
Multi-Component Tree Insertion Grammars

Pierre Boullier & Benôıt Sagot

Alpage, INRIA Paris-Rocquencourt & Université Paris 7
Domaine de Voluceau — Rocquencourt, BP 105

78153 Le Chesnay Cedex, France
{Pierre.Boullier,Benoit.Sagot}@inria.fr

Abstract. In this paper we introduce a new mildly context sensitive
formalism called Multi-Component Tree Insertion Grammar. This for-
malism is a generalization of Tree Insertion Grammars in the same sense
that Multi-Component Tree Adjoining Grammars is a generalization of
Tree Adjoining Grammars. We show that this class of grammatical for-
malisms is equivalent to Multi-Component Tree Adjoining Grammars,
and that it also defines a hierarchy of languages whose supplementary
formal power between two increasing levels is more gently delivered than
the one given by Multi-Component Tree Adjoining Grammars. We sus-
pect that this increase of accuracy may be used to find the right amount
of formal power needed for such and such linguistic description. We show
that Multi-Component Tree Insertion Grammars and simple Range Con-
catenation Grammars are equivalent and we show how to transform a
grammar of one type into an equivalent grammar of the other type. Such
a transformation gives a method to build efficient parsers for Multi-
Component Tree Insertion Languages.

1 Introduction

The notion of mild context-sensitivity (MCS) [1, 2] is an attempt to express
the formal power needed to define the syntax of natural languages. However,
all incarnations of MCS formalisms are not equivalent. On the one hand, near
the bottom of the hierarchy, we find tree adjoining grammars (TAGs) [3], the
most popular mild context-sensitive formalism, and some other weakly equivalent
formalisms. On the other hand, near the top of the hierarchy, we find Multi-
Component Tree Adjoining Grammars (MCTAGs) which are, in turn and among
others, equivalent to Linear Context-Free Rewriting Systems (LCFRSs) [4].

In this paper we introduce a new mild context-sensitive formalism, the multi-
component tree insertion grammar (MCTIG) which plays, w.r.t. tree insertion
grammar TIG the same role as MCTAG plays w.r.t. TAG. We know that TIGs
are weakly equivalent to context-free grammars (CFGs) but they allow to build
(parse) structures that are not possible to build with CFGs. From a practical
point of view we know that TIGs, which may be seen as a restriction of TAGs, are
of importance since many usual linguistic constructions do not need the power
of TAGs. On the other hand there exist linguistic constructions that cannot
be expressed with TAGs. Thus MCTAGs have been introduced. These various

formalisms named k-MCTAGs form a strict hierarchy which depends upon an
integer k. TAGs are 1-MCTAGs and the languages of k-MCTAGs (k-MCTALs)
are strictly included into k+1-MCTALs. However the extra power earned when
we use k + 1-MCTAGs instead of k-MCTAGs is too large. For example let Li

be the counting language for i (Li = {an
1 . . . a

n
i | n ≥ 0}). It is well known that

1-MCTAGs (i.e., TAGs) can define L1, L2, L3 and L4 but not L5. If we want to
define L5 we must use 2-MCTAGs. However, doing that we can also define L6,
L7 and L8. We shall see that the power of k-MCTIGs is more balanced.

On the other hand, though being non MCS, there is a very attractive powerful
formalism named Range Concatenation Grammar (RCG). Its power comes from
the fact that it exactly covers the class PTIME and its attractivity comes from
both theoretical and practical considerations. From a theoretical point of view it
possesses many closure properties among which the closure by intersection is the
most salient. From a practical point of view there exist very efficient polynomial
parse time parsers. For example TAGs and MCTAGs have been transformed
into equivalent RCGs [5, 6] whose parsers achieved top-of-the-art efficiency [7].

In this paper we define MCTIGs and study its relationships with both MC-
TAGs and RCGs, thus exhibiting a way to produce an efficient MCTIG parser.

2 Basic notions and notations

2.1 Tree Insertion Grammars

We suppose that the reader is familiar with Tree Adjoining Grammars (TAGs),
as defined in, e.g., [3].

Tree Insertion Grammar (TIG) [8] is a variant of TAG in which the auxiliary
tree shapes have a restricted form: wrapping auxiliary trees are prohibited leav-
ing only left and right auxiliary trees.1 A left auxiliary tree (resp. right auxiliary
tree) is an auxiliary tree in which the foot node is the rightmost (resp. leftmost)
leaf node and in which adjunction nodes of its spine only select left auxiliary
trees (resp. right auxiliary trees) or empty auxiliary trees.

A

b

b

A∗

A

b

b

A∗

A

A∗

Left Auxiliary Tree Right Auxiliary Tree Empty Auxiliary Tree

.
Thus the set of auxiliary trees A can be partitioned into three sets L, R and

E , respectively the set of left, right and empty trees.
It is a well known result [8] that TIGs are (weakly) equivalent to CFGs and

can be parsed in O(n3) time.

1 In the original definition of TIGs, there exists other differences which are not con-
sidered in this article. In particular we disallow simultaneous adjunctions at a single
node (they can be performed by the usual adjunction operation), but we allow empty
auxiliary trees.

2.2 Multi-Component Tree Adjoining Grammars

Multi-component TAGs (MCTAGs) are an extension of TAGs which was intro-
duced in [9] and later refined in [3], in which the adjunction operation involves
a set of auxiliary trees instead of a single auxiliary tree. In a MCTAG, the
elementary structures, both initial and auxiliary, instead of being two sets of
single trees, consist of two finite sets of (ordered) finite tree sets. In MCTAGs,
the adjunction operation of an auxiliary tree set is defined as the simultane-
ous adjunction of each of its component trees and accounts for a single step
in the derivation process. This multi-component adjunction (MCA) operation
is defined as follows. All the trees of an auxiliary tree set can be adjoined into
distinct nodes (addresses) in a single elementary (initial or auxiliary) tree set. If
the maximum cardinality of the elementary tree sets is k, we have a k-MCTAG.
Of course, if the cardinality of each tree set is one, a 1-MCTAG is a TAG. In [2],
the author has shown that the languages defined by MCTAGs are equal to the
languages defined by Linear Context-Free Rewriting Systems (LCFRSs) [4].

We assume that (multi-component) substitution operations are disallowed
and are replaced by MCA operations. Thus, without loss of generality, we assume
that initial tree sets are singletons whose root nodes are all labelled by the start
symbol S. Moreover, we assume that adjunction is allowed neither at the root
nor at the foot of any tree and that MCAs are mandatory on inside nonterminal
nodes which are thus called adjunction nodes.

We can think of two types of locality for MCAs, one type, named tree locality,
requires that all trees in an auxiliary tree set adjoin to a unique tree of an
elementary tree set; the other type, named set locality, requires that all trees
in an auxiliary tree set adjoin to the same elementary tree set, not necessarily
to a unique tree and not necessarily to all the trees in this elementary tree set.
We choose to consider the set-local interpretation of the term since it is more
general than the tree-local version and is the one equivalent to LCFRS.

Example 1. For example, let G be a 3-MCTAG in which the set of initial tree sets
is I = {{α}} and the set of auxiliary tree sets is A = {β1, β2, β3}, where each tree
set β1, β2 and β3 contains three trees: β1 = {β11, β12, β13}, β2 = {β21, β22, β23}
and β3 = {β31, β32, β33}. Its elementary trees are depicted below.2

We can easily see that the language defined by G is the non-TAL three-copy
language {www | w ∈ {a, b}∗}. Each simultaneous adjunction of an auxiliary tree
set β1 or β2 in the elementary tree sets α, β1 or β2 produces respectively three
related a’s or three related b’s, while the MCA of (the trees in) β3 terminates
the process.

2 The same denotation is used both for nonterminal nodes and their addresses, while
terminal nodes are denoted by their terminal labels or ε. The root node of an el-
ementary tree τ is also denoted by τ . Nonterminal nodes are annotated by their
nonterminal labels while terminal nodes have no annotations. In auxiliary trees,
foot node labels are marked by an ∗. For example, the root of tree β11 is the node
β11, whose label is A, and the foot node of this tree is β11.2.1 and its label is A∗.

α :

α S

α.1 A

ε

α.2 B

ε

α.3 C

ε

β1 :

β11 A

a β11.2 A

β11.2.1 A∗

β12 B

a β12.2 B

β12.2.1 B∗

β13 C

a β13.2 C

β13.2.1 C∗

β3 :

{

β31 A

β31.2 A∗

β32 B

β32.2 B∗

β33 C

β33.2 C∗

}

β2 :

β21 A

b β21.2 A

β21.2.1 A∗

β22 B

b β22.2 B

β22.2.1 B∗

β23 C

b β23.2 C

β23.2.1 C∗

2.3 Positive Range Concatenation Grammars

A positive range concatenation grammar (PRCG) G = (N,T, V, P, S) is a 5-tuple
in which:

– T and V are disjoint alphabets of terminal symbols and variable symbols
respectively.

– N is a non-empty finite set of predicates of fixed arity (also called fan-out).
We write k = arity(A) if the arity of the predicate A is k. A predicate A and
its arguments is noted A(α) with a vector notation s.t. |α| = k and α[j] is
its jth argument. An argument is a string in (V ∪ T)∗.

– S is a distinguished predicate called the start predicate (or axiom) of arity
1.

– P is a finite set of clauses. A clause c is a rewriting rule of the form A0(α0) →
A1(α1) . . . Ar(αr) where r, r ≥ 0 is its rank. By definition c[i] = Ai(αi),
0 ≤ i ≤ r where Ai is a predicate together with αi its arguments and c[i][j]
is its jth argument X1 . . . Xnij

(the Xk’s are terminal or variable symbols),
while c[i][j][k], 0 ≤ k ≤ nij is a position.

For a given clause c, each subargument occurrence is denoted by a pair of
positions (c[i][j][k], c[i][j][k′]) with k ≤ k′.

Let w = a1 . . . an be an input string in T ∗, each occurrence of a substring
al+1 . . . au is a pair of positions (w[l], w[u]) s.t. 0 ≤ l ≤ u ≤ n called a range
and noted 〈l..u〉w or 〈l..u〉 when w is implicit. In the range 〈l..u〉, l is its lower
bound while u is its upper bound. If l = u, the range 〈l..u〉 is an empty range, it
spans an empty substring. If ρ1 = 〈l1..u1〉, . . . and ρm = 〈lm..um〉 are ranges,
the concatenation of ρ1, . . . , ρm noted ρ1 . . . ρm is the range ρ = 〈l..u〉 if and
only if we have ui = li+1, 1 ≤ i < m, l = l1 and u = um.

If c = A0(α0) → A1(α1) . . . Ar(αr) is a clause, each of its subargument
occurrence (c[i][j][k], c[i][j][k′]) may take a range ρ = 〈l..u〉 as value, in that
case, we say that it is instantiated by ρ.

– If the subargument is the empty string (i.e., k = k′), ρ is an empty range.
– If the subargument is a terminal symbol (i.e., k + 1 = k′ and Xk′ ∈ T), ρ is

such that l+1 = u and au = Xk′ . Note that several occurrences of the same
terminal symbol may be instantiated by different ranges.

– If the subargument is a variable symbol (i.e., k + 1 = k′ and Xk′ ∈ V), any
occurrence (c[i′][j′][m], c[i′][j′][m′]) of Xk′ is instantiated by ρ. Thus, each
occurrence of the same variable symbol must be instantiated by the same
range.

– If the subargument is the string Xk+1 . . .Xk′ , ρ is its instantiation if and
only if we have ρ = ρk+1 . . . ρk′ in which ρk+1, . . . , ρk′ are respectively the
instantiations of Xk+1, . . . , Xk′ .

If in c we replace each argument by a valid instantiation, we get an in-
stantiated clause noted A0(ρ0) → A1(ρ1) . . . Ar(ρr) in which each Ai(ρi) is an
instantiated predicate.

A binary relation called derive and noted ⇒
G,w

is defined on strings of instan-

tiated predicates. If Γ1 and Γ2 are strings of instantiated predicates, we have

Γ1 A0(ρ0) Γ2 ⇒
G,w

Γ1 A1(ρ1) . . . Am(ρm) Γ2

if and only if A0(ρ0) → A1(ρ1) . . . Am(ρm) is an instantiated clause.

The (string) language of a PRCG G is the set L(G) = {w | S(〈0..|w|〉w)
+
⇒
G,w

ε}. In other words, an input string w ∈ T ∗, |w| = n is a sentence of G if and only
there exist a complete derivation which starts from S(〈0..n〉) (the instantiation
of the start predicate on the whole input text) and leads to the empty string
(of instantiated predicates). The parse forest of w is the CFG whose axiom is
S(〈0..n〉) and whose productions are the instantiated clauses used in all complete
derivations.3

We say that the arity of a PRCG is k, and we write k-PRCG, if and only if
k is the maximum arity of its predicates (k = maxA∈N arity(A)). We say that a
k-PRCG is simple, we have a simple k-PRCG, if and only if each of its clause is

– non-combinatorial: the arguments of its RHS predicates are single variables;
– non-erasing: each variable which occur in its LHS (resp. RHS) also occurs

in its RHS (resp. LHS);
– linear: there are no variables which occur more than once in its LHS and in

its RHS.

The subclass of simple PRCGs is of importance since it is MCS and is the
one equivalent to LCFRSs.

We say that a simple 2-PRCG clause of the form

φ→ A1(X1, X
′
1) . . . Ap(Xp, X

′
p) B1(Y1) . . . Bq(Yq)

in which the LHS is either of the form B0(α) or A0(α0, α
′
0) with α = α0α

′
0 is

well-balanced if and only if α is a Dyck string w.r.t. the pairs (Xi, X
′
i) which play

the role of parentheses,Xi is an open parenthese whileX ′
i is a closing parenthese.

A simple 2-PRCG is well-balanced if its clauses are all well-balanced.

3 Note that this parse forest has no terminal symbols (its language is the empty string).

3 TAGs and MCTAGs vs. Simple PRCGs

In this Section we briefly present the algorithms of [10, 5] with a slight modifi-
cation due to our (simplified) vision4 of TAGs and MCTAGs.

3.1 Transforming TAGs into Simple 2-PRCGs

If we consider an auxiliary tree τ and the way it evolves until no more adjunction
is possible, we realize that some properties of the final tree are already known
on τ . The yield derived by the part of τ to the left (resp. to the right) of its
spine are contiguous terminals and the left yield (produced by the left part) lies
to the left of the right yield in any input string. Thus, for any elementary tree τ
consider itsm internal adjunction nodes. We decorate each such node ηi with two
variables Lηi

and Rηi
(1 ≤ i ≤ m) which are supposed to capture respectively

the left and right yield of the trees that adjoined at ηi. Each terminal leaf has
a single decoration which is its terminal label. Then, during a top-down left-to-
right traversal of τ , we collect into a string στ called decoration string, all such
decorations. If τ is an auxiliary tree, let σl

τ and σr
τ be the part of στ gathered

before and after the traversal of the root of τ . To each elementary tree τ , we
associate a simple 2-PRCG clause constructed as follows:

– its LHS is the predicate S(στ) if τ is an initial S-tree or
– its LHS is the predicate A(σl

τ , σ
r
τ) if τ is an auxiliary A-tree;

– its RHS is ψ1 . . . ψi . . . ψm with ψi = Ai(Lηi
, Rηi

) where Ai is the label of ηi.

Example 2. The following TAG

S

α

A

ε

A

β1

a A

A∗ a

A

β2

b A

A∗ b

A

β3

A∗

where α is its initial tree and β1, β2 and β3 are its auxiliary trees, defines the
language {ww | w ∈ {a, b}∗} which is translated into the strongly equivalent
simple 2-PRCG5

S(LARA) → A(LA, RA)
A(aLA, aRA) → A(LA, RA)
A(bLA, bRA) → A(LA, RA)
A(ε, ε) → ε

As an example, the arguments of the LHS predicate of the second clause have
been gathered during the following traversal of β1

4 No substitution, no adjunction neither at the root nor at the foot node and manda-
tory adjunction on inside nodes.

5 Since there is no possible confusion, nodes are addressed directly by their labels.

A

a LA A RA

A∗ a

a

a

It has been shown in [5] how the simple 2-PRCG generated by the previous
algorithm can be turned into a normal form which contains at most two variables
(the 2-var form) in each argument.6 Since the standard parser of [11] has a worst
case parse time complexity of O(|G|nk+v) for a k-RCG G in which v is the
maximum number of variables per clause, we reach the classical O(n6) parse
time for TAGs.

3.2 Transforming Set-Local k-MCTAGs into Simple 2k-PRCGs

The transformation of any set-local k-MCTAG into an equivalent simple 2k-
PRCG is based upon a generalization of the algorithm of Section 3.1. The dif-
ficulty is to identify the nodes where MCA operations can take place. This will
be done in introducing the notion of cover.

Let us consider an elementary tree set γ. For each of its internal nodes η
which is a (mandatory) adjunction node, we have to find a tree τi (in some
auxiliary tree set β) which could be adjoined at η. A mapping noted ξ from each
adjunction node of γ to an auxiliary tree τi (we have τi = ξ(η)) in some auxiliary
tree set β is called a cover (of γ). Note that different adjunction nodes of γ may
be associated with trees that come from different tree sets. To be a cover, the
total function ξ must fullfilled three constraints for each internal node η:

1. if ξ(η) = τi, the label of η must be the label of the root of τi (only adjunction
of A-trees are allowed on A-nodes);

2. if β is the tree set such that τi ∈ β, then for each auxiliary tree τj ∈ β

there exists an adjunction node of γ such that ξ(η′) = τj (this constraint is
the consequence of the definition of a MCA operation as the simultaneous
adjunction of all its component trees in an auxiliary tree set) and

3. if η1 and η2 are two distinct nodes of γ s.t. ξ(η1) = τ and ξ(η2) = τ for
some auxiliary tree τ in some auxiliary tree set β and if τ ′ is another tree
of β then there exists two distinct nodes η′1 and η′2 of γ s.t. ξ(η′1) = τ ′ and
ξ(η′2) = τ ′ (this constraint forces trees in an auxiliary tree set to be adjoined
the same number of times during any MCA).

Note that empty auxiliary trees have exactly one cover, namely the empty cover.

6 Such a transformation, which is always possible, is based upon the fact that decora-
tion strings are well-parenthesized (Dyck) string.

Of course, for any given elementary tree set γ its cover is, in the general
case, not unique (it may even not exist, and in this case γ can not be used in
a derivation). However, for any elementary tree set in any given MCTAG, the
number of its covers is bounded. Let cover(γ) be the set of all the covers of the
elementary tree set γ.

The generation of RCG clauses proceeds as follow. Each elementary tree set
γ will give birth to |cover(γ)| simple PRCG clauses, one for each cover ξ in
cover(γ). All these clauses will share the extraction of the decoration strings of
γ. If γ is an initial tree set (a singleton), we associate a single decoration string
σγ , while, if γ is an auxiliary tree set s.t. |γ| = k, we associate a sequence of
2k decoration strings σl

γ.1, σ
r
γ.1, . . . , σ

l
γ.k, σ

r
γ.k, the pair σl

γ.h, σ
r
γ.h in this sequence

being respectively the left and right decoration strings of the (auxiliary) tree of
rank h in γ. All |cover(γ)| simple PRCG clauses will have the same LHS: S(σγ)
if γ is an initial tree set or < γ > (σl

1, σ
r
1 , . . . , σ

l
k, σ

r
k) if γ is an auxiliary tree

set. Now consider the RHS’s of these clauses. Each ξ in cover(γ) will produce
a different RHS. For a given ξ, let β1, . . . , βm be the list of auxiliary tree
sets that it selects. The RHS of the clause computed for ξ will be of the form

< β1 > (L1
1, R

1
1 . . . , L

|β1|
1 , R

|β1|
1) . . . < βm > (L1

m, R
1
m . . . , L

|βm|
m , L

|βm|
m) in which

the L’s and R’s are the left and right variables that occur in the LHS decoration
strings and that are associated to the adjunction nodes of γ. For each node η in
γ let its two variables be Lη and Rη and let r be the rank of the auxiliary tree

ξ(η) in the auxiliary tree set βj. We thus have Lη = L
βj
r and Rη = R

βj
r .

Example 3. Let us consider the 3-MCTAG of Example 1. The decoration string
σα of its initial tree set α is σα = Lα.1Rα.1Lα.2Rα.2Lα.2Rα.2. It gives birth to
the three clauses

S(Lα.1Rα.1Lα.2Rα.2Lα.2Rα.2) →< β1 > (Lα.1, Rα.1, Lα.2, Rα.2, Lα.2, Rα.2)
S(Lα.1Rα.1Lα.2Rα.2Lα.2Rα.2) →< β2 > (Lα.1, Rα.1, Lα.2, Rα.2, Lα.2, Rα.2)
S(Lα.1Rα.1Lα.2Rα.2Lα.2Rα.2) →< β3 > ((Lα.1, Rα.1, Lα.2, Rα.2, Lα.2, Rα.2)

since, for α there are three covers ξi, 1 ≤ i ≤ 3

ξi α.1 α.2 α.3
βi1 βi2 βi3

The six decorations strings associated with the auxiliary tree sets βi, 1 ≤ i ≤
2 have the form σl

βik
= aLβik.2 and σr

βik
= aRβik.2, for 1 ≤ k ≤ 3. They give

birth to the six clauses (1 ≤ i ≤ 2 and 1 ≤ j ≤ 3)

< βi > (aLβi1.2, Rβi1.2, aLβi2.2, Rβi2.2, aLβi3.2, Rβi3.2)
→< βj > (Lβi1.2, Rβi1.2, Lβi2.2, Rβi2.2, Lβi3.2, Rβi3.2)

since for β1 and β2 there are the six covers ξij , 1 ≤ i ≤ 2 and1 ≤ j ≤ 3

ξij βi1.2 βi2.2 βi3.2
βj1 βj2 βj3

Finally the six trivial decoration strings of β3, i.e., σl
β3k

= σr
β3k

= ε for
1 ≤ k ≤ 3 give birth to the single clause < β3 > (ε, ε, ε, ε, ε, ε) → ε, since there
are no covers for β3.

7

If we apply to this particular case the general formula of [11], we get for the
generated simple 2k-PRCGG a worst case parse time complexity of O(|G|n2(k+v))
where v is the maximum number of adjunction nodes in an elementary tree set.

However, in the TAG case, since the decoration strings are well parenthesized,
the generated simple 2-PRCG can be transformed into an equivalent 2-var form
in which the dependance w.r.t. to the number of variables (i.e., twice the number
of adjunction nodes in an elementary tree) can always be reduced to four, leading
to the famous O(n6). Thus, we can wonder whether a similar transformation
cannot be performed in the MCTAG case. Unfortunately, the answer is no. This
comes from the fact that, in the general case, the decoration strings of elementary
tree sets are so completely interlaced that it is not possible to isolate one MCA
site, without isolating the others. The search of an optimal solution (in which
the arity k may change) is still an open problem.

3.3 Simple 2-PRCGs vs. TAGs

We have seen in Section 3.1 how any TAG can be transformed into a strongly
equivalent simple 2-PRCG. We will show below, thanks to two examples, that
there exist simple 2-PRCGs which cannot be transformed into equivalent TAGs.
This shows that the set of all simple 2-PRCLs strictly contains that of TALs.

Example 4. Consider the language L = {an
1 b

m
1 a

n
2 b

m
2 | n,m > 0} which may be

seen as a transducted copy of an
1 b

m
1 into an

2 b
m
2 . It is not difficult to see that

L is a TAL. But if we add the constraint that both the a’s and b’s must be
related in such a way that they are well parenthesized ((a1, a2) and (b1, b2) are
parenthesized), one can show that this additional constraint cannot be fulfilled
by a TAG. However the following simple 2-PRCG in 2-var-form defines L. But
we can note that the second clause is not well-balanced.

S(XY) → S0(X,Y)
S0(LALB, RARB) → A(LA, RA) B(LB, RB)
A(a1LA, RAa2) → A(LA, RA)
A(ε, ε) → ε

B(b1LB, RBb2) → B(LB, RB)
B(ε, ε) → ε

Example 5. It can be shown thanks to the pumping lemma for LCFRLs [12] that
the language L2 = {ambmcndnemfmgnhn | m,n > 0} is not a TAL. However it
is defined by the following simple 2-RCL in 2-var form. Once again, we can see
that the second clause is not well-balanced.

7 We can note that this translation is not optimal in the sense that since β1, β2 and
β3 play a symetric role, the three predicates < β1 >, < β2 > and < β3 > could be
merged into a single predicate < β123 >.

S(XY) → [ambmcndn, emfmgnhn](X,Y)
[ambmcndn, emfmgnhn](XY,ZT) → [ambm, emfm](X,Z) [cndn, gnhn](Y, T)
[ambm, emfm](aXb, eZf) → [ambm, emfm](X,Z)
[ambm, emfm](ε, ε) → ε

[cndn, gnhn](cY d, gTh) → [cndn, gnhn](Y, T)
[cndn, gnhn](ε, ε) → ε

In other words, simple 2-PRCGs are more powerfull than TAGs, both from
a weak and strong point of view.

If a simple 2-PRCG can be transformed into an equivalent simple 2-PRCG in
2-var form (not necessarily well-balanced), this PRCG can be parsed in O(n6)
time. However, there exists simple 2-PRCGs that cannot be transformed into
equivalent 2-var form and thus cannot be parsed in O(n6) (by the standard
parsing algorithm).

Example 6. This is for example the case for a clause of the form

E(LALBLCLD, RCRARDRB) → A(LA, RA) B(LB, RB) C(LC , RC) D(LD, RD)

for which there exists no non-empty substrings σ1, σ2, σ3 and, σ4, such that
σ1σ2 = LALBLCLD, σ3σ4 = RCRDRARB and σ3 and σ4 (or σ4 and σ3) con-
tain all the closing patenthesizes of σ1 and σ2. Thus this clause, of parse time
complexity O(n10), cannot be decomposed into more simple clauses of arity 2
with a number of variables less than 8.

4 Multi-Component TIGs

4.1 Definition

As mentioned in Section 2.1, a TIG is a restricted TAG where auxiliary trees
must be either empty or left or right (auxiliary TIG tree for short) and adjunc-
tions are disallowed on both root and foot nodes of auxiliary trees.

A Multi-Component TIG (MCTIG), is a MCTAG in which all trees in an
auxiliary tree set are auxiliary TIG trees. Of course, if an adjunction node is on
the spine of a left (resp. right) auxiliary tree, only a left (resp. right) auxiliary
TIG tree or an empty tree can be adjoined at that node.

The maximum number k of auxiliary TIG trees in an auxiliary tree set is the
arity of the MCTIG, we thus have a k-MCTIG.

4.2 TIGs are equivalent to Simple 1-PRCGs

Of course, a 1-MCTIG is a TIG. We will first see how it is possible to trans-
form a TIG into an equivalent simple 1-PRCG. In fact this transformation is
a simplification of the algorithm shown in Section 3.1 wich transforms a TAG
into an equivalent PRCG: in all cases an elementary TIG tree gives birth to a

single decoration string during its top-down left-to-right traversal. The top-down
traversal of the root node produces an empty symbol (since it is either an initial
S-tree and there is no auxiliary S-trees or it is an auxiliary tree and adjunctions
are not allowed at its root). The left-to-right traversal of leaf nodes labelled by
a, a ∈ T ∪{ε} produces the symbol a. The top-down (resp. bottom-up) traversal
of an adjunction node η of label A produces the variable Lη (resp. Rη) if there
exist left (resp. right) auxiliary A-trees or ε in the other cases.

Each non-empty elementary (initial or auxiliary) tree τ gives birth to a simple
1-PRCG clause c. Let σ be the decoration string of τ . If τ is an initial S-tree,
the LHS of c is S(σ), while if τ is a left (resp. right) auxiliary A-tree, the LHS
of c is [A]l(σ) (resp. [A]r(σ)).

If τ is a non-empty elementary tree with |τ | adjunction nodes, the RHS
of c has the form φl

η1
φr

η1
. . . φl

η|τ|
φr

η|τ|
. Let us denote by Ai the label of the

node ηi. If Lηi
(resp. Rηi

) is a variable in σ we have φl
ηi

= [Ai]
l(LAi

) (resp.

φr
ηi

= [Ai]
r(RAi

)) or if Lηi
(resp. Rηi

) is not (a variable) in σ we have φl
ηi

= ε

(resp. φr
ηi

= ε).

If τ is an empty auxiliary A-tree, it gives birth to the pair of clauses [A]l(ε) →
ε and [A]r(ε) → ε.8

Example 7. We can find below the elementary trees of a TIG9 which defines the
language {anbn | n ≥ 0}. To each tree is associated its decoration string and
the associated generated clauses. We can note that the absence of right auxiliary
tree in that TIG implies that there are no R-variables and thus no []r-predicates.

S

A

ε

A

a A

b A∗

A

A∗

σ = LA σ = aLAb σ = ε

S(LA) → [A]l(LA) [A]l(aLAb) → [A]l(LA) [A]l(ε) → ε

In [13], Boullier has shown that any 1-RCG can always be transformed into
an equivalent 1-RCG in 2-var form and can thus be parsed in O(n3) time. This
is an other way to show that TIGs can be parsed in O(n3) time.

For space reasons, we will not show here how to perform the reverse con-
version from a simple 1-PRCG to a TIG.10 However, put together, these two
conversion algorithms prove that simple 1-PRCGs are equivalent to TIGs and
thus to 1-MCTIGs.
8 Note that the first (resp. second) clause will never be used in any derivation if there

is no left (resp. right) auxiliary A-trees. Of course, in that case, their generation may
be skipped.

9 Since there is no possible confusion, their nodes are addressed by their labels.
10 The underlying idea is very simple: each clause is transformed into a (left) auxiliary

tree: the root A0 is the LHS predicate name; in A0’s (unique) argument, each se-
quence ui ∈ T∗ corresponds to leave nodes attached to the root, and each variable

symbol Xk ∈ V correspond to a subtree
Xk

ǫ

attached to the root.

Before considering the general case of the k-MCTIGs we study, in this Sec-
tion, the relationships between TAGs, 2-MCTIGs and Simple 2-PRCGs. We first
show that 2-MCTIGs and Simple 2-PRCGs are two equivalent formalisms.

4.3 2-MCTIGs and Simple 2-PRCGs are equivalent

To start, we show that a 2-MCTIG can be transformed into an equivalent simple
2-PRCG.

Let α be an initial tree set. By definition we have |α| = 1 and τ is a S-tree
if α = {τ}. The translation of α gives birth to a S-clause, where S is the unary
start predicate. Let β be an auxiliary tree set. By definition we have |β| ≤ 2. The
translation of β gives birth to [β]-clauses, the predicate [β] is unary if |β| = 1 or
binay if |β| = 2.

We will only consider there the more intricate case of a binary auxiliary
tree set, leaving the reader to figure out how the other (simpler) cases can be
processed. Let β = {τ1, τ2} be a binary auxiliary tree set with its two decoration
strings στ1

and στ2
, and with ξ one of its cover in cover(β) (see Section 3.2).

Let η1 and η2 be a pair of adjunction nodes in β and let τ ′1 and τ ′2 be the two
auxiliary TIG trees of some auxiliary tree set β′ selected by ξ (we have τ ′1 = ξ(η1)
and τ ′2 = ξ(η2)).

If τ ′1 is a left (resp. right) auxiliary tree, we erase the variable Rη1
(resp.

Lη1
) from the (argument) string (στ1

, στ2
). Similarily, if τ ′2 is a left (resp. right)

auxiliary tree, we erase the variable Rη2
(resp. Lη2

) from the string (στ1
, στ2

).
Let Kη1

and Kη2
the variables which have thus been kept.

In the RHS of our clause we generate a binary predicate [β′] whose two
arguments are either (Kη1

,Kη2
) or (Kη2

,Kη1
). It is (Kη1

,Kη2
) if τ ′1 is the first

tree in the ordered tree set β′ while it is (Kη2
,Kη1

) if τ ′1 is the second tree in β′.
Of course, we perform the same operation for all the other nodes of τ1 and

τ2. When all the values of ξ are exhausted, we have built a RHS say φξ and a
new argument string (σ′

τ1
, σ′

τ2
). This give birth to the clause [β](σ′

τ1
, σ′

τ2
) → φξ.

Example 8. We can find below the elementary trees of a 2-MCTIG which defines
the language {anbncndn | n > 0}. The various ξ’s are represented by dashed
arrows. Below each tree set we display its decoration string. Since this grammar
is a left 2-MCTIG, there are no R-variables. Below each decoration string we
show the generated clauses.

α1

S

A

ε

B

ε

β1

A

a A

b A∗

, B

c B

d B∗

β2

{

A

a b A∗

, B

c d B∗

}

σα1
= LALB σβ1

= aLAb, cLBd σβ2
= ab, cd

S(LALB) → [β1](LA, LB) [β1](aLAb, cLBd) → [β1](LA, LB) [β1](ab, cd) → ε

S(LALB) → [β2](LA, LB) [β1](aLAb, cLBd) → [β2](LA, LB) [β2](ab, cd) → ε

We can note that this translation is not optimal since the two predicates [β1]
and [β2] play the same role, the can be merged and thus led to a simple 2-PRCG
which only contains three clauses.

For space reasons we will not show here how to perform the reverse conver-
sion from a simple 2-PRCG to a 2-MCTIG.11 However, put together, these two
conversion algorithms prove that simple 2-PRCGs are equivalent to 2-MCTIGs.

4.4 TAGs vs. 2-MCTIGs

In this section we show that any TAG can be transformed into an equivalent
2-MCTIG, but that the converse is not true.

Of course, to show that a TAG can be transformed into an equivalent 2-
MCTIG, we can perform a TAG to PRCG transformation followed by a PRCG
to MCTIG transformation. But below we propose a direct transformation, that
easily extends to k-MCTAGs and 2k-MCTIGs (see Section 4.6).

Let σ be a TAG tree decoration string. This decoration string is either as-
sociated to an initial TAG tree or associated to the left part or the right part
of an auxiliary TAG tree. As usual, two variables Lη and Rη are associated to
an adjunction node η and will occur in σ if that node is not on the spine. If η
is on the spine of an auxiliary tree β, only Lη will occur in the left decoration
string of β while only Rη will occur in the right decoration string of β. Now, we
rewrite σ in changing each occurrence of Lη (resp. Rη) by Al (resp. Ar) if A is
the label of η.

This process will transform each initial TAG tree (a S-tree) into an initial
tree set of cardinality 1 (this single tree is a S-tree) of the 2-MCTIG.

S

=⇒

S

u0
V1

ε

u1 . . . up−1
Vp

ε

up

σ = u0U1u1 . . . Upup Vi = Al or Ar

Ui = Lη or Rη where A is the label of η

It will also transform each auxiliary TAG tree (say an A-tree) into an auxil-
iary ordered tree set of cardinality 2 (anAl-tree and an Ar-tree) of the 2-MCTIG.

11 Informally, it is a generalization of the transformation sketched in footnote 10. For
a given clause, we first rename all variables (i.e., all RHS arguments) such that the
first argument of predicate Ai is A1

i and its second argument is A2

i . Then, if the
LHS predicate A0 is unary, it gives birth to an A1

0-rooted left auxiliary tree in the
same way as in footnote 10; if A0 is binary, it gives birth to an ordered set of two
trees rooted by A1

0 (resp. A2

0), and built similarily, but using only A1

i s (resp. A2

i s).
This supposes that the 2-PRCG has been first transformed into a strongly equivalent
grammar in a so-called LR-form (A1

i s are only in A0’s first argument and A2

i s only
in A0’s second argument), which can be proven always possible.

The Al-tree (resp. Ar-tree) is built by the part of the auxiliary TAG tree to the
left (resp. right) of its spine and by the spine itself.

A

A∗

σl = ul
0U

l
1u

l
1 . . . U

l
pu

l
p, σr = ur

0U
r
1u

r
1 . . . U

r
pu

r
p

with U l
i or U r

i = Lη or Rη

=⇒

Al

ul
0

V l
1

ε
ul

1 . . . u
l
p−1

V l
p

ε
ul

p

A∗
l

Ar

A∗
r

ur
0

V r
1

ε
ur

1 . . . u
r
q−1

V r
q

ε
ur

p

with V l
i or Vi

r = Al or Ar s.t. A is the label of η

Example 9. For example the TAG

S

A

ε

,

A

a A

b A∗ c

d and
A

A∗

which defines the lan-

guage anbncndn, n > 0 is transformed into the 2-MCTIG

S

Al

ε

Ar

ε

Al

a Al

ε

b A∗
l

Ar

A∗
r c Ar

ε

d

Al

A∗
l

Ar

A∗
r

At this point, we know that any TAG can be transformed into a strongly
equivalent simple 2-PRCG, and that simple 2-PRCGs and 2-MCTIGs are two
equivalent formalisms. However, we have exhibited an example that shows that
there are languages which can be defined by 2-MCTIG (or equivalently by simple
2-PRCGs) but which cannot be defined by TAGs.

4.5 2k-MCTIGs are equivalent to Simple 2k-PRCGs

We have already studied in Section 4.3 the case k = 1 which has been distin-
guished because of the particular importance of TAGs (i.e., 1-MCTAGs). In the
general case, the results are very similar.

First of all, h-MCTIGs and simple h-PRCGs are two equivalent formalisms,
and the arity h remains the same. On the one hand, to show that a h-MCTIG can
be transformed into an equivalent simple h-PRCG is only a trivial generalization
of what we have seen in Section 4.3. On the other hand, to show that a simple
h-PRCG can be transformed into an equivalent h-MCTIG is also only a trivial
generalization of the algorithm we have evoked in Section 4.3.

4.6 k-MCTAGs vs. 2k-MCTIGs

It is easy to show that a k-MCTAG can be transformed into an equivalent
2k-MCTIG either indirectly by first using the transformation from MCTAG to
simple PRCG of Section 3.2, followed by the transformation from a simple PRCG
to a MCTIG mentioned in the same section. However, this transformation can
be direct in generalizing the algorithm depicted in Section 4.4.

As for 2-MCTIG (and simple 2-PRCG), the converse is not true: 2k-MCTIGs
(and simple 2k-PRCGs) are more powerful than k-MCTAGs.

However, MCTAGs, MCTIGs and simple PRCGs define the same class of
languages since, by definition, a h-MCTIG may be seen as a h-MCTAG.

5 Conclusion: Hierarchies Comparison

Since k-MCTIGs and simple k-PRCGs are equivalent formalism, the hierarchy
w.r.t. k of the class of languages defined by k-PRCGs, implies an identical hier-
archy on the class of languages defined by k-MCTIGs. In particular let Li be the
counting language for i (Li = {an

1 . . . a
n
i | n ≥ 0}), the languages L2h−1 and L2h

can be defined by a h-MCTIG while L2h+1, L2h+2, . . . cannot. If we consider the
class of MCTAGs, this figure slightly differs since the languages L4h−3, L4h−2,
L4h−1 and L4h can be defined by a h-MCTAG while L4h+1, L4h+2, . . . cannot.
This example shows that MCTAGs are more coarse-grained than MCTIGs in
the sense that a single increment in the value of k delivers more (formal) power
than the same increment in MCTIGs. In other words, for these three formalisms,
in a k+1-class there exists languages that cannot be define by the corresponding
k-class.

The following diagram summarizes, for each value of k and for each grammar
class, in which other grammar class it can be transformed.

k k-MCTAG k-MCTIG Simple k-PRCG

1

2

h

h + 1

2h

2h + 1

2h + 2

(TAG) (TIG) (CFG)

The direction of dashed

arrows shows a language

inclusion.

This diagram shows that for each value of k, k-MCTIGs and simple k-PRCGs
are equivalent formalisms. But, with MCTAGs, the relation is not so simple. We
know that a h-MCTAG can be transformed into an equivalent simple 2h-PRCG
(and hence into an equivalent 2h-MCTIG), but we know that 2h-PRCGs (or
2h-MCTIG) are more powerful than h-MCTAGs. On the other hand we know
that a 2h-MCTIG is, by definition a 2h-MCTAG.

We can wonder whether there exists a value l with h < l ≤ 2h such that
the two formalisms l-MCTAGs and a 2h-MCTIGs are equivalent? The answer
is no. Assume that such a value l exists. In that case we know that the counting
language L4l can be defined by a l-MCTAG but L4l can only be defined by a
k-MCTIG in which k ≥ 2l. This is in contradiction with the fact that h < l.

From an operational point of view, the equivalence results presented in this
paper show that we can parse k-MCTIGs with a worse-case parsing complexity
of O(|G|nk+v), where G is the equivalent PRCG and v the maximum number of
adjunction nodes in an elementary tree set.

References

1. Joshi, A.K. In: How much context-sensitivity is necessary for characterizing struc-
tural descriptions — Tree Adjoining Grammars. Cambridge University Press, New-
York, NY (1985) D. Dowty, L. Karttunen, and A. Zwicky (eds.).

2. Weir, D.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania, Philadelphia, PA (1988)

3. Joshi, A.K.: An introduction to tree adjoining grammars. In Manaster-Ramer, A.,
ed.: Mathematics of Language, John Benjamins, Amsterdam (1987) 87–114

4. Vijay-Shanker, K., Weir, D., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of the 25th Meeting
of the Association for Computational Linguistics (ACL’87), Stanford University,
CA (1987) 104–111

5. Boullier, P.: On TAG parsing. Traitement Automatique des Langues (T.A.L.)
41(3) (2000) 759–793

6. Boullier, P.: On Multicomponent TAG parsing. In: 6me confrence annuelle
sur le Traitement Automatique des Langues Naturelles (TALN’99), Cargse,
Corse, France (July 1999) 321–326 See also Research Report N˚ 3668 at
http://www.inria.fr/RRRT/RR-3668.html, INRIA-Rocquencourt, France, Apr.
1999, 39 pages.

7. Barthlemy, F., Boullier, P., Deschamp, P., ric de la Clergerie: Guided parsing of
range concatenation languages. In: Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics (ACL’01), University of Toulouse,
France (July 2001) 42–49

8. Schabes, Y., Waters, R.C.: Tree insertion grammar: A cubic-time, parsable for-
malism that lexicalizes context-free grammar without changing the trees produced.
Computational Linguistics 21 (1994)

9. Joshi, A.K., Levy, L., Takahashi, M.: Tree adjunct grammars. Journal of Computer
and System Sciences 10 (1975) 136–163

10. Boullier, P.: A generalization of mildly context-sensitive formalisms. In: Proceed-
ings of TAG+4, University of Pennsylvania, Philadelphia, PA (August 1998) 17–20

11. Boullier, P.: Range Concatenation Grammars. In: New Developments in Parsing
Technology. H. bunt, j. carroll, and g. satta edn. Volume 23 of Text, Speech and
Language Technology. Kluwer Academic Publishers (2004) 269–289

12. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88 (1991) 191–229

13. Boullier, P.: A cubic time extension of context-free grammars. Grammars 3(2/3)
(2000) 111–131

