to compute a consis-
tent and complete main f-structure (this concerns 86
sentences, i.e., 2.6% of all sentences, and 24.5% of
all agrammatical sentences w.r.t. the backbone; this
shows that CF error recovery gives relevant results).

The comparison with the results with the same
grammar but without internal disambiguation is in-
teresting (see Table 1): in this case, the high propor-
tion of sentences that reach the timeout before being
parsed leads to a coverage as low as 40.2%. Amid
the sentences covered by such a system, 94.6% are
also covered by the full-featured parser (with inter-
nal disambiguation), which means that only 72 sen-
tences covered by the grammar are lost because of
the internal disambiguation. This should be com-
pared with the 645 sentences that are not parsed be-
cause of the timeout when internal disambiguation
is disabled, but that are covered by the grammar and
correctly parsed if internal disambiguation is used:
the risk that is taken by pruning f-structures during
the parsing process is much smaller than the benefit
it gives, both in terms of coverage and parsing time.

Since we do not want the ambiguity of the CF
backbone to influence our results, Figure 6 plots the
total parsing time, including the evaluation of fea-
tures structures, against the number of trees pro-
duced by the CF parser.

8

Results With internal Without internal
disambiguation disambiguation

Total number of sentences 3293
Recognized by the backbone 2929 88.9%
CF parsing with non-trivial recovery 351 10.6%
CF parsing with trivial recovery 13 0.4%
Consistent and complete main f-structure 1896 57.6% 1323 40.2%
Inconsistent and incomplete main f-structure 734 22.3% 316 9.6%
Partial f-structures 455 13.8% 278 8.4%
No f-structure 6 0.2% 6 0.2%
No result (trivial recovery) 13 0.4% 13 0.4%
Timeout (20 s) 189 5.7% 1357 40.2%

Table 1: Coverage results with and without internal ranking, with the same grammar and corpus.

 10

 100

 1000

 10000

 1 100000 1e+10 1e+15 1e+20

T
ot

al
 p

ar
si

ng
 ti

m
e

(m
ill

is
ec

on
ds

)

Number of trees in the forest

Median total parsing time
Total parsing time at percentile rank 90
Total parsing time at percentile rank 10

Figure 6: Total parsing time w.r.t. the number of trees in the forest produced by the CF backbone (medians
are computed on classes of sentences whose number of trees lies between 102i and 102i+2 − 1 and plotted
with a centered x-coordinate (102i+1)).

9

5 Conclusion

This paper shows several important results.
It shows that wide-coverage unification-based

grammars can be used to define natural languages
and that their parsers can, in practice, analyze raw
text.

It shows techniques that allow to compute fea-
ture structures efficiently on a massively ambiguous
shared forest.

It also shows that error recovery is worth doing
both at the phrasal and functional levels. We have
shown that a non-negligible portion of input texts
that are not in the backbone language can neverthe-
less, after CF error recovery, be qualified as valid
sentences for the functional level.

Moreover, the various robustness techniques that
are applied at the functional level allow to gather
(partial) useful information. Note that these ro-
bust techniques, which do not alter the overall ef-
ficiency of SXLFG, apply in the two cases of incom-
plete grammar (lack of covering) and agrammati-
cal phrases (w.r.t. the current definition), though it
seems to be more effective in this latter case.

References

Avery Andrews. 1990. Functional closure in LFG. Tech-
nical report, The Australian National University.

Pierre Boullier. 2003. Guided Earley parsing. In Pro-
ceedings of the 8th International Workshop on Parsing
Technologies (IWPT’03), pages 43–54, Nancy, France,
April.

Pierre Boullier. 2004. Range concatenation grammars.
In New developments in parsing technology, pages
269–289. Kluwer Academic Publishers.

Xavier Briffault, Karim Chibout, Gérard Sabah, and
Jérôme Vapillon. 1997. An object-oriented lin-
guistic engineering environment using LFG (Lexical-
Functional Grammar) and CG (Conceptual Graphs).
In Proceedings of Computational Environments for
Grammar Development and Linguistic Engineering,
ACL’97 Workshop.

Lionel Clément and Alexandra Kinyon. 2001. XLFG –
an LFG parsing scheme for French. In Proceedings of
LFG’01, Hong Kong.

Ronald Kaplan and Joan Bresnan. 1982. Lexical-
functional grammar: a formal system for grammatical

representation. In J. Bresnan, editor, The Mental Rep-
resentation of Grammatical Relations, pages 173–281.
MIT Press, Cambridge, MA.

Ronald M. Kaplan and John T. Maxwell. 1994. Gram-
mar writer’s workbench, version 2.0. Technical report,
Xerox Corporation.

Ronald Kaplan, Stefan Riezler, Tracey King, John
Maxwell, Alex Vasserman, and Richard Crouch.
2004. Speed and accuracy in shallow and deep
stochastic parsing. In Proceedings of HLT/NAACL,
Boston, Massachusetts.

Ronald Kaplan. 1989. The formal architecture of lexical
functionnal grammar. Journal of Informations Science
and Engineering.

Alexandra Kinyon. 2000. Are structural principles use-
ful for automatic disambiguation ? In Proceedings
of in COGSCI’00, Philadelphia, Pennsylvania, United
States.

Alon Lavie and Masaru Tomita. 1993. GLR* – an effi-
cient noise-skipping parsing algorithm for context-free
grammars. In Proceedings of the Third International
Workshop on Parsing Technologies, pages 123–134,
Tilburg, Netherlands and Durbuy, Belgium.

John Maxwell and Ronald Kaplan. 1993. The interface
between phrasal and functional constraints. Computa-
tional Linguistics, 19(4):571–589.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum en-
tropy estimation for feature forests. In Proceedings of
HLT, San Diego, California.

Stefan Riezler, Tracey King, Ronald Kaplan, Richard
Crouch, John Maxwell, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estimation
techniques. In Proceedings of the Annual Meeting of
the ACL, University of Pennsylvania.

Benoît Sagot and Pierre Boullier. 2005. From raw cor-
pus to word lattices: robust pre-parsing processing. In
Proceedings of L&TC 2005, Poznań, Pologne.

10

