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From Raw Corpus to Word Lattices:
Robust Pre-parsing Processing with SXPipe

BENOÎT SAGOT and PIERRE BOULLIER

We present a robust full-featured architecture to preprocess text before parsing. This ar-
chitecture, called SXPipe, converts raw noisy corpora into word lattices, one by sentence, that
can be used as input by a parser. It includes sequentially named-entity recognition, tokenization
and sentence boundaries detection, lexicon-aware named-entity recognition, spelling correc-
tion, and non-deterministic multi-words processing, re-accentuation and un-/re-capitalization.
Though our system currently deals with the French language,almost all components are in
fact language-independent, and the others can be straightforwardly adapted to virtually any in-
flectional language. The output is a sequence of word lattices, all words being present in the
lexicon. It has been applied on a large scale during a French parsing evaluation campaign and
during experiments of large corpora parsing, showing both good efficiency and very satisfying
precision and recall.
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1. Introduction

One of the main tasks in Natural Language (NL) processing is parsing, i.e., the syn-
tactic analysis of text. This is an unavoidable step before any further complex processing
such as automatic translation or advanced information extraction. When performed ac-
cording to a formal linguistic theory, it is also an empirical way to validate this theory,
or in the contrary to exhibit its weaknesses and limitations.

However, parsing systems for NL, known asparsers, can not usually deal with raw
text such as found in large-scale corpora. Indeed, we shall see in the remainder of this
paper different kinds of differences between raw text and standard parsers inputs, but
most differences can be classified in three main types: boundary detection (between
sentences, between words), error correction (spelling errors, typographic noise) and
“named entities” (sequences of words that come from productive mechanisms, such as
addresses, dates, acronyms, and many others). This paper presents a full-featured archi-
tecture, called SXPipe, which can transform raw text into word lattices, i.e.,valid input
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for (advanced) parsers. We call this transformation “pre-parsing processing”, or in short
“pre-processing”.

Pre-processing of raw text is usually seen as an easy task on which no further re-
search is worth doing. However, experiments show that this step is crucial when dealing
with real-life corpora, and that available tools are not always satisfying, for example be-
cause they lack a spelling error correction component, because they are specialized in
some kind of corpora, or because they are not able to handle non-determinism.

We took part last year in the French parsing evaluation campaign named EASy, and
had to parse a set of about 35,000 sentences coming from very diverse corpora (journal-
istic, e-mail, medical, legal, oral, literature, and so on)with a correct to very poor qual-
ity. Hence, we had to design a very robust pre-processing system to turn this extremely
noisy text into individual tokenized sentences,1 with a minimal loss of information, and
without losing the link between output words2 and original tokens of the corpus.3 More
recently, we performed experiments on deep parsing of largecorpora (several milion
words), and used SXPipe to pre-process these corpora before parsing.

We first give an overview of the architecture of our system. Then we briefly fo-
cus on the different components, namely named-entity recognition steps, tokeniza-
tion and spelling error correction,4 and non-deterministic multi-word identification, re-
accentuation and un- or re-capitalization. We conclude with a brief evaluation of the
system.

2. Overall architecture

The overall architecture of our pre-processing system SXPipe is illustrated in Fig-
ure 1. During the whole process, input tokens are stored incomments(surrounded by
braces and decorated with their position in the input string) which are immediately fol-
lowed by the associated word-form.5

For example,
contactez-moi au 1 av. Foch, 75016 Paris, ou par e-mail à my.name@my-email.com.

will become, if ignoring ambiguities, something like
{contactez0..1} contactez {-moi1..2} moi {au2..3} à {au2..3} le {1 av. Foch, 75016 Paris3..9}

_ADDRESS {,9..10} , {ou10..11} ou {par11.12} par {e-mail12..13} e-mail {à13..14} à {my.name@my-

email.com14..15} _EMAIL {.15..16} . {.15..16} _SENT_BOUND.

1Corpora were in fact already splitted into sentences, but only partly. Hence, we almost ignored this
segmentation.

2In this paper, we useword as a synonym ofword formin the sense of [2].
3This is needed to be able to link back the output of the parser to tokens of the corpus, even if words can

cover many input tokens, and tokens many words.
4And notspell checking, since we do not only check but also correct spelling errors.
5We use the following conventions: an artificial token (e.g.,a named-entity identifier) starts with a

"_" ; in the corpus, characters "_", "{ " and "}" are replaced by the artificial tokens_UNDERSCORE ,
_O_BRACE and_C_BRACE . Thus, these three characters are available as meta-characters.
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raw text

First set of local grammars
(e-mail addresses, URLs, dates,

phone numbers, times, addresses,
numbers in digits, smilies, quoted words,

ponctuation and oral artifacts)

Sentence boundaries detection
and unknown words identification

Preliminary tokenization
and lexicon-aware local grammars

(acronyms with expansion, proper nouns,
sequences in foreign languages)

Tokenization and spelling
error correction

(SXSPELL)

Last set of local grammars
(numbers in letters - including
ordinals and others, and dates)

Lattice builder: non deterministic
multi-word identification, re-accentuation,

and de- or re-capitalization

word lattice

Figure 1. Overall architecture of SXPipe.

3. Sentence boundaries detection and named-entities recognition

Real-word corpora are not like sentences built by linguists. They include sequences
of tokens that are not analysable at a syntactic nor morphological level, but belong to
productive patterns, which means that they have to be identified before spelling error
correction. Most of them are grouped under the termnamed entities[5]. However, we
will use this term in a slightly broader sense, including allsuch sequences of token, even
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if not usually considered as named entities (e.g., numbers). We call local grammara
grammar recognizing named-entities of a given family.

We designed a set of large-coverage robust6 local grammars, implemented asperl
programs involving numerous regular expressions.

Some named entities contain characters that are usually punctuation marks, most im-
portantly the period (e.g., in URLs), but also the comma (e.g., in addresses) and all kind
of other characters (e.g., in smilies). Therefore, some local grammars must be applied
beforetokenization, including the current version of SXPipe:

e-mail addresseswith detection of erroneous spaces,

URLs with detection of many kinds of errors and formats,

dates including various formats as well as date ranges (e.g.,du 29 au 31 janvier7 will
becomedu _DATE au _DATE, even if29, if isolated, would not be recognized as a
date),

telephone numbers in various formats,

times including several formats as well as time ranges (e.g.,2-3 heures, 3 ou 4 minutes,8

etc.),

addressesin a lot of different formats,

numbers including different formats, as well as ordinals written with digits (e.g.,2ème

– 2nd),

smilies such as:-) or :D,

quoted words : un «test»9 becomesun {«test»} test,

formatting artifacts to deal with special punctuation phenomena (like replacing( ... ) by
a single-word(...)) and with oral transcription artifacts (repetition more than twice
of the same word, or more than once if it belongs to a predefinedlist, removal of
hesitation markers, and so on).

After the application of these local grammars, we segment the text in sentences. This
task is performed by a huge set ofperl regular expressions that extends the basic ideas
proposed for example in [3], helped by a list of known words containing a period (often
abbreviations). It is designed to be able to handle all kind of false negatives and false
positives that arise in real-life corpora. After this step,the artificial word_SENT_BOUND

represents sentence boundaries.

6By robust, we mean that named-entities with errors are also recognized, likettp:/strange.url.com
/index.html .

7from the 29th to the 31st of january
83 or 4 minutes
9a "test"
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We then apply the tokenizer and spelling error corrector described in the next section
in a degraded way, in the sense that no spelling error correction is performed, but the
text is tokenized in the same way it would be with error correction. The aim of this is
to identify words in the input string that can not be analysedas known words (present
in the lexicon oreasilycorrectable) or combinations of known words (in French, things
like l’idée, anti-Bush or done-m’en, for example,10 are valid combinations of correctable
words –done should bedonne).

Once unknown words are identified (recall thatunknownmeans here that it is not
tokenizable in a way that would give only words present in thelexicon or easily cor-
rectable), special local grammars that take this information into account are applied.
They recognize:

acronyms that are followed or preceded by their expansion, with various typographic
possibilities,

proper nouns preceeded by a title (likeDr. or Mr),

phrases in other languagesthan French.

The two last local grammars deserve a special comment. They are based on the
following technique. Letw1 . . .wn be a sentence whose words are thewi ’s. We define a
tagging functiont that associates (thanks to regular expressions) a tagti = t(wi) to each
word wi, where theti ’s are taken in a small finite set of possible tags (resp. 9 and 12
for the two local grammars). Hence, a sequence of tagst1 . . . tn is associated tow1 . . .wn.
Then, a (huge) set of finite transducers is performed overt1 . . . tn, transforming it in a
new sequencet ′1 . . . t ′n of tags. If in this sequence a sub-sequencet ′i . . . t

′

j matches a given
pattern, then the corresponding sequence of wordswi . . .w j is considered recognized by
the grammar.

Let us consider for example the following sentence,
Peu après , le Center for irish Studies publiait . . . ,11

whereCenter , irish andStudies have been identified as unknown words. It gets the follow-
ing tags:cnpNFFucn. . . (c stands forcapitalized, n for probably French(default case),
p for punctuation, N for known as French, F for known as foreignandu for unknown).
Regular expressions on these tags lead tocnpNffffn. . . , wheref stands forforeign,
meaning thatCenter for irish Studies is recognized as a phrase in a foreign language.12 The
sentence becomes (_FP stands forforeign phrase):

Peu après , le {Center for irish Studies} _FP publiait . . .

10the idea, anti-Bushor give me some
11Soon afterwards, the Center for irish Studies published . . .
12In fact, we also designed a prototype tool to identify the language of such a phrase. In this case, the

correct answer, English, is correctly found.
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4. Tokenization and spelling error correction

4.1. An isolated-word corrector: SXSpell

The next step in SXPipe is the spelling error corrector. Real-life corpora have di-
verse rate of spelling errors, that can go from virtually zero (as in literature corpora)
to an extremely high rate (as in e-mail corpora). Moreover, if they remain uncorrected,
misspelled words become unknown words for the parser. This must be avoided as much
as possible, since they usually get default underspecified syntactic information, which
leads both to low precision and very high ambiguity at the syntactic level. Therefore, we
designed a spelling error corrector, named SXSpell.

A lot of work has been done on spelling correction (see for example the review
of [4]). Techniques used for isolated-word correction mainly fall in two categories:
trained and untrained. Trained techniques cover stochastic (often n-gram based) tech-
niques and neural nets. Untrained techniques includeminimum edit distance(based on
operations like insertion, deletion, substitution or swapping) andrule-basedtechniques
(based on context-sensitive rewriting rules, the origin ofwhich comes from finite-state
phonology). The latter is clearly more powerful and more adapted to the task,13 but the
cited operations can also be useful as such. Hence, our corrector is rule-based, but these
operations are also available to build underspecified rules.

Applying a rule is called anelementary correction. We associate to each rule alocal
costand acomposition cost. The total cost of a correction is the sum of the local costs
of all elementary corrections, plus, if more that one elementary correction has been per-
formed, the sum of all composition costs. This allows to havea global cost that is more
than the sum of local costs. The best correction is of course the one with the lower total
cost.

Our purpose was to have an efficient implementation of these simple techniques,
even if used with numerous appropriate rules and a real-sizespelling lexicon (our
spelling lexicon for French language has more than 400,000 different inflected forms
and parts of multi-word units). To achieve this goal, we considered the spelling lexicon
as a deterministic finite automatonF , the input wordw as a finite transducerT 0

w , and
rewrite rules as finite transducersT i(i > 0). First, we compute the finite transducerT all

w
of all possible sequences of characters that can be obtainedfrom w by applying the rules,
and their costs.14 Then we extract fromT all

w all words that indeed exist in the lexicon,
by intersectingF with T all

w .
The difficulty of this approach is not the underlying theory,which is well known,

but comes from the size of the automata that we have to handle.Indeed, with a typical
number of rules of several hundreds, the automatonT all

w has easily billions and billions

13A very simple example of that is the following:o andeau are two possible spellings for the [o] sound
in French. Thus, transformingo into eau is a reasonable rule. It is more natural and more sensible w.r.t.
correction costs, to see this operation as a replacement ofeau by o than as two deletions followed by a
substitution.

14Of course, a threshold cost can be given as a parameter, thus preventing from computing too many very
costly corrections.
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of paths. And it has to be intersected withF and its 400,000 paths. Therefore, we exten-
sively used tabulation and compact representation techniques. One must admit that the
feasability of such an approach was nota priori clear, but we have very good results,
both in terms of quality (with appropriate rules) and response time (with an appropriate
threshold cost).

4.2. In-sentence spelling correction

Spelling error correction can not be performed on a purely isolated-word basis. In-
deed, at least four phenomena involve the environment of a word during recognition by
the lexicon or during its correction:

• words starting with a capital letter,

• words that have initial position in the sentence (which interacts strongly with the
previous point),

• multi-words that are consequence of productive derivational morphology (e.g.,
anti-Bush) or syntactic agglutination (e.g.,préchoisis-t’en,15 that must be tokenized
aspré- / choisis / t’ / en),

• spelling errors that involve more than one token (e.g.,corre ction instead ofcorrec-
tion) or more than one word (e.g.,unproblème instead ofun problème16).

Hence, we developed a full-featured in-sentence spelling corrector (or tok-
enizer/corrector), which is able to deal with these phenomena and to send queries to
SXSpell, so as to simultaneously tokenize and correct the text(we do not correct capi-
talized words, but other unknown words can remain if no correction is found for a word
that costs less than a given threshold). It turned out that the interaction between tokeniza-
tion of multi-words, capitalization and spelling error correction is not easy to deal with,
especially when one deals with the first token of a sentence. However, we defined some
heuristics that give pretty good results.

5. Non-deterministic light spelling correction and multi-word identification

In many cases, the simple concatenation of words cannot express the subtleties and
ambiguities of natural languages. Therefore, the output ofour process is a lattice (or
DAG, standing for Direct Acyclic Graph) of word-forms (or words), which can be given
as input to our syntactic parsers.17 Moreover, we do not produce onlysimpleDAGs in
the sense of [1], because they are not sufficient (see for example Figure 2).

15pre-chose one of them for you
16a problem
17Most classical parsers are not able to handle DAGs as input, which leads to the need of an extra step

before parsing, namely (super-/hyper-)tagging, which maydelete valid alternatives.
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Let us consider the French phrasepomme de terre cuite.18 Each word is a valid in-
flected form, as are the compound wordspomme de terre andterre cuite.19 Therefore, it is
represented by the DAG shown in Figure 2.

0 1 2 3 4

pomme de terre cuite

pomme_de_terre terre_cuite

Figure 2. DAG associated topomme de terre cuite.

On the contrary, French language (as others) hasagglutinates. For example,du is
either a valid word (meaningsome) or must be decomposed asde le (meaningof the). It
is therefore represented as shown in Figure 3.

0 1 2

de le

du

Figure 3. DAG associated todu.

These operations are performed as follows. The input of the DAGing step is consid-
ered as a (linear) DAGD . To each compound and to each agglutinate of the lexicon is
associated a transducer. The composition of all these transducers is applied toD , possi-
bly creating new paths.

The resulting DAG is then passed through other transducers that create other alter-
natives. For example, capitalized words for which the non-capitalized word is present in
the lexicon are represented as an alternative between both.Unknown words remaining at
this point (including many capitalized words) and for whichadding a diacritic on some
letters leads to a known word are also represented as an alternative between both.20 Fi-
nally, unknown words in the DAG are all replaced by one of two special entry of the
lexicon,_Uw and_uw, according to their capitalization. The resulting DAG is the final
output.

6. Evaluation

The evaluation of such a system is difficult, because we lack an appropriate gold-
standard corpus. However, some insights can be given thanksto tests we did on a

18This can mean eithercooked potato, cooked clay appleor terracotta apple, which leads to the 3 differ-
ent paths in the graph.

19respectivelypotatoandterracotta.
20We also try and correct parts of compound words that do not exist as standalone words but do not take

part one of their compound words. For example,brac in French exists only as part of the phrasebric à
brac. Thus,un brac has not been corrected by the previous step, but is correctedhere asun bras.
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Named-entity family Occ. Precision Recall

URLs 174 100% 100%
(surface) addresses 35 100% 100%
Phrases in foreign lang.23 42 83% 88%

Table 1. Partial evaluation of named-entities recognition.

1,100,000-word journalistic corpus.21 The whole process22 takes 13’01”, which corre-
sponds approximately to 1400 tokens/sec. Considering the complexity of the performed
tasks, and in particular the sizes of the automata involved in SXSpell, this is a very good
performance.

We also selected a few named-entity families for which over-generating detectors
can be easily designed, so as to allow a manual validation. Results are shown in Table 1.

The evaluation of the sentence boundary detection needs a manual annotation. We
did it on the first 400 sentences of the corpus, which gives a 100% precision rate and
a 100% recall rate. This is pretty satisfying, considering the fact that our journalistic
corpus is full of quotations, footnotes, book references and meta-information that makes
sentence boundary detection pretty difficult.

The evaluation of the spelling error corrector is not straightforward. Indeed, as said
before, the spelling error correction and tokenization step is performed by a component
that uses SXSpell but also deals with tokenization and capitalization phenomena. Which
means that there are two sub-components that need to be evaluated: the SXSpell spelling
error corrector and the tokenizer/corrector that uses SXSpell. Moreover, we need to iso-
late the performances of this component from the characteristics of the lexicon and from
the quality of the corpus.

To perform this evaluation, we automatically identified among the 1.1 million to-
kens of our corpus those which are not recognized by the tokenizer/corrector as known
words (present in the lexicon oreasilycorrectable) or combinations of known words. We
then manually identified, among these unknown tokens, thosethat should be corrected
in words present in the lexicon (or combinations thereof), and we corrected them manu-
ally (taking into account their context, when relevant). Then we compared these manual
corrections with those given by our tokenizer/corrector. Out of 150 misspelled tokens,
91% received the correct correction (and sometimes tokenization). Some examples are
given in Tables 2 and 3.

Furthermore, 1846 tokens are analysed as combination of known words with (at
least) one prefix (in 1712 cases) or one suffix (in 54 cases, only -né, -clef and their

21We did evaluations on the different corpora of the parsing evaluation campaign cited above, but we are
not yet allowed to publish these results. We can just say thatthe frequency of detection of named-entities
strongly depends on the kind of corpus.

22Test performed on an AMD Athlon XP 2100+ (1.7 Ghz) architecture running Mandrake Linux 10.1.
23Test performed only on the first 2000 sentences, because manual annotation is necessary.
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Input token Correction
arisienne parisienne
barriére barrière
celuici celui-ci
l’intervent ionnisme l’ interventionnisme
n’aspire-til n’ aspire -t-il
monde-tel-qu’il-est monde tel qu’ il est
plrrase phrase
redou-table redoutable

Table 2. Exemples of valid corrections performed by the tokenizer/corrector.

Input token Auto. correction Man. correction
argurnent arguèrent argument
lls las ils
de’investissement dé invest... de l’ invest...

Table 3. Exemples of erroneous corrections performed by thetokenizer/corrector (“...” stands for
“ issement” for space reasons).

variants being concerned24). For example, the sequencequasi-parti unique chrétien-libéral-

conservateur25 is transformed intoquasi_ parti unique chrétien_ libéral_ conservateur ,
where “-_” is by convention the mark of prefixes.

At this point, we need to point out two facts. First, the corpus we used for this eval-
uation is a high quality corpus (only 150 misspelled words out of 1.1 million). Second,
this evaluation of the tokenizer/corrector made us realizeand decrease the incomplete-
ness of our lexicon, in particular for words that come from foreign languages. But the
aim of our paper is not to evaluate our lexicon.

7. Conclusion

We have presented SXPipe, a full-featured architecture that produces words lattices
out of raw text, and is able to handle various phenomena that occur at a high frequency in
real-life corpora. This includes several named-entity families, spelling errors, tokeniza-
tion ambiguities while detecting sentence and word boundaries, and lexical ambiguities
between words differing only by diacritics or capitalization. Moreover, SXPipe is ex-
tremely efficient, and gives high-quality results. Such a pre-processing is a crucial step
to be able to parse correctly real-life corpora.

24For example,un artiste-némeansan genuine artist(where-né means approximatelyborn as such),
andun problème-clefmeansa key problem.

25quasi-single christian-liberal-conservative party
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In the future, we intend to implement a better treatment of derivational morphology
and an extension of existing named-entity recognizers and design of new one. Moreover,
we should slightly adapt SXPipe in order to be compliant with the current ISO working
draft on normalization of morphosyntactic annotation [2],based on XML representation
of tokens, words (or word-forms) and lattices. Furthermore, we are about to make the
whole system available under a free-software licence.
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