Subtyping Recursive Types modulo Associative
Commutative Products

Roberto Di Cosmd, Frangois Pottief,and Didier Remy?

L Universié Paris 7 roberto@dicosmo.org
2 INRIA Rocquencourt ~ {Francois.Pottier, Didier. Remy@inria.fr

Abstract. This work sets the formal bases for building tools that help retrieve
classes in object-oriented libraries. In such systems, the user provides a query,
formulated as a set of class interfaces. The tool returns classes in the library that
can be used to implement the user’s request and automatically builds the required
glue code. We propose subtyping of recursive types in the presence of associative
and commutative products—that is, subtyping modulo a restricted form of type
isomorphisms—as a model of the relation that exists between the user’s query
and the tool’s answers. We show that this relation is a composition of the standard
subtyping relation with equality up to associativity and commutativity of products
and we present an efficient decision algorithm for it. We also provide an automatic
way of constructing coercions between related types.

1 Introduction

The study of type isomorphisms is concerned with identifying data types by abstract-
ing away from irrelevant details in the syntax of types, or—in other words—irrelevant
choices in the representation of data. The basic idea is quite simple: one wishes to iden-
tify two data types if data of one type can be transformed into data of the other type
without loss of information. Formally speaking, and, are said to be isomorphic if

and only if there exist functiong : 71 — 7 andg : 72 — 7 that are mutual inverses,

in the sense that they make the following diagram commute:

f

idr, T1 T2 3 idr,
_/
g

This study has wide ramifications in different research fields, ranging from number
theory to category theory, and fromcalculus to proof theoryl]. In particular, it
helps attack some of the problems raised by the growing complexity of today’s multi-
language code bases. Indeed, the vast majority of currently available search tools suffer
from the fact that they only allowextual searches of libraries for method or func-
tion nameswhile such names are largely arbitrary. An interesting instance of this phe-
nomenon is the ubiquity of théold identifier in ML-like languages, pointed out by
Rittri [21].

The key idea behind the use of type isomorphisms in information retrieval is to
forget about names altogether and to relytgpesinstead. Indeed, a type provides a

(possibly partial) specification of a component. Of course, types must be equated up to
type isomorphisms, so as to make queries robust against arbitrary choices on the library
implementor’s partWhichtype isomorphisms to use depends on the type system, the
programming language, and the observational equivalence at hand. A large variety of
complete equational theories are known that axiomatize type isomorphisms in various
core calculi. Probably best known is the theory of isomorphisms for Cartesian Closed
Categories—the models of the simply-typed lambda calculus with products and a unit
type [25, 11]:

1. 7x7'=7"%x71 5. Tx1l=r7
2. Tx (' x7t")y=(Tx1)x71" 6. T—1=1
3. (rxt)—=71"=1> (1" —>1") 7. 1lo7=1
4. 7' x=F->17)x(r—>1")

The type isomorphisms-based approach can help in retrieving complex software com-
ponents from large libraries of function®4, 22, 23] or modules 27, 3] and in automat-

ically producing bridge code between different representations of a (possibly recursive)
data type in systems like Mockingbir8,[6]. These active areas are currently attracting

the attention of many researchers. Unfortunately, the general problem of characterizing
isomorphic types for a full-fledged type system, including sums, products, polymorphic
and recursive types—such as that underlying Mockingbfd8J—is extremely com-

plex and remains open; there are, in particular, difficulties with recursive ty{pasd

with sum typesT]. In view of this difficulty, Jha, Palsberg, and Zha] 19] proposed

to study a weak approximation of isomorphisms of recursive types, obtained by view-
ing products as associative and commutative, which we refer to as AC-equality. This
relation may be decided in tim@(N log V), whereN is the sum of the sizes of the
input types. (The same time bound was obtained by Downey, Sethi and Thé]dor]

the closely related problem sfymmetric congruence closuréC-equality captures a

lot of the inessential syntactic details one wants to get rid of when querying a library.
Jhaet al. propose to view a collection of Java interface declarations as a collection of
types, using arrow types to encode method signaturesieany products to encode
collections of methods or method parameters. Of course, the types thus obtained are
recursive, because Java interface declarations may mutually refer to one another. For
instance, the Java interfaces:

interface I; { interface I5 {
float m; (I; a); I; m3 (float a);
int my (I3 a); I, my (float a);
} }

may be encoded (forgetting method names) as the mutually recursiveltyped; —
float) x (Ia — int) andly = (float — I) x (float — I3). Thus, the notion of AC-
equality of recursive types gives rise to a notion of equivalence between (collections of)
Java interfaces.

However, AC-equality is not the right relation on types for searching libraries. As
noted by That [26], when querying a complex object-oriented library, the actual type
of the desired class or interface may be extremely complex, because dilisfgthe

types of) its methods. As a result, it is not reasonable to require the query (that is, the
type provided by the user) to be A€yualto the actual type. Indeed, the user would
have to guess the list of (the types af) methods in the class. It is more realistic to
allow the user to formulate a query that is onlg@pertypeof the actual type, so for
instance, a user looking for a collection implementation may formulate the query:

public interface SomeCollection {
public void add (Object o);

public void remove (Object o);
public boolean contains (Object o);
public int size ();

}

In the Java standard library, tlt®1llection interface has 15 methods. As a result,
every class that implements it has at least 15 methods as well, which mean® that
match will be found for this query if types are compared up to AC-equality. The purpose
of this paper is to introduce a notion of A€iibtypingdefined so that theollection
interface is an AGsubtypeof this query. Furthermore, even such a simple notion of
isomorphism of recursive types can give rise to very complex conversion functions. As
a result, it is quite unrealistic to expect that a user could be satisfied with atmere

or falseanswer. A practical search system must be able to generate code for converting
between the search result and the search query, as already advocated &yZBhatt

In this paper, we pursue Thas seminal work and give an efficient subtyping al-
gorithm modulo AC for a core language with products, arrows, and recursive types.
The algorithm also produces coercion code when it succeeds. We believe that when the
language is extended to cover a class-based object-oriented language such as Java, our
algorithm could be combined with ideas from Tlgatib synthesize adapters for existing
classes.

The paper is laid out as follow§2 gives a comparison with related work and an
overview of our results. 183, we recall a few basic notions about recursive types, as
well as Palsberg and Zhao'’s notion of equality up to associativity and commutativity
of products P0Q]. In §4, we introduce the notion of AC-subtyping and prove that it is a
composition of the usual subtyping relation with AC-equality. Therg5inve describe
an algorithm that decides whether two types are in the subtyping relation modulo asso-
ciativity and commutativity of products. We establish its correctness and assess its time
complexity. In§6, we discuss how to generate code for coercion functions. Throughout
the paper, we consider recursive types built out of arrows, products, and the constants
1L andT. In §7, we argue that this simple setting is general enough.

2 Related Work and Overview of our Results

Two main lines of work are closely related to ours. To our knowledge, &hatthe
first to have put forth a relaxed form of subtyping between recursive types as a model
of object-oriented retrieval tool2f]. Without relating to Tha&’s work, Palsbergt al.
have studied efficient algorithms to solve AC-equality of recursive typesip).

By comparison with Thad#ts work, we have taken a more foundational approach
by working directly with recursive types. We also use co-inductive techniques—which

were not yet popular at the time of Thelt work—to provide an efficient, deterministic
decision algorithm that improves over his exponential algorithm (essentially a variant
of Amadio and Cardelli’s original subtyping algorithm). However, some work remains

to be done to specialize our results to classed-based languages and build “adapters”, in
Thaté's terminology, out of our coercions.

Technically, our co-inductive algorithms share a common ground with the work
of Palsberget al. on AC-equality RQ]. Indeed, co-induction is a most natural tool for
reasoning about recursive types. Unfortunately, many of the well-known algorithmic
optimizations (inspired by classic foundational work on finite automata) that are appli-
cable when dealing with equivalence relatio,[19] break down when dealing with
an ordering. This is very well explained by Jatal. [19, Section 6], who describe
AC-subtyping, but quickly dismiss it as not amenable to the optimizations used for AC-
equality. The authors state that this relation is decidable, but make no effort to give a
tight complexity bound or describe an actual decision algorithm. Yet, a naive general-
ization of Palsberg and Zhao's ide&g][to the setting of AC-subtyping—as opposed to
AC-equality—already leads to a decision procedure whose worst-case time complexity
is O(n?n/2d>/?) (1), wheren andn’ count the sub-terms of the types that are being
compared and is a bound on the arity of the products involved.

The naive procedure starts from the full relation—a graph withn') edges—
and repeatedly removes edges that are found not to be in the AC-subtyping relation.
Because it might be necessary to inspect all edges in order to remove only one of them,
and because, in the worst case, all edges have to be removed, the procedure might
requireO(n>n’?) edge inspections, each of which happens to require @fi&/?) in
the worst case.

In this paper, we improve on this naive procedure by a careful choice afrties
in which edges must be inspected. The worst-case time complexity of our improved al-
gorithm may be bounded byt), which shows that it performs no worse than the naive
procedure. It may also be bounded®yN N’d%/?) (2), whereN andN’ are the sizes
of the types that are being compared. In practi¢eand N’ might be significantly less
thann? andn’?, respectively. Furthermore, we show that, if the types at hand are not re-
cursive (that is, do not involve cycles), then our algorithm runs in tinen’d>/2) (3).
One may expect the algorithm’s performance to degrade gracefully when the types at
hand involve few cycles. Last, i§b, we give worst-case complexity bounds analogous
to (2) and(3), but where the quantitied(N N’) andO(nn’) are replaced with the size
of a certain graph. Intuition suggests that, in practice, the size of this graph might be
significantly less than quadratic. For all these reasons, we expect our algorithm to per-
form well in practice, whereas an implementation of the naive algorithm would not be
realistic—even though, in rare cases, both algorithms may require the same amount of
computation.

A mild difference with Palsberg and Zha®(] is that we allow products to be im-
mediately nested. Indeed, our definition of AC-equality and AC-subtyping is such that
flattening nested productsnst part of equality. That is, if we writér; x ... x ,) for
I, 7;, then the type$r x m x 73) and (7 x (12 x 73)) arenot AC-related. If one

wishes that these types be identified, one can preprocess the input types by flattening
nested products before running our algorithm. (Of course, this is possible only in the ab-

sence of infinite products, but this restriction makes practical sense, since “flat” infinite
products cannot exist in memory.) However, there are situations where we want to keep
these types distinct. For example, products representing persistent database informa-
tion may be kept nested, as stored on disk, while products used for passing arguments
to functions may be flattened.

To sum up, we feel our work is more in line with Thalf, in that we want to pro-
vide a formal basis foactual search tools, that need AC-subtyping and the automatic
synthesis of the coercions, even if this means giving up the algorithmic optimizations
that make deciding an equivalence relation more efficient. Still, identifying types up
to AC-equality may remain useful as a preprocessing phase, in order to decrease the
number of nodes in the problem that is submitted to the AC-subtyping algorithm.

3 Recursive Types

Recursive types are usually given in concrete syntax as finite systems of contractive type
equations, which, according to Courcells], uniquely define regular trees; or as finite
terms involvingu binders [L7]. The process of unfolding these finite representations
gives rise to regular infinite trees.

Definition 1 (Signature). A signatureis a mapping fronsymbolswritten s, to integer
arities. In this paper, we consider a fixed signature, which consists of a binary symbol
—, an-ary symbolll™ for every nonnegative integer, and the constant symbals
andT. o

Definition 2 (Path, tree, type).A pathp is a finite sequence of integers. The empty
path is writtere and the concatenation of the paghandyp’ is writtenp - p’. A treeis a
partial functionr from paths to symbols whose domain is honempty and prefix-closed
and such that, for every pathin the domain ofr, p - i € dom(7) holds if and only ifi

is comprised between 1 and the arity of the symtipl), inclusive. Ifp is in the domain

of 7, then thesubtreeof rooted afp, writtenr/p, is the partial functionp’ — 7(p-p’).

A tree isregular if and only if it has a finite number of distinct subtrees. (Every finite
tree is thus regular.) Aecursive typdor typefor short) is a regular tree. We writé

for the set of all types. We writé (resp.T) for the tree that mapsto L (resp.T). We
write 7, — 7 for the tree that mapsto — and whose subtrees rooted at 1 and 2rare
andr., respectively. We writdl*_ , 7; for the tree that mapsto II™ and whose subtree

1=

rooted at i isr; for everyi € {1,...,n}. o

There are many ways to present equality of recursive types, ranging from tradi-
tional definitions based on finite approximatio$ fo more modern co-inductive ap-
proaches]0, 12]. Following Brandt and Henglein, we reason in terms of simulations.

Definition 3 (Equality). A binary relationR C 72 is a=-simulationif and only if it
satisfies the following implications:

EqQ-Top EQ-ARROW EQ-Pi
e oy SRR
7(€) = 7' () R T R T (i R Tz‘/)iE{lw’n}

Equality = is the largest=-simulation. o

Palsberg and Zha®()] define equality up to associativity and commutativity of
products as follows; see also Downetyal.[16, section 4.1]. We writel]” for the set
of all injective mappings frod1,...,m} into {1,...,n}. In particular, X" is the set
of all permutations of 1, ..., n}.

Definition 4 (AC-Equality). A binary relationR C 772 is a=4¢-simulationif and
only if it satisfies the following implications:

EQAC-TOP EQAC-ARROW EQAC-PI
TRT T =T RT — T o, R I 7!
7(€) = 7'(€) R T T R 75 Joe X (o) R 7])iEtln}
AC-Equality=4¢ is the largest=4-simulation. o

Note that a product one of whose components is itself a product is not considered AC-
equal to the corresponding “flattened” product. We come back to this poiit in

4 Subtyping and AC-Subtyping

In this section, we define subtyping of recursive types up to associativity and commu-
tativity of products, and show that it is precisely a composition of the usual subtyping
relation with equality up to associativity and commutativity of products.

Let us first define subtyping between recursive types. This requires extending the
standard definition of subtyping from the case of binary produdistp that of n-ary
products.

Definition 5 (Subtyping). Let <, be the ordering on symbols generated by the rules:

n>m

1 <os s<o T — <o — W

A binary relationR C 772 is a <-simulationif and only if it satisfies the following
implications:

SuB-ToOP SuB-ARROW SuB-PI
71 R T T =T RT — T I r R O™ 7!
71(€) <o T2(€) R T T2 R 74 (n R Ti’)ie{l **** m}
Subtyping< is the largesK-simulation. o

This definition allowsdepthandwidth subtyping. Depth subtyping refers to the covari-
ance of products. Width subtyping refers to the fact that a product with more compo-
nents may be a subtype of a product with fewer components. Enabling width subtyping
better suits our intended applications. Furthermore, it is possible, if desired, to introduce
a distinct family of product constructors, which forbid width subtyping; $&e

We now define subtyping of recursive types up to associativity and commutativity
of products. Its definition relaxes Definitiéby allowing the components of a product
to be arbitrarily permuted. It is given in a slightly generalized style, introducing the
notion of simulatiorup toa relation; this helps state the algorithm’s invariangsm2.

Definition 6 (AC-Subtyping). Let R C 72 andR’ C 7?2 be binary relationsR is a
<ac-simulation up toR’ if and only if the following implications are satisfied:

SuBAC-TOP SUBAC-ARROW
71 R T T =T RT — T4
T1(€) <o T2(€) 1 (RUR') 7y T2 (RUR') 74
SUBAC-PI

I n R Hi”;ﬁ'{
o€ I (1,4 (RUR') rf)icitmm}

R is a<s¢-simulationif and only if it is a < 4¢-simulation up to the empty relation.
AC-Subtyping< 4¢ is the largesk 4-simulation. o

It is known that=4¢ is a congruence and is an ordering. We show that 4 is a
preorder, that is, it is reflexive and transitive.

Proposition 7. < 4¢ is a preorder. o

Proof. To establish thak 4¢ is reflexive, we must prove that the identity relation is a
subset of it. Becaus€ 4¢ is the largest relation that satisfies the rules in Definigpn

we must in fact check that the identity relation satisfies each of these rules. This is
immediate.

To establish tha¥ 4 is transitive, we must prove that - o <4 is a subset of
<ac- As above, this requires checking thatic o <o satisfies each of the rules in
Definition 6.

o CaseSuBAc-ToF. The result follows from the transitivity of the ordering, on
symbols.

o CaseSuBAC-ARROW. Assumer; — 7o (Suc 0 <ac) 71 — 75. Because< 4¢
satisfiesTor, any type bounded below and above by arrow types must itself be an arrow
type. As a result, we must have — 7 <a¢ 71 — 7 <ac 71 — 74 for somer
andr). Because< 4¢ satisfiesARROW, this impliests <ac 74 <ac 75, Which itself
implies T (<ac o <ac) 74. Similarly, we haver] (<ac o <ac) 7.

o CaseSuBAC-PI. Let IIlL 7; (Sac o <ac) I 7]. Because< 4¢ satisfiesToF,
any type bounded below and above by product types must itself be a product type. More
specifically, we must hav@l | 7; <ac I 7" <ac II™,7/, wheren > k > m.
Because< 4¢ satisfiesPi, there existr € X* ando’ € X7 such thatr, ;) <ac 7}’

holds for everyi € {1,...,k} and7, ;) <ac 7; holds for everyi € {1,...,m}. As
aresult,7,.,(;y (Sac o <ac) 7 holds for everyi € {1,...,m}, ando o o', the
composition ofr ando’, is a member o7, o

We argue that our definition of subtyping modulo associativity and commutativity
of products is natural by establishing that it is a composition of the pre-existing relations
=4¢ and<. One may hope to prove that,- coincides with=4¢- o <. However, this
does not hold, because the contravariance of the arrow symbol fergeso be used
on both sides ok. This is illustrated by the paitf7* (T) — I1?(L, T), II*(L, T) —
IT(T)), which is a member of 4¢, but not a member of4c o < or of < o =4¢.

As a result=4- must in fact be used on both sides<0fas stated below.

Theorem 8. The relations< 4¢ and(=4¢) o (<) o (=a¢) coincide. o

Proof. By inspection of the rules in Definitiond and 6, it is clear that every=4.-
simulation is a< 4¢-simulation. So=4¢ is a subset oK 4. Similarly, < is a subset
of <ac. Asaresult, we havg=4c) o (<) o (=ac) € (<ac o <ac o <ac) € <ac,
where the second inclusion follows from Propositibn

Conversely, we must show that,c is a subset of=4¢c o < o =4¢. Assume
7o <ac 74 We wish to exhibit two types/’ andr” such thaty =s¢ 7 < 7§ =ac
7 holds. It is easy to check that the restrictiBrof < 4 to the subtrees af, andr is
afinite <,4-simulation and contains the pdiry, 7). We will useR to create a finite
system of contractive type equations that descrilfeandr)”.

Letv range ovefl,r}. Let—1 = r and—r = [. Then, for every paifr,7’) € R
and for everyv € {iI,r}, we define a term which we denote by, 7', v). The finite
system of equations that defines these terms is the following:

(11 = 1,1 — T4,v)
=<T{,7'1,—\1/>—><T2,T2/,V> (1)
<Hzn:17—i7Hin;17—ilvl>
= Hlnzl(lf 7 <m then(n,(,-),Ti’, l> e|SeT5(i)) (2)
<H‘n:17_iﬂﬂin;17—z‘l7r>

3

= Hg1<Td(i)7T{7r> (3)
(r,7,1)

=T whenr = Lor7' =T (4)
(r,7,7)

=7 whenr = Lor7 =T (5)

In equation (1), we have, by assumptien,— 7 R 71 — 74. BecauseR is a< 4¢-
simulation, by ruléSusac-ArRrRow, we haver; R 7, andr, R 75, which guarantees

that the right-hand side of equation (1) is well-defined. Similarly, in equations (2) and
(3), we havelI” ,7; R II™,7]. By rule/SuBac-Pli, there existsr € X' such that

7o) R 7; holds for everyi € {1,...,m}. We use such a (arbitrarily chosen) in the
right-hand sides of equations (2) and (3). Furthermore, in the right-hand side of equation
(2), we lets stand for an (arbitrarily chosen) injective mappingef + 1,...,n} into
{1,...,n}\ codom(o). The existence of is guaranteed by the fact that both of these
sets have cardinality — m. This ensures that the right-hand sides of equations (2) and
(3) are well-defined.

It is easy to check that evefy, 7, v), where(r,7') € R andv € {I,r}, appears
as the left-hand side of one and only one equation. Furthermore, these equations are
contractive. According to a classic resul], the regular termér, 7/, v) are thus well-
defined. Let us now proceed to establish two claims.

Claim 1.Let the relatioriR consist of all pairs of the forr(\if v = I thenr elser’),
(t,7',v)). In other words, letR; contain all pairs of the forn{r, (v, 7’,1)) or (',
(r,7',r)). Our first claim is that the reflexive closure &, written RT, is a=ac-
simulation. To establish this claim, it suffices to prove th& ifsatisfies the premise of
one of the rules in Definitiod, thenR T satisfies its conclusions. To do so, we consider
an arbitrary pair of the forni(if v = [thenr elser’), (v, 7/, v)). We first proceed by

cases on the defining equation fot 7/, v/), then check that every rule applicable to this
pair is satisfied.

o Case(1). The pair has the forif(if v =1 thent; — 7 elser; — 73), (11,11, W)

— (7, 74, v)). Both components have: as their head symbol, $60AC-TOF is satis-
fied. Let us now consid@&qAac-ARROW. Its conclusions are the paif§f -~ = [thenr{
elser), (11,71, —v)) and((if v = [thenrs elsers), (12, 74, v)), which are members
of Ri.

o Case(2). The pair has the fornd/1;_, 7, II;*, (if i < mthen(r,;,7;,1) else
T5(i)))- Both components hav@™ as their head symbol, $0Ac-ToF is satisfied. Let
us now consideEQAC-PI. As a witness for this rule, we useU &, which, by construc-
tion, is a member of’7. Then, the rule’s conclusions are the pdirg,uz) i), if i <
m then(r,;, 7/,1) elsers(;)) fori € {1,...,n}. These pairs may be separated in two
categories:

(Ta(i)v <T0(i)> Ti/) l>) (’L < m)

(T5(i)> To (i) (i >m)
Pairs of the first kind above are members7of, while pairs of the second kind are
members of=.

o Case(3). The pair is(II]™ 7, I1]" (1,(;), 7{,)). Both components havd™ as
their head symbol, which satisfig®ac-Tor. Furthermore, if we choose the identity
on{l,...,m} as awitness, theBoAc-Pi's conclusions are the paifs;, (1,(;),7;,7)),
which are members 6k ;.

o Caseq4), (5). The pair has the forifr, 7). As a resultTor is satisfied. lIARROW
orlPilis applicable, then its conclusions are members of

Claim 2. Let the relationR, consist of all pairs of the forn((r, 7/, 1), (1, 7/,7)).
Our second claim is thak, is a <-simulation. To establish this claim, we check that
R, satisfies each of the rules in DefinitiBnWe proceed by cases on the head symbols
of r andr’.

o Caser(¢) = 7/(¢) = —. The pair has the form
(<T{a7—1; T> - <7'2, T2l7l>a <T{77-17 l> - <7'2, 7-2/7"”>)'

Both components of this pair have head symbal so the ruléSus-ToF is satisfied.
SuB-ARROWS conclusions are the paif$r{, 71,1), {(r{,1,7)) and ({12, 7%, 1), (12, 75,
7)), which are members d®..

o Caser(e) = II", 7/(e) = II"™. The pair has the form

(7 (if + < mthen(r, ¢y, 77,) elsets(;)),
I (To (i), Ti,T))-
By assumption, we have R 7'/, which impliesn > m, solSuB-ToF is satisfied.
Furthermore|Sue-Pi's conclusions are the paits7,(), 7;,1), (7-x:), 7;,7)), fori €
{1,...,m}, which are members d?,.
o Caser = L or7/ = T.|SuB-ToF s clearly satisfied.

Conclusion As a consequence of Claim 1, we have=4¢ (70, 75, 1) and7 =a¢
(10, 74, 7). Because=4¢ is known to be symmetric, the latter may be written,), r)

shownry =ac¢ (70, 7, 1) < (70,70, 7) =ac 74, thatis,7o (=ac) o (<) o (=ac) 75 ©

=ac 7. As a consequence of Claim 2, we haveg, 7),1) < (1,7}, r). Thus, we have

5 Deciding AC-Subtyping

Let us say that a pair of types= (r, ') is valid if 7 <4 7' holds andnvalid other-
wise. We now define an algorithm that, given a pair of types= (7o, 7}), determines
whetherpg is valid.

The algorithm’s complexity is assessed as a function of the following parameters.
Let " and 7" be the sets of all subtrees af and 7, respectively. Let: andn’ be
the cardinalities of these sets; they are finite. Let us viemnd7’ as directed graphs,
where every tree is a node and there is an edge froonr’ labeled; if and only if 7 /3
is 7. In other words, there is an edge from every tree to each of its immediate subtrees.
Please note that there may be multiple edges, with distinct labels, betvesetr’. If 7
is anode inl" or T, let d(7) denote its outgoing degree, that is, the arity of the symbol
7(e). Letu(7) denote its incoming degree, that is, the number of its predecessors in the
graphT orT”. We writed for the maximum ofi(7) whent ranges over all nodes ifi
andT’. Last, letN (resp.N’) be thesizeof the graphl” (resp.T”), where every node
and every edge contributes one unit. Please note that we Nave:X (1 + u(7))
as well as a similar identity concernifig.

The algorithm maintains sets of pairs of nodes. We assume that elementary set op-
erations can be performed in constant time. This is indeed possible by using an array of
sizeO(nn’), or, more realistically, a hash table.

5.1 First Phase: Exploration

Specification The first phase of the algorithm consists in constructing a (finite)/set

of pairs of types whose validity one must determine in order to be able to tell whether
po is valid. The universé/ may be defined as the smallest set that contajrsnd is
closed under the following two rules:

EXPLORE-ARROW EXPLORE-PI
(11 = 12,7 = T9) EU (HleTq;,Hj’-ZlTj{) eU
(r1,71) €U (12,75) €U ((Ti,Tj/-) € U)"'e{lv--v”},jE{l,u-mL}

The set(T' x T") U (T" x T') containsp, and is closed under these rules. This ensures
thatU exists and has cardinality(nn’).

We have explained above how to vielvand 7’ as graphs. It is useful to view
(T xT')U (T" x T) as a graph as well. Let there be an (unlabeled) edge from a
pair of typesp to a pair of typeg’ if p matches the premise BxPLORE-ARROW Or
EXPLORE-PI| while p’ matches one of its conclusions. In that case, we also say that
p is aparentof p’. Then, the exploration phase can be viewed simply as an explicit
traversal (and construction) pfart of the graph(T" x T") U (T” x T'), starting from
the nodepy. In other words[J is the connected componentgf in the directed graph
(TxTHYu(T xT).

The number of nodes in the graphis clearly bounded by (nn’). Becausd/ is
an unlabeled graph, the number of its edges must be bound@d¥y.’?). This yields
size(U) < O(n?n'?). Furthermore, because the predecessors of gpaif) are pairs
of a predecessor afand a predecessor of, we haveu(r, ') < u(r)u(r’). This yields
another bound on the size of the graph

size(U) = X rnev (L +u(r, 7)) < Trer mer (1 + u(m)u(r))
< (Zrer(I+u(n)(Zrer (1 +u(r'))) = NN’

In practice, we expect both of these bounds to be pessimistic. In the particular case
where the types at hand are not recursive (that is, do not involve cycles) and do not
involve any products, the size 6f may be bounded byiin(N, N'). There is a lot of

slack between this optimistic bound and the worst-case bounds given above. It should
be interesting to measure the sizelbfn real-world situations.

Implementation The graphl/ can be computed using a simple iterative procedure, as
follows.

1. LetU = 0 andW = {po}.
2. While W is nonempty, do:
(a) Take a paip out of WW;
(b) If p € U, continue ag;
(c) Insertp into U;
(d) If pis ofthe form(r; — 7, 7 — 74), theninser{r{, ;) and(r, 75) into W;
(e) If pis of the form(/1;*, 7, [T}, 7}),
then insert everyr;,), fori € {1,...,n} andj € {1,...,m}, intoW.

It is clear that this procedure implements the constructio® ads specified above.
In step2e, one should remove any duplicate elements from the famitigé_, and
(77)L, prior to iterating over them. Then, this procedure runs in tixigize(U)d). It
is dominated by the running time of the second phase.

5.2 Second Phase: Fixpoint Computation

The idea behind the second phase of the algorithm is to determine the greatest subset of
U thatis a< 4-simulation, then to check whethgy is a member of it. In order to build
this subset, we start from the full relatiéh, and successively remove pairs that vio-
late/[SuBAc-TOF, [SUBAC-ARROW Or [SUBAC-PI, until we reach a fixpoint. Whether a pair
violatesSuBac-ToF or [SuBac-ARROW may be determined in constant time. However,
in the case oBuBAc-PI, the check requires solving a matching problem in a bipartite
graph, whose time complexity may be boundedXyl®/?), as we shall see.

A naive procedure begins by iterating once over all pairs, removing those that vi-
olate one of the rules; this takes tini®nn’d®/?). But one such iteration may not
be enough to reach the fixpoint, so the naive procedure repeats this step as many
times as required. In the worst case, each step invalidates only one pair, in which
case up ta@)(nn') successive steps are required. Thus, the overall time complexity is

O(n?n/?d>/?). Below, we propose an enhanced approach, whose convergence is faster.
Instead of blindly checking every pair at each iteration, we check onlyp#nentsof

pairs that have just been invalidated. Downey, Sethi, and Tarjan exploit the same idea
to accelerate the convergence of their congruence closure algofijm [

Description The universd/ is now fixed. We maintain three sdtg, S, andF’, which
form a partition ofU. The setlV is aworklist and consists of pairs whose validity re-
mains to be determined. The setonsists osuspendegbairs, which are conditionally
valid: the algorithm maintains the invariant thétis a <o-simulation up tolW. In
other words, a paif is known to be valigprovidedits (indirect) descendants Iy are
found to be valid as well. The sét consists of known invalidfélse pairs.

When a pairp is found to be invalid, it is moved to the sétand all (if any) of
its parents withinS are transferred t& for examination. We refer to this auxiliary
procedure asnvalidating p. The time complexity of this procedure (1 + u(p)),
whereu(p) is the incoming degree of the paiiin the graphl/ (see§5.1).

The second phase of the algorithm is as follows.

1. LetW =UandS =F = .
2. While W is nonempty, do:
(a) Take a paip out of W;
(b) If pis of the form(L,7’) or (7, T), then inserp into S;
(c) If pis of the form(r; — 72, 71 — 75), then
if (r{,71)¢F and(rg, 74) ¢ F theninserp into S else invalidate;
(d) If pis of the form(11;7;, 1172 7}), then
if there existsr € X stich tﬁat foralj € {1,...,m}, (7,(j),7}) &
F holds, then insent into S else invalidatey;
(e) If p satisfied none of the three previous tests, then invalidate
3. If py &€ F, returntrue, otherwise returifalse

Correctness Each iteration of the main loop (st@ptakes a paip out of W and either
inserts it intoS or invalidates it. In either case, it is clear th@¥, S, F') remains a
partition ofU.

Let us now check tha® remains a< 4¢-simulation up tdV . If the pairp is inserted
into S, thenp satisfiesSuBac-ToF, and there exist pairs il U S (that is, outsider”)
whose validity is sufficient fop to satisfySuBac-ARROW Or[SuBAC-PI. So, the invariant
is preserved. If, on the other hand, the paiis invalidated, then all of its parents within
S are transferred back %@, which clearly preserves the invariant as well.

Last, let us check thdf remains a set of invalid pairs only. If the paiis invalidated
at step2c, thenp is invalid, for otherwise, bysuBac-ArRROwW, the pairs(r,71) and
(72, 74) would be valid—but these pairs are membergof contradiction. Becauge
isinvalid, inserting it intaF' preserves the invariant. If the pairs invalidated at stepd
or 2e, thenp may be shown invalid analogously, usi8geac-Pil or|[SuBAC-TOF.

When the algorithm terminateB; is empty, saS is a < 4¢-simulation, which im-
plies that every member ¢f is valid. On the other hand, every memberrofs invalid.
We have established that the result returned in 3tigporrect, as stated below:

Theorem 9. If the algorithm returns true, themy, <sc 7 holds. If the algorithm
returns false, themy <4¢ 7, does not hold. o

Termination and Complexity Invalidating a pair transfers it frorid” to . Because
pairs are never taken out &f, and becaus®’ and F' remain disjoint, no pair is ever
invalidated twice.

The initial size of W is the number of nodes itv. Furthermore, when a paijr
is invalidated, the size ofV increases by(p). Thus, considering that every pair is
invalidated at most once, the total number of pairs that are ever taken didt-ethat
is, the total number of iterations of st@p-is at most

(Zpev 1) + (Zpev u(p)) = Tpev (1 + ulp)) = size(U)

Let us now estimate the cost of a single iteration of fejm step2d, determining
whether an appropriate exists is a matching problem in a bipartite graph with at most
2d nodes and® edges. Such a problem can be solved in ti{@®/?) using Hopcroft
and Karp’s algorithm18]. The cost of invalidating a pair may be viewed@él) if we
consider that the price for transferring a parent frtto 17 is paid when that parent is
later examined. Thus, the (amortized) cost of a single iteration of2se@ (d°/?).

Combining these results, we find that the second phase of the algorithm runs in time
O(size(U)d"/?). This is more expensive that the first phase, so we may state

Theorem 10. The algorithm runs in time (size(U)d®/?), which is bounded both by
O(NN'd*/%) andO(n?n'2d>/?). o

As explained in§5.1, the size of the grapl/ might be significantly smaller, in
practice, than either oV N’ andO(n?n’?), which is why we give the first complexity
bound. The second bound shows that, in the worst case, the algorithm remains linear
in each of the sizes of the input types, namalyand N’, with additional overhead
O(d®/?), whered is a bound on the arity of the products involved. The third bound
shows that our improved algorithm performs no worse than the naive procedure outlined
in §1 and§5.2

For comparison, Downegt al's symmetric congruence closure algorithd6],
as well as Jhat al’s decision procedure for AC-equalite 9], run in time O((N +
N")log(N + N')). These algorithms compute aquivalenceelation. This opens the
way to a more efficient data representation, where a relation is not stored as a set of
pairs but as a partition, and simplifies the matching problem.

Our worst-case bound may be slightly refined by distinguishing the maximum out-
going degrees of the grapfisandT”, sayd andd’, instead of conflating them as a sin-
gle ?arameter. Then, the complexity of the matching problem is boundeddy/ (d +
d/)l 2)_

One should point out that, if the algorithm is used by a programmer to query a
software library, then typical queries (that i$; andd’) should remain small.

5.3 Further Refinements

A cheap refinement consists in modifying the first phase so that it fails as soon as it
reaches a paj that does not satisif8uBac-ToFr, providedthe path fronp, to p never
leaves a pair of products—that is, provided the validitypgfimplies that ofp. This
helps immediately detect some failures. For this refinement to be most effective, the

paths inU where immediate failure may occur should be explored first. One way of
achieving this effect is simply to give higher priority to edges that leave a pair of arrows
than to edges that leave a pair of products.

A more interesting refinement consists in specifying in what order pairs should be
taken out of the worklist¥ during the second phase. It is more efficient to deal with
descendants first and with ancestors last, because dealing with an ancestor too early
might be wasted work—we might decide to suspend it and later be forced to transfer
it back to the worklist because new information about its descendants has been made
available. Of course, because types are recursive, the relation “to be a parent of” is in
general only a preorder, not an ordering—that is, the gfaphay exhibit cycles.

Let us remark, though, that whéhis acyclic, it is indeed possible to process pairs
in order. This ensures that, when a pair is processed, none of its parents have been
processed yet, so all of them must still be in the worklist. Thus, when invalidating a
pair, it is no longer necessary to iterate over its parents. In that case, the algorithm’s
time complexity become® (nodes(U')d>/?), wherenodes(U) counts the nodes of the
graphU, butnotits edges, and is bounded Bynn').

Itis possible to take advantage of this remark even in the presence of cycles. The first
phase, upon completion, can be made to produce an explicit representation of the graph
U. Determine its strongly connected components and topologically sort them. Then,
remove all edges whose endpoints do not belong to the same compbimembst of
this additional preprocessing is linear in the sizé/oNow, run the second phase, one
component at a time, in topological order, that is, descendants first and ancestors last.
Because of the removed edges, when invalidating azpainly the parents op that
belong to thesamestrongly connected component are checked. This is correct because
components are being processed in topological order, which ensures that the parents of
p that belong to alistinctcomponent must still be in the worklist.

The modified algorithm runs in timé(size(U’)d>/?), whereU’ is the result of
pruning the grapl/, that is, of keeping only the edges that participate in a cycle. Thus,
its complexity may still be bounded by (N N’d%/?) in the worst case, but this bound
gradually decreases downd(nn’d®/?) in the case of nonrecursive types. We conjec-
ture that, in practice, cycles often involve only a fraction of the type structure, so this
improvement may be significant.

A last potential refinement is the following. When two product nodes are success-
fully compared, that is, when a pairis inserted intaS at step2d, it would be possible
to savethe matchings. Thus, if the paim is ever transferred back ", because one
or more of its immediate descendants were invalidated, we might hope to be able to
build a new matching more easily. This requires an efficient algorithm for maintaining
maximum matchings in the presence of failures; Sha and Steiglitz’s #dtkrjay be
of use here. Working out the details, determining the refined algorithm’s complexity,
and assessing it in practice are left for future work.

Searching a Whole Library For our purposes, a software library is a collection of
possibly mutually recursive types, which we may view as a single recursivergype
some distinguished subterms of which form a Fgt The programmer’s query is a
possibly recursive typeg. The problem is to find all components in the library that

provide (at least) the requested functionality, that is, to find every Ty, such that
T <aC TQ holds.

One possibility is to run the algorithm wighy = (7, 7¢) successively for every €
Tr.. However, this is inefficient. Lel/- denote the universe explored by the algorithm
when run with initial pair(7, 7¢). Then, the universed/;) ., might overlap, causing
repeated work. It is more efficient to run the algorithm once withitipleinitial pairs,
that is, with the family of initial pair§r, 7o) -1, . Extending the algorithm to deal with
a set of initial pairs{py, . .., pr—1} is immediate; it suffices to define the univeilde
as the smallest superset @, . . ., pr—1} that is closed undeExpPLORE-ARROW and
EXPLORE-PI. By running the algorithm only once, we ensure that the worst-case time
complexity is bounded by (N N'd°/?), whereN is the size of the library;, and N’
is the size of the queryy.

In fact, running the algorithm once with a set of initial pgits, . . . , px—1} iS equiv-
alent to running itk times in succession, supplying the single initial paito the ;™
run, providedeach run starts where the previous left off, that is, re-uses thé/séts
F computed by the previous run. With this proviso, one may, without loss of efficiency,
provide initial pairs to the algorithm one after the other.

This remark leads to an optimization. Imagine tigtis organized as a graph, with
an edge fromr to 7’ if and only if 7 <4¢ 7/ holds. (This graph might be built during
a preprocessing phase. We may assume that it is acyclic: if it isn’t, cycles may be col-
lapsed.) Then, pick a maximal nodethat is, a node with no successors in the graph.
Run the algorithm with initial paifr, 7o). If 7 is found to be comparable witty, then,
by transitivity of < 4, so isevery predecessaf 7 in the graph. In that case, remove
7 and all of its predecessoifsom the graph; otherwise, removealone. Then, pick
a maximal node in what remains of the graph, and proceed in the same manner. This
approach offers the double advantage of being potentially more efficient and of provid-
ing successful answers in groups, where each group contains a distinguished maximal
(w.r.t. <4¢) answer to the query and distinct groups contain incomparable answers.
We believe that the user should find this behavior natural. The actual efficiency gain
remains to be assessed.

One should point out that this optimization is but a simple way of exploiting the fact
that < s¢ is transitive. One might wonder whether it is possible to exploit transitivity
at the core of the algorithm: for instance, by directly inserting a pair ftaithout
examining its descendants, if it is a transitive consequence of the pairs that are members
of S already. This issue is left for future research.

6 Building Coercions

We now discuss the coercions that witness the relatign, and how to compute them
from the simulation discovered by the algorithm, when it succeeds. We follow Brandt
and Henglein's presentatio(], but work directly with regular trees, instead of using
the u notation, which allows us to make “fold” and “unfold” coercions implicit.

Definition 11 (Coercions for < 4). Coercions are defined by the grammar
cu=1, | flfixfc|ec— | IIf¢; | abort. | discard: o

Most coercion forms are taken from Brandt and Henglein’s paper, with the same typing
rules [10, figure 6]. Let us recall that a typing judgment is of the fofht- ¢ : 7 — 7/,
where the environmenE' maps coercion variables to coercion types of the form

T — 7’. The one new coercion form B¢ ¢;, whose typing rule is

ceXxm (EFci:tou) — Ti’)iE{l’“"'m}
ErII7c; : 107 /

m
i1 T — 1L T

and whose operational meaninghs.I1;”, ¢;(7,(;)(p)). If 7 <ac 7' holds, then the
algorithm, applied to the pair, '), produces a finite< 4 o-simulationS that contains
(r,7"). Itis straightforward to turr into a system of recursive equations that defines
one coercion for each pair withisi, including, in particular, a coercion of type— 7'.

Theorem 12. If 7 < ¢ 7/ holds, there exists a (closed) coercion. t.-c: 7 — 7. ¢

Proof. For every pairp € S, introduce a distinct coercion variabfg, together with
one defining equation fof,, whose right-hand side dependspas follows:

f1.m = abort, 1)

fer) = discard.)
feriomar =) = frlm) = firar)) 3)
f(HflleivHrﬂlT{) = Hiof(‘ra(i)v*{) (4)

Becauses satisfiesSuBac-ToF, the case analysis gnis exhaustive. Casdsand2 are

not mutually exclusive; we arbitrarily choose to give priority to the former. In Equa-
tion 3, by assumption(r; — 72,7 — 74) is @ member ofS; becauseS satisfies
SUBAC-ARROW, (71,71) and(m, 74) are members of as well, so the right-hand side
is well-defined. In Equatiod, by assumption(I7}-,7;, IT!™,7/) is a member of; be-
causeS satisfiesSusac-Pi, there exister € X" such thatr, ;) S 7 holds for every

i € {1,...,m}. We use such & (arbitrarily chosen) in the right-hand side, which
ensures that it is well-defined.

These equations ammntractive[10, definition 3.1]. By Beki’s theorem 9], these
equations have (closed) solutions in the coercion language. Of course, in a program-
ming language that allows mutually recursive function definitions, such as ML, these
equations make direct sense, so appeal to®ekieorem is not required in practice.

It is easy to check that these equations are well-typed under the assumption that
every f(. has typer — 7'. As a result, after applying BeXs theorem, the closed
coercion associated witfy . ..y has typer — 7’ in the empty environment. o

The size of the equation associated with') is O(1 + d(7')), whered(7’) is the
outgoing degree of the nodé in the graphl” or T’. As a result, the total size of the
system of equations is bounded by

O(Zrer,rer (14 d(7") + Lrerr rer(l + d(r
= O0(n(Xrer (1 +d(r'))) +n'(Zrer (1 +d(7))))
=O0(nN'+n'N)

)

The system can be produced in linear time with respect to its size, so the time com-
plexity of producing code for the coercions@§nN’ + n’N). (If one applies Beki's
theorem, as suggested above, then the time and space complexity increases quadrati-
cally, but there is no reason to do so in practice.)

This very simple approach to building coercions is not optimal. For instance, the
coercion produced for a pair of the forfn, 7) is never the identity... It would be easy,
in practice, to add aad hoccheck for this situation. Indeed, using Hopcroft’'s algorithm
for minimizing deterministic finite automata, it is possible to identify all pairs whose
components represent the same type in tidén + n’) log(n + n’)). Also, we never
rely on composition of coercions, which corresponds, in Brandt and Henglein’s proof-
theoretic view, to transitivity of subtyping. This causes us to produce coercion code
whose size is not optimal, but whose efficiency should be greater.

It is worth pointing out that not all well-typed coercions have the same operational
meaning, and some user interaction is, in practice, necessary to ensure that the coercion
code suits the user’s needs.

The coercions defined in the proof of Theor&éhdo not preserve sharing. That is,
even if the original data structure forms a DAG in memory, the output of the coercion
is a tree, and may be exponentially larger. If the original data structure is infinite (that
is, contains a cycle), the coercion function may not terminate. In practice, both of these
problems may be solved using a form of memoization, that is, by ensuring that two
successive calls to the same coercion function with the same argument return the same
result—even if these calls are nested within one another. We omit the details.

7 Practical Considerations

In practical applications, the language of types is usually much richer than the one
considered in this paper. The grammar of types may include a set of atoms (such as
int, float, etc.), equipped with a subtyping relation, and a set of parameterized type
constructors. Each of these type constructors may have some contravariant and some
covariant parameters, may support or forbid permutations of its parameters, and may
support or forbid width subtyping.

Fortunately, it is straightforward to adapt the results of this paper to such an ex-
tended language of types. As far as atoms and atomic subtyping are concerned, it
suffices to add appropriate clauses to the definition &f & -simulation and to the
algorithms for deciding AC-subtyping and building coercions; these new clauses are
variations of the existing clauses farand T. As far as parameterized type construc-
tors are concerned, it is enough to extend our definitions by distinguishing four kinds
of products that respectively support or forbid parameter permutations and width sub-
typing. The rules that describe the three new (restricted) kinds of products are special
cases of our current rules, since our current product constructor allows both parameter
permutations and width subtyping. Then, every parameterized type constructor may be
desugared into a combination of atoms, the arrow constructor (which allows encoding
contravariance) and the four product constructors.

Our core language is purely functional. However, real-world languages, and object-
oriented languages in particular, often have mutable data structures and a notion of

object identity. Then, it is important that coercions preserve object identity. One might
wish the following property to hold: the program that is linked, using adapters, to a
certain library, should have the same semantics as that obtained by linking, without
adapters, to a library whose method and class names have been suitably renamed. We
believe that, combining our algorithms with the adapter model sketched byeThgt

it is possible to achieve such a property. We leave this as future work.

8 Conclusion

We have introduced a notion of subtyping of recursive types up to associativity and
commutativity of products. We have justified our definition by showing that this rela-
tion is a composition of the usual subtyping relation with Palsberg and Zhao’s notion
of equality up to associativity and commutativity of products. We have provided an al-
gorithm for deciding whether two types are in the relation. The algorithm’s worst-case
time complexity may be bounded (N N’d°/?) and O(n?n/?d®/?); we believe it
will prove fairly efficient in practice. It is straightforward and cheap to produce coer-
cion code when the algorithm succeeds.

We believe this paper may constitute the groundworkpactical search tools
within libraries of object-oriented code. Indeed, as argueflinAC-equality alone
is not flexible enough, since it does not allow looking for onisudsef the features
provided by a library.

References

[1] Martin Abadi and Marcelo P. FioreSyntactic considerations on recursive typtsIEEE
Symposium on Logic in Computer Science (LI@8pes 242—-252, July 1996.

[2] Roberto M. Amadio and Luca CardellSubtyping recursive typeACM Transactions on
Programming Languages and Systettt(4):575-631, September 1993.

[3] Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for module signa-
tures. InSymposium on Programming Language Implementation and Logic Programming
(PLILP), volume 1140 ofLecture Notes in Computer Sciengmges 334-346. Springer
Verlag, 1996.

[4] Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type isomorphisms with
recursive types. Technical Report RC 21247, IBM Yorktown Heights, 1998.

[5] Joshua Auerbach and Mark C. Chu-Carrol. The Mockingbird system: a compiler-based
approach to maximally interoperable distributed systems. Technical Report RC 20718,
IBM Yorktown Heights, 1997.

[6] Joshua Auerbach, Mark C. Chu-Carrol, Charles Barton, and Mukund Raghavachari. Mock-
ingbird: Flexible stub generation from pairs of declarations. Technical Report RC 21309,
IBM Yorktown Heights, 1998.

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo FioRemarks on isomorphisms in typed
lambda calculi with empty and sum typeln IEEE Symposium on Logic in Computer
Science (LICS)uly 2002.

[8] Charles M. Barton. M-types and their coercions. Technical Report RC-21615, IBM York-
town Heights, December 1999.

http://www.soe.ucsc.edu/~abadi/Papers/rec.ps
http://research.microsoft.com/Users/luca/Papers/SRT.pdf
http://www.cl.cam.ac.uk/~mpf23/papers/Types/remarks.ps.gz
http://www.cl.cam.ac.uk/~mpf23/papers/Types/remarks.ps.gz

9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17)
[18]

(19]

(20]
(21]
(22]
(23]
(24]
(25]

(26]

(27]

Hans Beki. Definable properties in general algebra, and the theory of automata and flow
charts. In C.B. Jones, editddans Beki: Programming Languages and Their Definitjon
pages 30-55. Springer Verlag, 1984.

Michael Brandt and Fritz HengleirCoinductive axiomatization of recursive type equality
and subtypingFundamenta Informatica83:309-338, 1998.

Kim Bruce, Roberto Di Cosmo, and Giuseppe Londerovable isomorphisms of types
Mathematical Structures in Computer Scien2€):231-247, 1992.

Felice CardoneA coinductive completeness proof for the equivalence of recursive types
Theoretical Computer Scienc275(1-2):575-587, 2002.

Bruno Courcelle. Fundamental properties of infinite trégseoretical Computer Science
25(2):95-169, March 1983.

Roberto Di CosmoDeciding type isomorphisms in a type assignment framewdwlrnal

of Functional Programming3(3):485-525, 1993.

Roberto Di Cosmo.somorphisms of types: frotk-calculus to information retrieval and
language designProgress in Theoretical Computer Science. Birkhauser, 1995.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-
pression problemJournal of the ACM27(4):758-771, October 1980.

Vladimir Gapeyev, Michael Levin, and Benjamin PiercRecursive subtyping revealed
Journal of Functional Programmind.2(6):511-548, 2003.

John E. Hopcroft and Richard M. Karp. Ae/? algorithm for maximum matchings in
bipartite graphsSIAM Journal on Computing(4):225-231, December 1973.

Somesh Jha, Jens Palsberg, and Tian Zh&éicient type matching In International
Conference on Foundations of Software Science and Computation Structures (FOSSACS)
volume 2303 of_ecture Notes in Computer Scienpages 187—204. Springer Verlag, April
2002.

Jens Palsberg and Tian Zhdgfficient and flexible matching of recursive typdaforma-

tion and Computationl71:364—-387, 2001.

Mikael Rittri. Using types as search keys in function librarie®urnal of Functional
Programming 1(1):71-89, 1991.

Mikael Rittri. Retrieving library functions by unifying types modulo linear isomorphism
RAIRO Theoretical Informatics and Applicatior&y (6):523-540, 1993.

Colin Runciman and lan Toyn. Retrieving re-usable software components by polymorphic
type. Journal of Functional ProgrammingdL(2):191-211, 1991.

Edwin Hsing-Mean Sha and Kenneth Steiglit®laintaining bipartite matchings in the
presence of failuredNetworks 23(5):459-471, August 1993.

Sergei V. Soloviev. The category of finite sets and cartesian closed categhmigsal of
Soviet Mathematic22(3):1387-1400, 1983.

Satish R. Tha#t. Automated synthesis of interface adapters for reusable claBs&ECM
Symposium on Principles of Programming Languages (PQPages 174-187, January
1994.

Jeannette M. Wing, Eugene Rollins, and Amy Moormann Zaremskhoughts on a
Larch/ML and a new application for LAn First International Workshop on Lar¢tpages
297-312, July 1992.

ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz
ftp://ftp.diku.dk/diku/semantics/papers/D-353.ps.gz
http://www.dicosmo.org/Articles/MSCS.dvi
http://dx.doi.org/10.1016/S0304-3975(01)00298-5
http://www.dicosmo.org/Articles/JFP94.dvi
http://www.pps.jussieu.fr/~dicosmo/Publications/ISObook.html
http://www.pps.jussieu.fr/~dicosmo/Publications/ISObook.html
http://www.cis.upenn.edu/~bcpierce/papers/rsr.ps
http://www.cs.ucla.edu/~palsberg/paper/fossacs02.pdf
http://www.cs.ucla.edu/~palsberg/paper/ic01.pdf
http://www.cs.chalmers.se/pub/users/rittri/retrieving-unifying.ps.Z
http://www.nd.edu/~esha/papers/oldsha/alg.ps
http://www.nd.edu/~esha/papers/oldsha/alg.ps
http://doi.acm.org/10.1145/174675.177850
http://reports-archive.adm.cs.cmu.edu/anon/usr0/ftp/home/ftp/1992/CMU-CS-92-135.ps
http://reports-archive.adm.cs.cmu.edu/anon/usr0/ftp/home/ftp/1992/CMU-CS-92-135.ps

