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Abstract

We design an extension of the join calculus with class-based inheri-
tance. Method calls, locks, and states are handled in a uniform manner,
using asynchronous messages. Classes are partial message definitions that
can be combined and transformed by means of operators for behavioral
and synchronization inheritance. We also give a polymorphic type sys-
tem that statically enforces basic safety properties. Our language and its
type system are compatible with the JoCaml implementation of the join
calculus.
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1 Introduction

The join calculus is a simple name-passing calculus, related to the pi calculus
but with a functional flavor [10, 9]. In this calculus, communication channels are
statically defined: channels are created together with a set of reaction rules that
specify, once and for all, how messages sent on these names will be synchronized
and processed. These design choices favor the integration of concurrency and
distribution within a programming language. Indeed, a typed language based
on join calculus has been implemented as an extension of OCaml [17], called Jo-
Caml [11, 15]. However, the above integration does not address object-oriented
features. Precisely, JoCaml objects are just imported from OCaml and therefore
they are sequential. The main contribution of this work is an extension of the
join calculus with object oriented features that is compatible with the JoCaml
implementation.

Although the join calculus does not have a primitive notion of object, def-
initions encapsulate the details of synchronization much as concurrent objects.
Applying the well-known objects-as-records paradigm to the join calculus, we
obtain a simple language of objects with asynchronous message passing. Method
calls, locks, and states are handled in a uniform manner, using labeled messages.
There is no primitive notion of functions, calling sequences, or threads (they can
all be encoded using continuation messages). Our language—the objective join
calculus—allows fine-grained internal concurrency, as each object may send and
receive several messages in parallel.

For every object of our language, message synchronization is defined and
compiled as a whole. This allows an efficient compilation of message delivery
into automata [16] and simplifies reasoning on objects. However, the complete
definition of object can be overly restrictive for the programmer. This sug-
gests some compile-time mechanism for assembling partial definitions. To this
end, we promote partial definitions into classes. Classes can be combined and
transformed to form new classes. They can also be closed to create objects.

Objects can be created by instantiating definition patterns called classes, and
in turn complex classes can be built from simpler ones. To make this approach
effective, the assembly of classes should rely on a small set of operators with a
clear semantics and should support a typing discipline. In a concurrency setting,
such promises can be rather hard to achieve.

The class language is layered on top of the core objective calculus, with
a semantics that reduces classes into plain object definitions. We thus retain
strong static properties for all objects at run-time. Some operators are imported
from sequential languages and adapted to a concurrent setting. For instance,
multiple inheritance is expressed as a disjunction of join definitions, but some
disjunctions have no counterpart in a sequential language. In addition, we pro-
pose a new operator, called selective refinement. Selective refinement applies to
a parent class and rewrites the parent reaction rules according to their synchro-
nization patterns. Selective refinement treats synchronization concretely, but it
handles the parent processes abstractly. The design of our class language follows
from common programming patterns in the join calculus. We also illustrate this
design by coding some standard problematic examples that mix synchronization
and inheritance.

Our approach to computing classes is compatible with the JoCaml imple-
mentation of the join calculus [15], which relies on runtime representation of
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synchronization patterns as bitfields [16] and, on the contrary compiles pro-
cesses into functional closures. As a consequence, synchronization patterns can
be scanned and produced at runtime, while processes cannot be scanned (but
still can be produced), as required by our operators on classes.

We then define a type system for objects and classes. We introduce types
at the end of the paper only, to separate design issues and typing issues. The
type system improves on our previous work on polymorphism in the join cal-
culus [12]. As discussed in [12], message synchronization potentially weakens
polymorphism. With classes, however, message synchronization may not be
entirely determined as we type partial definitions. In order to preserve poly-
morphism, we thus rely on synchronization information in class types.

In addition to standard safety properties, the type system enforces privacy.
Indeed, the untyped objective join calculus lacks expressiveness as regards en-
capsulation1. In order to restrict access to the internal state of objects, we
distinguish public and private labels. Then, the type system guarantees that
private labels are accessed only from the body of a class used to create the
object. The correctness of the type system is established for an operational
semantics supplemented with privacy information.

As concern class operators, there is a trade-off between expressiveness and
simplicity of both the static and dynamic semantics. In this paper, we favor
expressiveness, while preserving type soundness and compositionality (with re-
spect to compilation). As a consequence, we get a better understanding of
inheritance and concurrency, and a touchstone for other design choices. Most
of the complexity of our class operators stays within selective refinement. How-
ever, selective refinement is often used in rather simple patterns. This leaves
place for simpler design choices (some of them will be discussed in Section 5).

The paper is organized as follows. In Section 2, we present the objective
join calculus and develop a few examples. In Section 3, we supplement the
language with classes and give a rewriting semantics for the class language. In
Section 4 we present more involved examples of inheritance and concurrency.
In Section 5, we discuss other design choices. In Section 6, we provide a static
semantics for our calculus and state its correctness. In Section 7, we discuss
related works and possible extensions. Appendix A presents cross-encodings
between the plain and objective join calculus. Appendix B gathers the main
typing proofs.

2 The objective join calculus

We first focus on a core calculus dealing with objects. This calculus is a variant
of the join calculus [10]. We illustrate the operations of the calculus, then we
define its syntax and semantics.

1In the plain join calculus, this problem is less acute: for a given definition, each entry
point is passed as a separate name, so lexical scoping on private names provides some privacy;
on the other hand, large tuples of public names must be passed instead of single objects (see
Appendix A.)
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2.1 Getting started

The basic operation of our calculus is asynchronous message passing. For in-
stance, the process out .print int(n) sends a message with label print int and
content n to an object named out , meant to print integers on the terminal. Ac-
cordingly, the definition of an object describes how messages received on some
labels can trigger processes. For instance,

obj continuation = reply(n) . out .print int(n)

defines an object that reacts to messages on reply by printing their content on
the terminal. Another example is the rendez-vous, or synchronous buffer:

obj sbuffer = get(r) & put(n,s) . r .reply(n) & s.reply()

The object sbuffer has two labels get and put ; it reacts to the simultaneous
presence of one message on each of these labels by passing a message to the
continuation r, with label reply and content n, and passing an empty message
to s. (Object r may be the previously-defined continuation; object s is another
continuation taking no argument on reply.) As regards the syntax, message
synchronization and concurrent execution are expressed in a symmetric manner,
on either side of ., using the same infix operator &.

Some labels may convey messages representing the internal state of an object,
rather than an external method call. This is the case of label Some in the
following unbounded, unordered, asynchronous buffer:

obj abuffer =
put(n,r) . r .reply() & abuffer .Some(n)

or get(r) & Some(n) . r .reply(n)

The object abuffer can react in two different ways: a message (n, r) on put
may be consumed by storing the value n in a self-inflicted message on Some;
alternatively, a message on get and a message on Some may be jointly consumed,
and then the value stored on Some is sent to the continuation received on get .
The indirection through Some makes abuffer behave asynchronously: messages
on put are never blocked, even if no message is ever sent on get .

In the example above, the messages on label Some encode the state of
abuffer. The following definition illustrates a tighter management of state that
implements a one-place buffer:

obj buffer =
put(n,r) & Empty() . r .reply() & buffer .Some(n)

or get(r) & Some(n) . r .reply(n) & buffer .Empty()
init buffer .Empty()

Such a buffer can either be empty or contain one element. The state is encoded
as a message pending on Empty or Some, respectively. Object buffer is created
empty, by sending a first message on Empty in the (optional) init part of the
obj construct. As opposed to abuffer above, a put message is blocked when the
buffer is not empty.

To keep the buffer object consistent, there should be a single message pend-
ing on either Empty or Some. This invariant holds as long as external users
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Figure 1: Syntax for the core objective join calculus

P ::= Processes
0 null process
x.M message sending
P1 & P2 parallel composition
obj x = D init P1 in P2 object definition

D ::= Definitions
M . P reaction rule
D1 or D2 disjunction

M ::= Patterns
`(ũ) message
M1 & M2 synchronization

cannot send messages on these labels directly. In Section 6, we describe a re-
fined semantics and a type system that distinguishes private labels (such as
Empty and Some) from public labels and restricts access to private labels. In
the examples, private labels conventionally bear an initial capital letter.

Once private labels are hidden, each of the three variants of buffer provides
the same interface to the outside world (two methods labeled get and put) but
their concurrent behaviors are very different.

2.2 Syntax

We use two disjoint countable sets of identifiers for object names x, z, u ∈ O
and labels ` ∈ L. Tuples are written xi

i∈I or simply x̃. The grammar of the
objective join calculus (without classes) is given in Figure 1; it has syntactic
categories for processes P , definitions D, and patterns M . We abbreviate obj
x = D init P1 in P2 by omitting init P1 when P1 is 0.

A reaction rule M . P associates a pattern M with a guarded process P .
Every message pattern `(ũ) in M binds the object names ũ with scope P . As
in join calculus, we require that every pattern M guarding a reaction rule be
linear, that is, labels and names appear at most once in M . In addition, the
object definition obj x = D init P1 in P2 binds the name x to D. The scope
of x is every guarded process in D (here x means “self”) and the processes
P1 and P2. Free names in processes and definitions, written fn(·), are defined
accordingly; a formal definition of free names appears in Figure 4. Terms are
taken modulo renaming of bound names (or α-conversion).

2.3 Chemical semantics

The operational semantics is given as a reflexive chemical abstract machine [10].
Each rewrite rule of the machine applies to configurations of objects and pro-
cesses, called chemical solutions. A solution D ° P consists of a set of named
definitions D (representing objects in solution) and of a multiset of processes
P running in parallel. We write x.D for a named definition in D, and always
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assume that there is at most one definition for x in D. Chemical reductions are
obtained by composing rewrite rules of two kinds: structural rules ≡ represent
the syntactical rearrangement of terms; reduction rules −→ represent the basic
computation steps.

Figure 2: Chemical semantics

Par

° P & Q ≡ ° P , Q
Nil

° 0 ≡ °

Obj

° obj x = D init P in Q ≡ x.D ° P , Q
Join

° x.(M & M ′) ≡ ° x.M , x.M ′

Red

x.[M . P ] ° x.Mσ −→ x.[M . P ] ° Pσ

Chemistry
D0 ° P1 ≡−→ D0 ° P2

D ,D0 ° P1 , P ≡−→ D ,D0 ° P2 , P

Chemistry-Obj
° P ≡ x.D ° P ′ x 6∈ fn(D) ∪ fn(P)

D ° P , P ≡ D , x.D ° P ′ , P

The rules for the objective join calculus are given in Figure 2, with side
conditions for rule Red: [M . P ] abbreviates a definition D that contains the
reaction rule M . P ; σ is a substitution with domain fn(M); the processes Mσ
and Pσ denote the results of applying σ to M and P , respectively.

Rules Par and Nil make parallel composition of processes associative and
commutative, with unit 0. Rule Obj describes the introduction of an object.
(Preliminary α-conversion may be required to pick a fresh name x.) Here,
according to Obj and Par, expressions obj x = D init P in Q and obj x =
D in P & Q are equivalent. However, P and Q have different meaning in
the semantics with privacy, where Q cannot access private names of D (see
Section 6.1). Rule Join gathers messages sent to the same object. Rule Red
states how messages can be jointly consumed and replaced by a copy of a guarded
process, in which the contents of these messages are substituted for the formal
parameters of the pattern.

In chemical semantics, each rule usually mentions only the components that
participate to the rewriting, while the rewriting applies to every chemical solu-
tion that contains them. More explicitly, we provide two context rules Chem-
istry and Chemistry-Obj. In rule Chemistry, the symbol ≡−→ stands for
either ≡ or −→. In rule Chemistry-Obj, the side condition x /∈ fn(D)∪ fn(P)
prevents name capture when introducing new objects (the sets fn(D) and fn(P)
are defined in Figure 4).
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3 Inheritance and concurrency

We now extend the calculus of concurrent objects with classes and inheritance.
The behavior of objects in the join calculus is statically defined: once an object
is created, it cannot be extended with new labels or with new reaction rules
synchronizing existing labels. Instead, we provide this flexibility at the level of
classes. Our operators on classes can express various object paradigms, such
as method overriding (with late binding) or method extension. As regards
concurrency, these operators are also suitable to define synchronization policies
in a modular manner.

3.1 Refining synchronization

We introduce the syntax for classes in a series of simple examples. We begin
with a class buffer defining the one-place buffer of Section 2.1:

class buffer = self(z )
get(r) & Some(n) . r .reply(n) & z .Empty()

or put(n,r) & Empty() . r .reply() & z .Some(n)

As regards the syntax, the prefix self(z ) explicitly binds the name z to self. The
class buffer can be used to create objects:

obj b = buffer init b.Empty()

Assume that, for debugging purposes, we want to log the buffer content on the
terminal. We first add an explicit log method:

class logged buffer = self(z )
buffer

or log() & Some(n) . out .print int(n) & z .Some(n)
or log() & Empty() . out .print string(”Empty”) & z .Empty()

The class above is a disjunction of an inherited class and of additional reaction
rules. The intended meaning of disjunction is that reaction rules are cumulated,
yielding competing behaviors for messages on labels that appear in several dis-
juncts. The order of the disjuncts does not matter. The programmer who writes
logged buffer must have some knowledge of the parent class buffer, namely the
use of private labels Some and Empty for representing the state.

Some other useful debugging information is the synchronous log of all mes-
sages that are consumed on put. This log can be produced by selecting the
patterns in which put occurs and adding a printing message to the correspond-
ing guarded processes:

class logged buffer bis =
match buffer with

put(n,r) ⇒ put(n,r) . out .print int(n)
end

The match construct can be understood by analogy with pattern matching à la
ML, applied to the reaction rules of the parent class. In this example, every
reaction rule from the parent buffer whose synchronization pattern contains the
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label put is replaced in the derived logged buffer bis by a rule with the same
synchronization pattern (since put appears on both sides of ⇒) and with the
original guarded process in parallel with the new printing message (the original
guarded process is left implicit in the match syntax). Every other parent rule is
kept unchanged. Hence, the class above behaves as the definition:

class logged buffer bis = self(z )
get(r) & Some(n) . r .reply(n) & z .Empty()

or put(n,r) & Empty() . r .reply() & z .Some(n) & out .print int(n)

Yet another kind of debugging information is a log of put attempts:

class logged buffer ter = self(z )
match buffer with

put(n,r) ⇒ Parent put(n,r) . 0
end

or put(n,r) . out .print int(n) & z .Parent put(n,r)

In this case, the match construct performs a renaming of put into Parent put
in every pattern of class buffer, without affecting their guarded processes. The
overall effect is similar to the overriding of the method put of buffer with a late-
binding semantics. Namely, should there be a message z.put(ũ) in a guarded
process of the parent class, then, at runtime, z.put(ũ) would reach the new
definition of put.

The examples above illustrate that the very idea of class refinement is less ab-
stract in a concurrent setting than in a sequential one. In the first logged buffer
example, logging the buffer state requires knowledge of how this state is encoded;
otherwise, some states might be forgotten or logging might lead the buffer into
deadlock. The other two examples expose another subtlety: in a sequential
language, the distinction between logging put attempts and put successes is
irrelevant. Thinking in terms of sequential object invocations, one may be un-
aware of the concurrent behavior of the object, and thus write logged buffer ter
instead of logged buffer bis.

3.2 Syntax

The language with classes extends the core calculus of Section 2; its grammar
is given in Figure 3. We refer to Sections 2.1, 3.1, and 4 for explanations
and examples. Classes are taken up to the associative-commutative laws for
disjunction. We use two additional sets of identifiers for class names c ∈ C and
for sets of labels L ∈ 2L. Such sets L are used to represent abstract classes that
declare the labels in L but do not necessarily define them.

Join patterns J generalize the syntactic category of patterns M given in Fig-
ure 1 with an or operator that represents alternative synchronization patterns.
Selection patterns K are either join patterns or the empty pattern 0. All pat-
terns are taken up to equivalence laws: & and or are associative-commutative,
& distributes over or, and 0 is the unit for &. Hence, every pattern K can be
written as an alternative of patterns ori∈I Mi. We sometimes use the notation
K1 & K2 for decomposing patterns M .

We always assume that processes meet the following well-formedness condi-
tions:
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Figure 3: Syntax for the objective join calculus

P ::= Processes
0 null process
x.M message sending
P1 & P2 parallel composition
obj x = C init P1 in P2 object definition
class c = C in P class definition

C ::= Classes
c class variable
L abstract class
J . P reaction rule
C1 or C2 disjunction
self(x)C self binding
match C with S end selective refinement

S ::= Refinement clauses
(K1 ⇒ K2 . P ) | S refinement sequence
∅ empty refinement

J ::= Join patterns
`(ũ) message
J1 & J2 synchronization
J1 or J2 alternative

K ::= Selection patterns
0 empty pattern
J join pattern

1. All conjuncts Mi in the normal form of K are linear (as defined in Sec-
tion 2.2) and binds the same names (i.e. have the same set of free names, as
defined in Figure 4). By extension, we say that K binds the names fn(Mi)
bound in each Mi, and write fn(K) for these names.

2. In a refinement clause K1 ⇒ K2 . P , the pattern K1 is either M or 0,
the pattern K2 binds at least the names of K1 (fn(K1) ⊆ fn(K2)), and K1

is empty whenever K2 is empty (so as to avoid the generation of empty
patterns).

Binders for object names include object definitions (binding the defined ob-
ject) and patterns (binding the received names). In a reaction rule J . P , the
join pattern J binds fn(J) with scope P . In a refinement clause K1 ⇒ K2 . P ,
the selection pattern K1 binds fn(K1) with scope K2 and P ; the modification
pattern K2 binds fn(K2) \ fn(K1) with scope P . Finally, self(x)C binds the
object name x to the receiver (self) with scope C.

Class definitions class c = C in P are the only binders for class names c,
with scope P . The scoping rules appear in Figure 4; as usual, ] means disjoint
union. Processes, classes, and reaction rules are taken up to α-conversion.
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Figure 4: Free names fn(·) and declared labels dl(·)

In patterns M , join patterns J , and selection patterns K:
fn(0) = ∅

fn(`(ũ)) = ũ
fn(J & J ′) = fn(J) ∪ fn(J ′)
fn(J or J ′) = fn(J) (also = fn(J ′))

dl(0) = ∅
dl(`(ũ)) = {`}

dl(J & J ′) = dl(J) ] dl(J ′)
dl(J or J ′) = dl(J) ∪ dl(J ′)

In refinement clauses S:

fn(
∣∣i∈I(Ki ⇒ K ′

i . Pi)) =
⋃

i∈I fn(Pi) \ fn(K ′
i)

dl(
∣∣i∈I(Ki ⇒ K ′

i . Pi)) =
⋃

i∈I dl(K ′
i) \ dl(Ki)

In classes C:

fn(c) = {c}
fn(L) = ∅

fn(J . P ) = fn(P )\fn(J)
fn(C1 or C2) = fn(C1) ∪ fn(C2)
fn(self(z)C) = fn(C) \ {z}

fn(match C with S end) = fn(C) ∪ fn(S)

dl(c) = ∅
dl(L) = L

dl(J . P ) = dl(J)
dl(C1 or C2) = dl(C1) ∪ dl(C2)
dl(self(z)C) = dl(C)

dl(match C with S end) = dl(C) ∪ dl(S)

In processes P :
fn(0) = ∅

fn(x.M) = {x} ∪ fn(M)
fn(P & Q) = fn(P ) ∪ fn(Q)

fn(obj x = C init P in Q) = (fn(C) ∪ fn(P ) ∪ fn(Q)) \ {x}
fn(class c = C in P ) = fn(C) ∪ (fn(P ) \ {c})

In solutions:
fn(D) =

⋃
x.D∈D({x} ∪ fn(D))

fn(P) =
⋃

P∈P fn(P )
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Labels don’t have scopes. Labels declared in patterns and classes, written
dl(K) and dl(C), are specified in Figure 4. We say that a label is declared but
undefined when it is declared only in abstract classes.

3.3 Rewriting semantics of the class language

The semantics of classes is defined by reduction to the core calculus. The rules
are given in Figure 5. Rules Class-Subst and Class-Red describe class rewrit-
ings for processes. Rule Class-Red lifts an auxiliary reduction on classes x7−→ to
processes. This auxiliary reduction is parameterized by the name of the object
and replaces the (outermost) self names with the reduction parameter.

Rule Self removes inner bindings for the name of self. Rule Or-Pat lifts
or constructs from patterns to classes. The next two rules for classes sim-
plify abstract classes, rule Class-Abstract discards empty abstract classes;
rule Abstract-Cut discards abstract labels that are declared elsewhere. Rule
Match reduces selective refinements match C with S end by means of an auxil-
iary relations, described below. Rule Class-Context applies rewriting under
disjunctions and selective refinements.

The auxiliary reduction 7−→ computes filters of the form C with S. Every
reaction rule M . P in C is rewritten according to the leftmost clause of S that
matches M , that is, whose selection pattern K is a sub-pattern of M (rules
Filter-Next and Filter-Apply). If no clause of S matches M , then the
reaction rule is left unchanged (rule Filter-End). Abstract classes L in C are
also left unchanged (rule Filter-Abstract).

Note that rule Filter-Apply can be used only if the pattern K2 & K
introduced by rule Filter-Apply is well-formed, i.e., (1) K2 and K are not
both empty, (2) fn(K2)∩fn(K) = ∅, and (3) dl(K2)∩dl(K) = ∅. Condition (1) is
enforced by syntactic restriction 2 of Section 3.2. Condition (2) can be enforced
by α-conversion. Condition (3) will be checked by the type system.

The rewriting C with S 7−→ C ′ may erase every reaction rule defining a label
of C. Specifically, rule Filter-Apply removes the labels dl(K1) \ dl(K2). To
prevent those labels from being undeclared in C ′, rule Filter-Apply records
them as abstract labels. The type system of Section 6 will compute an approxi-
mation of abstract names to statically ensures that every erased label is actually
redefined before the class is instantiated.

Conversely, the rewriting C with S 7−→ C ′ may introduce labels in C ′ that
are undeclared in C. Specifically, rule Filter-Apply introduces the labels
dl(K2) \ dl(K1). The set dl(S) defined in Figure 4 statically collects all such
labels. However, some clauses of S may not be used, hence some label of dl(S)
may not be declared in C ′. This situation often corresponds to a programming
error. To prevent it, we supplement rule Match with the premise dl(S) ⊆ dl(C ′)
that blocks the rule, and we interpret this situation as a dynamic refinement
error.

Next, we summarize the outcome of class reduction for processes. One can
easily check that the rewriting semantics is deterministic and always terminates.
Using rule Class-Subst, any class construct can be eliminated, so we focus on
object creations:

Lemma 1 (Rewriting) Let P be a process of the form obj x = C init Q in Q′

such that rule Class-Red does not apply to P . One of the following holds:
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Figure 5: Rewriting semantics of the class language

Rules for processes ( 7−→)

Class-Subst

class c = C in P 7−→ P{C/c}

Class-Red

C
x7−→ C ′

obj x = C init P in P ′ 7−→ obj x = C ′ init P in P ′

Rules for classes ( x7−→)

Self

self(z)C
x7−→ C{x/z}

Or-Pat

J or J ′ . P
x7−→ J . P or J ′ . P

Class-Abstract

C or ∅ x7−→ C

Abstract-Cut
L′ = L \ dl(C) L 6= L′

C or L
x7−→ C or L′

Match
C with S 7−→ C ′ dl(S) ⊆ dl(C ′)

match C with S end
x7−→ C ′

Class-Context

C
x7−→ C ′

E[C] x7−→ E[C ′]

Evaluation contexts for classes

E[·] ::= [·] | match E[·] with S end | E[·] or C | C or E[·]

Rules for filters ( 7−→)

(Side conditions in the text)Filter-Apply

K1 & K . P with K1 ⇒ K2 . Q | S 7−→ K2 & K . P & Q or dl(K1) \ dl(K2)

Filter-Next
M . P with S 7−→ C ′ dl(K1) 6⊆ dl(M)

M . P with K1 ⇒ K2 . Q | S 7−→ C ′

Filter-End

C with ∅ 7−→ C

Filter-Or
C1 with S 7−→ C ′1 C2 with S 7−→ C ′2

(C1 or C2) with S 7−→ C ′1 or C ′2

Filter-Abstract

L with S 7−→ L
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Completion: C is a disjunction of reaction rules (C = orni=1 Mi . Pi).

Failure: For some evaluation context E, we have:

1. C = E[c] and c is free (undefined class).

2. C = E[L] and L is not under a match (undefined label).

Refinement error: C contains a blocked refinement in evaluation context:
C = E[match C ′ with S end], C ′ with S 7−→ C ′′, and dl(S) 6⊆ dl(C ′′).

The distinction between failures and refinement errors matters only in the typed
semantics, which prevents all failures but not necessarily refinement errors.

Like in Section 2, we call “definition” and write D instead of C for any class
of the form given in the Completion case.

3.4 Implementation issues

In order to compile disjunctions and selective refinements, one must access the
patterns of parent classes. This hinders the abstract compilation of patterns, but
does not otherwise preclude separate compilation. As in a functional setting, the
guarded processes attached to individual reaction rules can be immediately com-
piled into closures abstracted with respect to their free names, including formal
message parameters. This approach is compatible with the JoCaml implemen-
tation, which keeps a concrete representation of join patterns as vectors of bits;
the control of the synchronization of messages and the activation of guarded
processes is then realized by interpreting these bit vectors at runtime [16]. In
an implementation of the object calculus with classes, such vectors of bits would
serve as a basis of a data structure for representing classes at runtime.

In the core objective join calculus, patterns do not contain alternatives “or”.
To eliminate them, rule Or-Pat duplicates reaction rules whose patterns con-
tain alternatives. Alternatively, we could have supplemented the object calculus
with or-patterns, but we view this as an optimization issue. Perhaps more im-
portantly, the unsharing of reaction rules performed by rule Or-Pat does not
mean that guarded processes are duplicated by the compiler. Since guarded
processes are compiled as closures, duplicating P in the semantics means dupli-
cating an indirection to the closure that implements P .

4 Solving challenging examples

As remarked by many authors, the classical point of view on class abstraction—
method names and signatures are known, method bodies are abstract—does
not mix well with concurrency. More specifically, the signature of a parent class
does not usually convey any information on its synchronization behavior. As a
result, it is often awkward, or even impossible, to refine a concurrent behavior
using inheritance. (More conservatively, object-oriented languages with plain
concurrent extensions usually require that the synchronization properties be
invariant through inheritance, e.g., that all method calls be synchronized. This
strongly constrains the use of concurrency.) This well-known problem is often
referred to as the inheritance anomaly. Unfortunately, inheritance anomaly is
not defined formally, but by means of problematic examples.
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In [18] for instance, Matsuoka and Yonezawa identify three patterns of in-
heritance anomaly. For each pattern, they propose a refinement of the class lan-
guage that suffices to express the particular synchronization property at hand:
they identify the parts of the code that control synchronization in the parent
class (which are otherwise hidden in the body of the inherited methods); they
express this “concurrency control” in the interface of the class; and they rely on
the extended interface to refine synchronization in the definition of subclasses.

In principle, it should be possible to fix any particular anomaly by enriching
the class language in an ad hoc manner. However, the overall benefits of this
approach are unclear. Our approach is rather different: we start from a core cal-
culus of concurrency, rather than programming examples, and we are primarily
concerned with the semantics of our inheritance operators. Tackling the three
patterns of inheritance anomaly of [18], as we do in this section, appears to be
a valuable test of our design. Indeed, the issue of inheritance anomaly is out of
the scope of this paper. We refer to other studies, such as [20], for analyses of
this issue, which, however, concern different and untyped frameworks.

We consider the same running example as Matsuoka and Yonezawa: a FIFO
buffer with two methods put and get to store and retrieve items. We also
adopt their taxonomy of inheritance anomaly: inheritance induces desirable
modifications of “acceptable states” [of objects], and a solution is a way to
express these modifications.

In the following examples, we use a language extended with basic datatypes.
Booleans and integers are equipped with their usual operations. Arrays are
created by create(n), which gives an uninitialized array of size n. The size of
an array A is given by A.size. Finally, the array A[i ] ← v is obtained from A
by overwriting its i -th entry with value v.

The FIFO buffer of [18] can then be written as follows:

class buff = self (z )
put(v ,r) & (Empty(A, i , n) or Some(A, i , n)) .

r .reply() & z .Check(A[(i+n) mod A.size] ← v , i , n+1)
or get(r) & (Full(A, i , n) or Some(A, i , n)) .

r .reply(A[i ]) & z .Check(A, (i+1) mod A.size, n−1)
or Check(A,i ,n) .

if n = A.size then z .Full(A, i , n)
else if n = 0 then z .Empty(A, i , n)
else z .Some(A, i , n)

or Init(size) . z .Empty(create(size), 0, 0)

The state of the buffer is encoding a circular array represented by a message
with label Empty, Some, or Full. These labels carry three arguments. The first
one, A is the array; the second one, i is the index of the first element of the
buffer; the third one, n is the number of elements in the buffer. The buffer
may react to messages on put when non-full, and to messages on get when non-
empty; this is expressed in a concise manner using the or operator in patterns.
Once a request is accepted, the state of the buffer is recomputed by sending
an internal message on Check. Since Check appears alone in a join pattern,
message sending on Check acts like a function call.

Partitioning of acceptable states. The class buff2 supplements buff with
a new method get2 that atomically retrieves two items from the buffer. For
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simplicity, we assume size> 2.
Since get2 succeeds when the buffer contains two elements or more, the

buffer state needs to be refined. Furthermore, since for instance a successful
get2 may disable get or enable put, the addition of get2 has an impact on
the “acceptable states” of methods get and put, which are inherited from the
parent buff. Therefore, label Some is not detailed enough and is replaced with
two labels One and Many. One represents a state with exactly one item in the
buffer; Many represents a state with two items or more in the buffer.

class buff2 = self(z )
get2 (r) & (Full(A,i ,n) or Many(A, i , n)) .

r .reply(A[i ], A[(i+1) mod A.size])
& z .Check(A, (i+2) mod A.size, n−2)

or match buff with
Some(A, i , n) ⇒ (One(A, i , n) or Many(A, i , n)) . 0

end
or Some(A, i , n) .

if n > 1 then z .Many(A, i , n) else z .One(A, i , n)

In the program above, a new method get2 is defined, with its own synchroniza-
tion condition. The new reaction rule is cumulated with those of buff, using a
selective refinement that substitutes “One(. . .) or Many(. . .)” for every occur-
rence of “Some(. . .)” in a join pattern. The refinement eliminates Some from
any inherited pattern, but it does not affect occurrences of Some in inherited
guarded processes: the parent code is handled abstractly, so it cannot be modi-
fied. Instead, the new class provides an adapter rule that consumes any message
on Some and issues a message on either One or Many, depending on the value
of n.

History-dependent acceptable states. The class gget buff alters buff as
follows: the new method gget returns one item from the buffer (like get), except
that a request on gget can be served only immediately after serving a request
on put. More precisely, a put transition enables gget, while get and gget tran-
sitions disable it. This condition is reflected in the code by introducing two
labels AfterPut and NotAfterPut. Then, messages on gget are synchronized
with messages on AfterPut.

class gget buff = self (z )
gget(r) & AfterPut() & (Full(A, i , n) or Some(A, i , n)) .

r .reply(A[i ]) & z .NotAfterPut()
& z .Check(A, (i+1) mod A.size, n−1)

or match buff with
Init(size) ⇒ Init(size) . z .NotAfterPut()

| put(v , r) ⇒
put(v , r) & (AfterPut() or NotAfterPut()) . z .AfterPut()

| get(r) ⇒
get(r) & (AfterPut() or NotAfterPut()) . z .NotAfterPut()

end

The first clause in the match construct refines initialization, which now also is-
sues a message on NotAfterPut. The two other clauses refine the existing meth-

14



ods put and get, which now consume any message on AfterPut or NotAfterPut
and produce a message on AfterPut or NotAfterPut, respectively.

Modification of acceptable states. We first define a general-purpose lock
with the following locker class:

class locker = self (z )
suspend(r) & Free() . r .reply() & z .Locked()

or resume(r) & Locked() . r .reply() & z .Free()

This class can be used to create locks, but it can also be combined with some
other class such as buff to temporarily prevent message processing in buff. To
this end, a simple disjunction of buff and locker is not enough and some refine-
ment of the parent class buff is required:

class locked buff = self (z )
locker

or match buff with
Init(size) ⇒ Init(size) . z .Free()

| 0 ⇒ Free() . z .Free()
end

The first clause in the match construct supplements the initialization of buff
with an initial Free message for the lock. The second clause matches every
other rule of buff, and requires that the refined clause consume and produce a
message on Free. (The semantics of clause selection follows the textual priority
scheme of ML pattern-matching, where a clause applies to all reaction rules that
are not selected by previous clauses, and where the empty selection pattern acts
as a default case.)

As a consequence of these changes, parent rules are blocked between a call to
suspend and the next call to resume, and parent rules leave the state of the lock
unchanged. In contrast with previous examples, the code above is quite general;
it applies to any class following the same convention as buff for initialization.

Further anomalies Dealing with the examples above does not mean that we
solved the inheritance anomaly problem. Indeed, most limitations of expres-
siveness can be interpreted as inheritance anomalies. We conclude this section
with a more difficult example, for which we only have a partial solution. The
difficulty arises when we try to delegate privileged access to an object.

Consider a class with some mutable state, such as the one-place buffer of
Section 3.1:

class buffer = self(z )
get(r) & Some(n) . r .reply(n) & z .Empty()

or put(n,r) & Empty() . r .reply() & z .Some(n)

We want to supplement buffer with an incr method that increments the
buffer content. One might also require incr to be performed by using get and
put from another object server :

obj server =
do incr(x ,r) . obj s = reply(n) . x .put(n+1,r) in x .get(s)

15



Furthermore, we require that the call to put from inside do incr never block.
Thus, any other call to put should be blocked during the execution of do incr . To
enforce this partial exclusion, we introduce an Exclusive flag, we take two copies
of the parent class, and we specialize their definitions of put for external calls
(disallowed during an increment) and privileged calls (performed only from the
server). In the latter refinement clause, the conflicting method put is renamed
to Put priv , and a “proxy object” that forwards put calls to Put priv is passed
to the server.

class counter = self(z )
match buffer with

put(n,r) ⇒ put(n,r) & Exclusive() . z .Exclusive()
end

or match buffer with
put(n,r) ⇒ Put priv(n,r) . 0

end
or incr(r) & Exclusive() .

obj s = reply() . r .reply() & z .Exclusive() in
obj proxy = get(r) . z .get(r)

or put(n,r) . z .Put priv(n,r) in
server .do incr(proxy ,s)

or Init() . z .Empty() & z .Exclusive()

Our solution is not entirely satisfactory. In particular, the duplication of method
put forces further refinements of counter to treat the two methods put and
Put priv in a consistent manner. For instance, if we refine counter in order to
log successful puts, as we do in example logged buffer bis of Section 3.1, then
the puts from server are not logged.

We can improve this by keeping a single copy of put —the private one— and
make the public method pub synchronously forwarding its call to the private
version (synchrony is required to ensure that the Exclusive lock is only released
when the forwarded call to the private version of put has returned.)

class counter = self(z )
match buffer with

put(n,r) ⇒ Put priv(n,r) . 0
end

or put(n,r) & Exclusive() .
obj s = reply(x ) . r .reply(x ) & z .Exclusive() in
z .Put priv(n,s)

or incr(r) & Exclusive() .
obj s = reply() . r .reply() & z .Exclusive() in
obj proxy = get(r) . z .get(r)

or put(n,r) . z .Put priv(n,r) in
server .do incr(proxy ,s)

or Init() . z .Empty() & z .Exclusive()

The class can not be inherited as long as the clients operates on the private
version Put private instead of the public name put that is just used as an entry
point.
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A more elegant approach is to stick to views in the style of [27, 30]. A view
is a map from method names to method slots. Method slots are positions for
method implementations in a class, which are used for self-referencing other
methods of the same object. Overriding of a method amounts to change the
method implementation, thus affecting the other methods that reference the
overridden method slot. Overriding must preserve method slot types. There-
fore method slots cannot be hidden in classes, since otherwise, they could be
redefined with another incompatible type. On the contrary, a method name
can be safely erased from a view, leaving its slot unreachable (in that view). A
later redefinition of the same name will simply allocate a new unrelated slot. In
the traditional approach—the one that we followed—names and slots are in a
one-to-one correspondence. Hence, methods cannot be forgotten in classes (they
can only become abstract and will have to be redefined later before taking an
instance of the class). Views are a much more powerful mechanism, but they
require a significant complication of the type system.

5 Variations on the class language

Our language of classes favor expressiveness while retaining type soundness and
modularity. Thus, several other design choices, which could allow significant
simplifications or enforce stronger invariants, can be derived from our proposal
either by small variations or restrictions.

5.1 Object initialization

Usually, object initialization is defined at the class level, rather than at the
object level, which is hidden to users. Instead, in our proposal objects are visible
because they provide the basic semantics. Regarding the object initialization,
we enriched the object language as little as needed by splitting names into
private and public. Hereafter, we illustrate a more standard approach to object
initialization by means of straightforward translation of a higher-level language.
(Indeed, examples of Section 4 conform with this approach.)

In the user-language we replace class and obj declarations by the following
ones:

• Class definitions are written class c(x̃) = I C in P where

– the name c of the class takes a list of arguments (x̃);

– I is a list of inheritance clauses of the form (inherits ci(ũi) as di)i∈I

where each ci is a previsouly defined class and di a local name for
the body of ci.

– C is as before, except that it contains exactly one rule of the form
cinit(x̃) . Q. The names cinit are private and special in the sense that
they cannot occur (in the user-language) anywhere else. Indeed, cinit

play the role of class constructors.

– P is as before.

• Object definitions are written obj x = c(ũ) in P where c has been defined
as above.
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The translation of the above declarations are, respectively:

• class c(x̃) = match C with cinit(x̃) ⇒ cinit(x̃) &i∈I ci
init(ũi) end in P

• obj x = c init cinit(ũ) in P .

In this user language, the class is responsible for object initialization. Moreover,
by constructions, subclasses always invoke the initialization methods of its par-
ent classes. Indeed, other design choices are possible. For instance, this design
easily generalizes to allow multiple class constructors.

5.2 Restriction of selective refinements

The examples in Section 4 only use selective refinement in a restrictive and
simple form. In particular, refinement clauses K ⇒ K ′ . P always uses K with
0 or 1 message. Restricting to such cases simplifies rule Filter-Apply in the
rewriting semantics (Figure 5) and the static semantics of classes given below
in Section 10.

A different approach has been taken in Polyphonic C] [3]. This language
extends C] with reaction rules a la join calculus (called chords). As inheritance
is concerned, Polyphonic C] is quite severe with respect to join patterns: if a
method is overridden, then all join patterns concerning that method must be
overridden, and so on, transitively. This apporach is significantly different than
ours. In particular, while we allow overriding of as few methods as possible
during inheritance, they instead require overriding of too many methods. For
instance, in the common pattern where every method synchronizes with a global
object state, overriding any method would require overriding all of them.

6 Types and privacy

The static semantics of our calculus extends those of the core join calculus for
concurrency and synchronization [12] and of OCaml for the class-layer [26], re-
spectively. As regards polymorphism, the type system supports ML parametric
polymorphism and uses row variables to enable some form of subtyping [32, 26].
It also improves on [12], so as to match at least the implementation [15] and
avoid the limitation pointed out in [24]. As regards classes, we supplement the
typing of [26] in order to deal with the new operator of selective refinement and
to collect some synchronization information.

6.1 A semantics with privacy

In this section, we specify the dynamic errors that are detected by typing. For
instance, the type system detects message-not-understood errors: no message
can be sent to an object with a label that is undefined at that object. (Of course,
the type system does not ensure any processing of messages.) In addition, the
type system enforces object encapsulation; this is stated for a chemical semantics
extended with a notion of privacy.

We partition labels ` ∈ L into private labels f ∈ F and public labels m ∈M.
Informally, a message on a private label can only be sent internally, that is, from
within either a reaction rule or the init part of the object. Conversely, a message
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on a public label can be sent from any context that has access to the object
name. However, the origin of a message is a static notion, which is not preserved
in the original chemical semantics given in Section 2. For instance, rule Obj
in Figure 2, used to create new objects, immediately mixes its privileged init
process with all other running processes.

In order to express subject reduction and type safety with privacy, we thus
supplement our chemical semantics with privacy annotations at runtime. In the
state of the refined machine, every running process P and active definition D
is prefixed by a string of object names ψ that records the nesting of objects.
Precisely, the string y1 . . . ynx indicates that object x was created within the
definition (or the init process) of objects y1, . . . , yn and thereby can access their
private labels. The chemical state, or solution, is written D ° P. It consists
of a set D of prefixed definitions ψx#D and a multiset of prefixed processes
ψ #P . A solution is well-formed when all prefixes agree on object nesting, i.e.,
if ψx and ϕx appear in prefixes, then ψ = ϕ. As before, we also assume that
there is a single definition for every object in the solution. These properties are
preserved by chemical rewriting.

We use the rules of Figure 6, with the following side conditions: for Obj,
D is a definition, i.e., a class of the form orni=1 Mi . Pi; for Red, [M . P ]
abbreviates a definition that contains the rule M . P and σ is a substitution on
the names bound in M .

Except for the bookkeeping on static environments, rules Nil, Par, Join,
Obj, Red, Chemistry, and Chemistry-Obj are the same as in Section 2.
Note that Red consumes only messages with a prefix that matches the object
definition, and triggers a process in the same environment as the object defini-
tion. Since messages can be sent from other objects, an intermediate routing
step is called for. Such steps are modeled by rules Public-Comm and Private-
Comm that carry messages from their emitter to their receiver. This semantics
is a refinement of the previous semantics. (Formally, every reduction in this
semantics can be mapped into zero or one reduction in the previous semantics
after removing all prefixes.)

Our privacy policy states that a message sent from object y to object x on
a private label is valid as long as y has been created by a process of x (cf.
rule Private-Comm). We take the presence of non-routable messages as our
definition of a privacy error. We also give a formal definitions for other errors,
which do not depend on privacy information.

Definition 1 A solution D ° P fails when one of the following holds:

Free variables: the solution contains a free class variable, or a free object
name that is not defined in D.

Runtime Failure: for some ψ #x.`(ũ) ∈ P and ψ′x#D ∈ D, we have

1. Failed privacy: ` ∈ F and ψ′ is not a prefix of ψ.

2. Undeclared label: ` 6∈ dl(D).

3. Arity mismatch: `(ỹ) appears in a pattern of D with different arities
for ỹ and ũ.

Class rewriting failure: for some ψ #P ∈ P, the process P is a failure, as
defined in Lemma 1 of Section 3.3.
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Figure 6: Chemical semantics with privacy

Par

° ψ # (P & Q) ≡ ° ψ #P , ψ #Q
Nil

° ψ #0 ≡ °

Join

° ψ #x.(M & M ′) ≡ ° ψ #x.M , ψ #x.M ′

Obj

° ψ #obj x = D init P in Q ≡ ψx#D ° ψx#P , ψ #Q

Public-Comm

ψx#D ° ψ′ #x.m(ũ) −→ ψx#D ° ψx#x.m(ũ)

Private-Comm

ψx#D ° ψxψ′ #x.f(ũ) −→ ψx#D ° ψx#x.f(ũ)

Red

ψx# [M . P ] ° ψx#x.(Mσ) −→ ψx# [M . P ] ° ψx# (Pσ)

Chemistry
D0 ° P1 ≡−→ D0 ° P2

D ,D0 ° P1 , P ≡−→ D ,D0 ° P2 , P

Chemistry-Obj
° P ≡ ψx#D ° P ′ x 6∈ fn(D) ∪ fn(P)

D ° P , P ≡ D , ψx#D ° P ′ , P

6.2 Type expressions

The grammar for type expressions is given in Figure 7. We build types out of
a countable set of type variables, ranged over by θ and a countable set of row
variables, ranged over by %. In the sequel, we write α for variables, regardless
of their kinds, and γ for either object types τ or row types ρ. We write X and
Y for sets of type variables. We also abbreviate type schemes ∀∅.τ as τ .

Object types [ρ] collect the types of public labels. For instance the type of
the object continuation from Section 2.1 is [reply : (int)]. Object types may
end with a row variable (open object types), as in OCaml [26]. For instance,
consider a simple rendez-vous object join, with an internal counter:

obj join = sync1 (r1 ) & sync2 (r2 ) & Count(x ) .
r1 .reply() & r2 .reply() & join.Count(x+1)

The type of the object join is [sync1 : ([reply : (); %]); sync2 : ([reply : (); %′])],
telling that the sync labels accept messages composed of any object with a reply
label which in turn accepts empty messages. We assumed that the label Count
is private, hence it does not appear in the type of join.

Internal types B are used to describe both public and private labels. Such
internal types appear in class types (see below). They are also used to describe
the internal type of self while typechecking class bodies where sending messages
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Figure 7: Syntax for type expressions

τ ::= θ | [ρ] Object types
ρ ::= ∅ | % | m : τ̃ ; ρ Row types
σ ::= ∀X.τ Type schemes

α ::= θ | % Variables
τ̃ ::= (τi

i∈I) Tuple types
B ::= ∅ | ` : τ̃ ; B Internal types

on private names is allowed (Section 6.4). We observe that B is a partial function
from labels to tuple types; therefore we will address types of labels by function
application.

We use the following standard notations. The operator ` : ; associates to
the left. We often skip the trailing ∅, i.e. we abbreviate `1 : τ̃1; . . . `n : τ̃n; ∅ by
`1 : τ̃1; . . . `n : τ̃n and we abstract away from the order of labels `1,. . . `n. For
a given set of labels L, we write B |̀ L for the restriction of B to the labels of L.
We also write B1 ⊕B2 for the union of B1 and B2, with the statement that B1

and B2 coincide on their common labels, and state B1 ⊆ B2 when there is B′
1

such that B1 ⊕B′
1 = B2. We write dom(B) for the set of labels listed in B.

Class types have the form ∀X.ζ(ρ)BW,V . The set X collects all object type
variables and row type variables appearing in ρ or B that are polymorphic. The
row type ρ collects all the constraints on the type [ρ] of self, i.e. an object of the
class being defined. (These constraints originate from recursive calls, and also
from passing self as a parameter in messages.) The internal type B lists the types
for all public and private labels declared in the class. The consistency between ρ
and B is checked only when objects are created. The set W collects the coupled
labels of the class, as explained below. The set V ⊆ dom(B) contains labels
that are declared but undefined; we call these labels “virtual labels”; classes
with virtual labels cannot be instantiated.

Given the sophistication of class types, we delay the presentation of a com-
plete example until section 6.7. However, if the previous definition of the join
object is lifted into a class definition, then the B component of its type is
sync1 : ([reply : (); %]); sync2 : ([reply : (); %′]); Count : (int), there are no vir-
tual nor coupled labels, and both variables % and %′ can be made polymorphic.
Moreover, the internal type for the objet join should also contain Count : (int).

6.3 Polymorphism and inheritance

We now discuss the interaction between synchronization, inheritance, and poly-
morphism, in order to define the generalization conditions for type variables.
(The reader not interested in polymorphism may skip these definitions and
their usage in the type system.)

In contrast with functional method types, the types of messages sent on
labels appearing in the same pattern must agree on the instantiation of any
shared type variables. Consider, for instance, the sbuffer of Section 2.1:

obj sbuffer = get(r) & put(n,s) . r .reply(n) & s.reply()
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The types of get and put are ([reply : (θ); %]) and (θ, [reply : (); %′]), respectively.
In order to retain type consistency for messages on r .reply , the two occurrences
of θ in get and put must be instantiated to the same type. Hence, variable θ
cannot be generalized. Conversely, type variables % and %′ appearing in the type
of a single method can be generalized; this is the main source of polymorphism
in the objective join calculus2.

We introduce auxiliary definitions to capture the sharing of messages and
type variables in patterns. Let K be a pattern. The pattern K̂ is obtained from
K by erasing every message that carries an empty tuple. The set of coupled
labels of K, written cl(K), collects the labels whose contents are effectively
synchronized in K: we let cl(M) = dl(M̂) when the pattern M̂ contains at least
two messages, and cl(M) = ∅ otherwise. For more complex patterns of the form
K = ori∈I Mi, we let cl(K) =

⋃
i∈I cl(Mi).

Similarly for types, B̂ is obtained from B by removing every label with an
empty tuple type. We write ftv( ) for the the set of free type variables occurring
in a type, a tuple type, a type scheme, or a typing environment (defined in
Section 6.4). We let ctv(B) be the subset of type variables in ftv(B) that occur
in at least two labeled entries of B:

ctv(B) =
⋃

` 6=`′
ftv(B(`)) ∩ ftv(B(`′))

Assuming that B gathers the types for all messages that can be sent to an
object, the set ctv(B) contains any variable that cannot be generalized because
of synchronization, independently of the patterns for that object. When the
synchronization patterns are known, however, one can usually compute a smaller
set of such variables.

Since objects and classes can refine other classes, we compute a safe approx-
imation of non-generalizable variables in contexts where the patterns for the
objects are still unsettled. To this end, the type of each class carries a set W
of coupled labels, such that cl(J) ⊆ W for all patterns J that may appear in
an object of a class of that type. Eventually, the typing rule for object defini-
tion will generalize all type variables except those that appear in ctv(B |̀ W ),
where B gathers the types for all messages of the object and W collects all
potentially-coupled labels.3

The main issue is to compute the coupled labels for a refined class, of the
form match C with S end. Instead of the patterns for C, we only know B and W
from its class type. Since the refinement may leave unchanged some rules of C,
the refined class retains at least the coupled labels of W . In addition, for every
filter K ⇒ K ′ . P of S, some labels may become coupled as the filter matches a
pattern K & K ′′ in C (for some K ′′) and produces a rule with pattern K ′ & K ′′.
By definition of cl( ), the new coupled labels are:

cl(K ′ & K ′′) = cl(K ′) ∪ cl(K ′′) ∪
{
∅ when K̂ ′ = 0 or K̂ ′′ = 0

dl(K̂ ′) ∪ dl(K̂ ′′) otherwise

2In Ocaml, objects are kept monomorphic for simplicity, and polymorphic functions are
usually defined outside of objects.

3We could use more general approximations, e.g., we could discard labels whose types have
no free variable as we compute bK from K. However, such generalizations complicate type
inference, which becomes sensitive to the ordering of type variable instantiations.
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The three subsets correspond to the labels that appear in distinct pairs in K̂ ′×
K̂ ′, K̂ ′′ × K̂ ′′ (with cl(K̂ ′′) ⊆ W ), and K̂ ′ × K̂ ′′, respectively. We define a safe
approximation of the union of cl(K ′ & K ′′) for all well-typed K & K ′′, written
cls(BW ,K ⇒ K ′). The definition is by cases:

1. If K̂ ′ = 0, we use cls(BW ,K ⇒ K ′) = W .
(In this case, no new message with arguments is introduced.)

2. If dl(K) ∩W = ∅ and K̂ 6= 0, we use cls(BW ,K ⇒ K ′) = cl(K ′).
(In this case, K̂ is a single message and K̂ ′′ is empty.)

3. If dl(K) ∩W 6= ∅, we use cls(BW ,K ⇒ K ′) = dl(K̂ ′) ∪W .
(In this case, all labels in K̂ ′′ already appear in W .)

4. Otherwise (K̂ = 0 and K̂ ′ 6= 0), we use cls(BW ,K ⇒ K ′) = dl(K̂ ′) ∪
dom(B̂).

Note that cls(BW ,K ⇒ K ′) only depends on the domain of B and not on its
type assignment.

For example, consider the selective refinement of the class locked buff of
Section 4. Informally, we may assume that the type of buff is of the form BW

where dom(B) = dom(B̂) = {put, get, Empty, Some, Full, Check, Init} and
W = {put, get, Empty, Some, Full} (every label of W synchronizes with at least
another one). The refinement involves the two rewriting clauses Init(size) ⇒
Init(size) . z.Free() and 0 ⇒ Free() . z.Free(). By item 2 of the definition of
cls, we get cls(BW , Init(size) ⇒ Init(size)) = cl(Init(size)) = ∅, which means
that this refinement will not introduce any new synchronization. By item 1
of the definition of cls, since F̂ree() is 0, we obtain cls(BW , 0 ⇒ Free()) = W
(label Free may synchronize with other labels but it cannot exchange values with
them). These two independent results may be combined together by taking their
union to get an approximation of the type of the whole refinement.

6.4 Type checking processes and classes

The typing judgments are described in Figure 8. They rely on type environments
A that bind class names c to class type schemes and bind object names x to
(external) type schemes σ or to (internal) type schemes ∀X.B with dom(B) ⊆ F .
In a given environment A, an object x can have two complementary bindings
x : ∀X.[ρ] and x : ∀X.B. The binding x : ∀X.[ρ] represents the typing of public
labels, x : ∀X.B is the binding of private labels.

Since X is a set of type and row variables, we write {γα/αα∈X} for replacing
variables in X with object and row types, correspondingly.

We write dom(A) for the set of names bound in A. We let A + A′ be
(A \ dom(A′)) ∪ A′, where A \X removes from A all the bindings of names in
X and let A + x : ∀X.[ρ], x : ∀X.B be A \ {x} ∪ x : ∀X.[ρ] ∪ x : ∀X.B.

The typing rules appear in figures 9 and 10. Generalization in objects and
classes relies on a standard auxiliary definition: Gen (ρ,B, A) is the set of free
type variables of ρ or B that are not free in A.
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Figure 8: Typing judgments

A ` x : τ the object x has type τ in environment A;
A ` x.` : τ̃ the label ` conveys messages of type τ̃ for object x in

environment A;
A ` P the process P is well-typed in environment A;
A ` K :: B the pattern or selection pattern K binds variables

well-typed in A and joins labels in B.
A ` C :: ζ(ρ)BW,V the class C is well-typed in environment A, declares

the labels of B, has coupled labels in W , and has vir-
tual labels V (with V ⊆ dom(B) and W ⊆ dom(B̂)).

A ` S :: BW ⇒ B′W ′,V

the refinement clauses S are well-typed in environ-
ment A, refine patterns with labels in B and cou-
pled labels W into patterns with labels in B′, cou-
pled labels in W ′, and virtual labels V (with W ′ ⊆
dom(B̂) ∪ dom(B̂′) and V ⊆ dom(B)).

Processes. In rule Class, all type variables can be generalized, regardless of
synchronization. This is safe because classes are templates for object definitions:
the set W in the class type of c is used to restrict polymorphism, but only at
object instantiation.

In rule Object, the class C is first typechecked and yields a class type
ζ(ρ)BW,∅. The shape of this type excludes virtual labels, thus preventing the
instantiation of a partially-defined object. The object type is the restriction of
labels declared in B to public ones. The constraint ρ = B |̀ M checks, for each
public label m of B, that the type given to m in B and in ρ are the same. The
process Q is typed in an environment extended with the object x bound to a
generalized [ρ]. The process P is typed as Q, except that P can also use the
private labels of x.

Patterns. Typing rules for join patterns check that the patterns are well-
formed, collect their typed labels, and check that the environment agrees with
received objects.

Classes. Rule Reaction checks that join patterns and guarded processes
agree on the typing environment extended with the received variables. Rule
Self-Binding folds two bindings for self, accounting for public and private
bindings, respectively. Rules Disjunction and Refinement merge virtual-
label informations, as a disjunct or a parent class may effectively define a virtual
label.

Rule Refinement types match C with S end, out of typings of C and S.
It uses the auxiliary judgment for selection clauses A ` S :: BW1

1 ⇒ BW2,V2
2 ;

This premise will ensure that labels in the selection patterns are all defined in
B1, hence declared in C. On the contrary, the premise dl(S) ∩ dom(B1) = ∅
implies that names in dl(S) are not already declared in C. In particular, this
ensures that the pattern of every refined reaction rule is linear (condition (2) in
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Figure 9: Typing rules for names, messages, and processes

Rules for names and messages

Object-Var
x : ∀X.τ ∈ A

A ` x : τ{γα/α
α∈X}

Message
A ` x : [m : τ̃ ; ρ]

A ` x.m : τ̃

Private-Message
x : ∀X.(f : τ̃ ; B) ∈ A

A ` x.f : τ̃{γα/α
α∈X}

Rules for processes

Null

A ` 0

Send
A ` x.` : (τi

i∈I) (A ` xi : τi)i∈I

A ` x.`(xi
i∈I)

Join-Parallel
A ` x.M1 A ` x.M2

A ` x.(M1 & M2)

Parallel
A ` P A ` Q

A ` P & Q

Class
A ` C :: ζ(ρ)BW,V

A + c : ∀Gen (ρ,B, A).ζ(ρ)BW,V ` P

A ` class c = C in P

Object

A ` self(x)C :: ζ(ρ)BW,∅

A + x : ∀X.[ρ], x : ∀X.(B |̀ F) ` P
A + x : ∀X.[ρ] ` Q

ρ = B |̀ M
X = Gen (ρ,B,A) \ ctv(B |̀ W )

A ` obj x = C init P in Q

Section 3.3).

Refinement clauses. Refinement clauses are typed much like reaction rules
and class disjuncts. Rule Modifier types a series of selection clauses and builds
a superset of the coupled labels after the refinement, as detailed in Section 6.3.
Rule Modifier also checks that labels in the pattern K ′

i agree with those Ki

of the parent class; the set of virtual labels accounts for labels potentially elim-
inated by the clause.

6.5 Type checking solutions

We finally extend typing from programs to chemical solutions. The typing
judgment ` (D ° P) states that the chemical solution D ° P is well-typed.
The auxiliary judgments A ` D :: A′ deals with active object definitions. The
typing rules appear in Figure 11.

Rule Chemical-Solution uses an additional notation Aψ. Let N be a set
of object names and A be a typing environment of the form

A =
⋃

x∈N

(x : σx) ∪
⋃

x∈N

(x : ∀Yx.Bx)
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Figure 10: Typing rules for patterns, classes, and refinement clauses

Rules for patterns

Empty-Pattern

A ` 0 :: ∅
Message-Pattern

(xi : τi ∈ A)i∈I

A ` `(xi
i∈I) :: (` : τi

i∈I)

Synchronization
A ` J1 :: B1 A ` J2 :: B2

A ` J1 & J2 :: B1 ⊕B2

Alternative
A ` J1 :: B1 A ` J2 :: B2

A ` J1 or J2 :: B1 ⊕B2

Rules for classes

Sub
A ` c :: ζ(ρ)BW,V

A ` c :: ζ(ρ)BW∪W ′,V ∪V ′

Class-Var
c : ∀X.ζ(ρ)BW,V ∈ A

A ` c :: (ζ(ρ)BW,V ){γα/α
α∈X}

Reaction
A′ ` J :: B A + A′ ` P dom(A′) = fn(J)

A ` J . P :: ζ(ρ)Bcl(J),∅

Self-Binding
A + x : [ρ], x : (B |̀ F) ` C :: ζ(ρ)BW,V

A ` self(x)C :: ζ(ρ)BW,V

Abstract
dom(B) = L

A ` L :: ζ(ρ)B∅,L

Disjunction

A ` C1 :: ζ(ρ)BW1,V1
1 V ′

1 = V1 \ (dom(B2) \ V2)
A ` C2 :: ζ(ρ)BW2,V2

2 V ′
2 = V2 \ (dom(B1) \ V1)

A ` C1 or C2 :: ζ(ρ)(B1 ⊕B2)W1∪W2,V ′1∪V ′2

Refinement

A ` C :: ζ(ρ)BW1,V1
1

A ` S :: BW1
1 ⇒ BW2,V2

2 dl(S) ∩ dom(B1) = ∅
A ` match C with S end :: ζ(ρ)(B1 ⊕B2)W1∪W2,V1∪V2

Rules for refinement clauses

Modifier-Clause
A′ ` K :: B′′

A′ ` K ′ :: B′

A + A′ ` P

B′′ ⊆ B
dom(A′) = fn(K ′)
W ′ = cls(BW ,K ⇒ K ′)

A ` K ⇒ K ′ . P :: BW ⇒ B′ W ′,dl(K)\dl(K′)

Modifier

(A ` Si :: BW ⇒ BWi,Vi

i )i∈I

A ` ∣∣i∈ISi :: BW ⇒ (⊕i∈IB′
i)
S

i∈I Wi,
S

i∈I Vi
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Figure 11: Typing rules for solutions

Chemical-Solution
A = ∪ψx#D∈D Ax

(Aψ ` D :: Ax)ψx#D∈D

(Aψ ` P )ψ#P ∈P

` D ° P

Definition
ρ = B |̀ M
X = Gen (ρ,B, A) \ ctv(B |̀ W )
A ` self(x)D :: ζ(ρ)BW,∅

A ` D :: x : ∀X.[ρ], x : ∀X.(B |̀ F)

For any string ψ of names in N , we define the restricted environment:

Aψ =
⋃

x∈N

(x : σx) ∪
⋃

x∈ψ

(x : ∀Yx.Bx)

Namely, Aψ removes from the environment A the private labels of objects which
did not create x. Actually, x cannot access these labels.

Rules Chemical-Solution and Definition are similar to rule Object.
The main difference is that, in A ` D :: A′, the typing environment A′ is
polymorphic. This allows polymorphic type-checking for solutions.

6.6 Subject reduction with privacy

We are now ready to state our main results on types for the chemical semantics
and the class rewriting, respectively. Additional lemmas and the proofs appear
in Appendix B.

Theorem 1 (Subject reduction)

1. Chemical reductions preserve chemical typings:
if ` D ° P and D ° P ≡ D′ ° P ′ or D ° P −→ D′ ° P ′, then ` D′ ° P ′.

2. Class rewriting preserve typings: if A ` P and P 7−→ P ′ then A ` P ′.

In combination, any interleaving of chemical reductions and class rewritings
preserves chemical typing. Precisely, we can lift class rewriting steps from pro-
cesses to chemical solutions (D ° P,P 7−→ D ° P ′,P ′ when P 7−→ P ′) and
we have that, if D ° P is well-typed and D ° P ( ≡−→ ∪ 7−→)∗ D′ ° P ′, then
D′ ° P ′ is also well-typed.

The next theorem guarantees that chemical typing prevents any runtime
failure and class rewriting failure, as detailed in Definition 1 (Section 6.1):

Theorem 2 (Safety) Well-typed chemical solutions do not fail.

While we do not address type inference in this paper, our type system has
been carefully designed to allow type inference. We conjecture that, given a
typing environment A and a process P (or a class C), it is decidable whether P
(or C) is typable in A; moreover, we conjecture that if C is typable then it has
a principal type.
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6.7 Example of typing

We infer a type for the class buffer of Section 3.1:

class buffer = self(z )
get(r) & Some(a) . r .reply(a) & z .Empty()

or put(a,r) & Empty() . r .reply() & z .Some(a)

The body of this class definition is of the form self(z) (J1 . P1 or J2 . P2).
First, consider the typing of pattern J1. By rules Message-Pattern and
Synchronization we have:

A1 ` get(r) & Some(a) :: B1 (1)

where the type environment A1 and internal type B1 are A1 = r : θ1, a : θ2 and
B1 = get : (θ1);Some : (θ2), reflecting the presence of labels and their arities.

However, pattern J1 is not typed in isolation but as the pattern of a reaction
rule whose guarded process P1 includes r.reply(a). Rule Reaction requires
that P1 be typed in an environment that subsumes A1. Moreover, r.reply(a)
connects the types for r and a (rule Send). Thus, we get: θ1 = [reply : (θ); %]
(reflecting that r is an object with at least a reply label) and θ2 = θ. Then, the
type variable θ is free in the types of both Some and get which are joined in
the same pattern J1. Skipping some details, rule Reaction yields the following
typing of J1 . P1:

A ` J1 . P1 :: ζ(ρ)B1
{get,Some},∅ (2)

where ρ is the public type for self, A is described below, and B1 is get : ([reply :
(θ); %]);Some : (θ). Similarly, the second reaction rule is typed as:

A ` J2 . P2 :: ζ(ρ)B2
∅, ∅ (3)

where B2 = put : (θ′, [reply : (); %′]);Empty : (). Note that the set of coupled
labels is empty, since pattern J2 contains only one label of non-zero arity.

Environment A must be the same in both (2) and (3) because these two
judgments are premises of a Disjunction rule:

A ` J1 . P1 or J2 . P2 :: ζ(ρ)B{get,Some}, ∅ (4)

The internal type B is B1⊕B2. Here, this amounts to B1∪B2 since patterns J1

and J2 have no label in common. (In the general case where a label is declared in
several patterns, the “⊕” operator enforces a compatibility check on label types.)
Hence B = get : ([reply : (θ); %]);Some : (θ); put : (θ′, [reply : (); %′]);Empty : ().

Rule Self-Binding implies that environment A contains two bindings for
the self name z, namely, z : [ρ] and z : Bρ. The internal type of z, Bρ is the
restriction of B to private labels, i.e. we get Bρ = Some : (θ);Empty : ().

We can now detail the typing for P2 (which is an hypothesis for (3)). Listing
only pertinent parts of the typing environment A + A2, we have:

. . . a : θ′, z : (Some : (θ), . . .) ` P2 (5)

Now, observe that P2 includes the message z.Some(a), which requires the types
for a and for any message on Some to be equal. Thus, θ = θ′. Hence, the type
for class variable buffer finally is:

∀{%, %′, θ}.ζ(ρ)B{get,Some}, ∅ (6)
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where B is as before (after equating θ and θ′). That is: B = get : ([reply :
(θ); %]);Some : (θ); put : (θ, [reply : (); %′]);Empty : ().

Observe that, according to Class, all the type variables (%, %′ and θ) are
generalized. As a consequence the type for class buffer is as polymorphic as it
can be. Also observe that the public type ρ is yet unconstrained.

Nevertheless, polymorphism will be restricted and ρ will be made precise
while creating objects from class buffer (rule Object).

7 Related and future works

The design and implementation of concurrent object-oriented languages, e.g.
[2, 33, 1, 6], has recently prompted the investigation of the theoretical foun-
dations of concurrent objects. Several works provide encodings of objects in
process calculi [31, 28, 14, 8, 19] or, conversely, supplement objects with con-
current primitives [23, 4, 13, 29]. These works promote a unified framework
for reasoning about objects and processes, but they do not address the incre-
mental definition of concurrent objects or its typechecking. (When considered,
inheritance is treated as in a sequential language and does not deal with syn-
chronization.) In particular, the TyCO language, developed by Vasconcelos and
his collegues, relies on a core calculus which is very close to the objective join
calculus in Section 2, with few differences due to name definitions. However
the two languages differ when classes are considered. In particular, TyCO [29]
only allows simple forms of inheritance, namely extensions of classes with new
methods, and updates of old methods with new ones. No mechanism is provided
to access methods in the super class and, therefore, to reuse their bodies. As re-
gards the type system, both the languages stick to a predicative polymorphism
discipline. However, in our calculus, polymorphism originates from class and
obj operations and regards objects and classes as a whole; in TyCO polymor-
phism originates from a different operator—the let—which allows to define one
(polymorphic) function at a time, and regards single methods.

The addition of classes to the join calculus enables a modular definition of
synchronization. Different receivers for the same labels can thus be introduced
at different syntactic positions in a program. In that respect, we partially recover
the ability of the pi calculus to dynamically introduce receivers on channels [21].
However, our layered design confines this modularity to classes, which are re-
solved at compile time. From a programming-language viewpoint, this strikes
a good balance between flexibility and simplicity, and does not preclude type
inference or the efficient compilation of synchronization [16].

Odersky independently proposed an object-oriented extension of the join
calculus [24, 25]. As in Section 2, they use join patterns to define objects and
synchronization between labeled messages. The main difference lies in the en-
capsulation of methods within objects. In our proposal, a definition binds a
single object, with all the labels appearing in the definition, and we rely on
types to hide some of those labels as private. In their proposal, a definition
may bind any number of objects, and each object explicitly collects some of
the declared labels as its methods. As a result, a label that is not collected
remains syntactically private. Besides, their synchronization patterns can ex-
press matching on the values carried in messages (strings, integers, lists, trees,
etc.) rather than matching on just the message labels. For instance, a rule
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`(h :: t) . P reacts provided ` carries a non-empty list. Those design decisions
may lead to different implementation strategies. However, they do not deeply
affect typing.

As regards polymorphism, our generalization rule Object corresponds to
the one currently implemented in JoCaml [15]. It is more expressive than the
generalization rule initially proposed in [12] and seems equivalent to the gen-
eralization rule of [7]. In [12], non-generalizable type variables were computed
altogether for all clauses of a definition, which may be too conservative. In
both [15] and [7], non-generalizable type variables are computed one rule at a
time, which is more precise. This latter approach is natural in our setting, since
recursion is left open till object instantiation. In ML, this amounts to typing
let rec x1 = a1 and x2 = a2 in a as let x = fix (λ(x1, x2).(a1, a2)) in a. The lat-
ter term separates type-checking the body of the recursion from type-checking
recursion itself.

Our language supports multiple inheritance of classes, but not mixin inheri-
tance [5], which amounts to parameterize classes by other classes. As in OCaml,
we can only combine existing classes, but obtain mixin inheritance indirectly
through modules and functors.

In sequential languages, deep method renaming, i.e. rewriting of recursive
calls or method hiding, can be expressed using dictionaries [27] or views [30]. In
concurrent languages, views offer additional benefits. For example, one can du-
plicate the synchronization patterns of a superclass by inheriting several copies
of the class, independently refine their synchronization, and use different views
to access the copies. For instance, one could distinguish internal and external
views in the last example of Section 4. The integration of views in the objective
join calculus deserves further investigation.

Since classes are just object templates, our typing system allows polymor-
phic variables in class types, and defer any monomorphic restriction till object
instantiation. For type safety, one must check that, in every join pattern of
an object, any variable occurring in the type of several labels is monomorphic.
To this aim, our class types collect a superset W of these coupled labels, but
other approaches are possible. A plain solution is to assume that all labels are
coupled. Then, class types don’t convey any synchronization information, and
generalization is as in [12]. Conversely, the class types could detail the labels of
each join pattern. This would allow us to detect refinement errors at compile
time. However, the resulting types would be very precise, and we would also
need some form of subtyping to get rid of excessive information. This is another
promising direction for research.

8 Conclusion

We have designed a simple, object-based variant of the join calculus. Every
object is defined as a fixed set of reaction rules that describe its synchronization
behavior. The expressiveness of the language is significantly increased by adding
classes—a form of open definitions that can be incrementally assembled before
object instantiation. In particular, our operators for inheritance can express
transformations on the parent class, according to its synchronization patterns.
We motivated our design choices using standard, problematic examples that
mix inheritance and synchronization. We gave operational semantics for objects
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and classes, and a type system that prevents standard errors and also enforces
privacy.

Acknowledgments. This work benefited from fruitful discussions with Syl-
vain Conchon, Fabrice Le Fessant, and François Pottier.
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A Cross-encodings to the join calculus

In the join calculus of [10], each definition binds one or several channel names
that can be passed independently whereas, in the objective join calculus of
Section 2, each definitions binds a single object. This difference is not very
deep; we briefly present cross-encodings between these two variants. We recall
a syntax for the join calculus:

P ::= 0 | x(ũ) | P & P | def D in P

D ::= M . P | D or D

M ::= x(ũ) | M & M

Join calculus processes can be encoded by introducing single-label forwarder
objects and passing those object names instead of channel names. (The encoding
given below works for non-recursive definitions in the join calculus; recursive
definitions can easily be eliminated beforehand [9].)

[[0]] = 0
[[x(ũ)]] = x.send(ũ)

[[P1 & P2]] = [[P1]] & [[P2]]
[[def D in P ]] = obj o = [[D]] in

obj x1 = send(ũ1) . o.m1(ũ1) in . . .
obj xn = send(ũn) . o.mn(ũn) in [[P ]]

where we assume that D defines the channel names x1, . . . , xn. Accordingly,
we encode channel reaction rules and patterns as follows:

[[D1 or D2]] = [[D1]] or [[D2]] [[M1 & M2]]
−

= [[M1]]
−

& [[M2]]
−

[[M . P ]] = [[M ]]
−

. [[P ]] [[x(ũ)]]
−

= mx(ũ)

Conversely, one can encode objective join processes into a join calculus en-
riched with records. Join calculus values then consist of both names and records,
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written {`i = xi}i∈I ; we use # for record projection. The encoding substitutes
explicit records of channels for defined objects.

[[0]] = 0
[[x.`(ũ)]] = x#`(ũ)

[[P1 & P2]] = [[P1]] & [[P2]]
[[obj x = D init P1 in P2]] = (def [[D]]x in [[P1 & P2]]){{` = x`, ` ∈ dl(D)}/x}

[[D1 or D2]]x = [[D1]]x or [[D2]]x [[M1 & M2]]x = [[M1]]x & [[M2]]x
[[M . P ]]x = [[M ]]x . [[P ]] [[`(ũ)]]x = x`(ũ)

The encoding above treats all methods as public; it can be refined to preserve
the scope of private labels using two records of channels instead of a single one.

B Proofs for typing

B.1 Basic properties

In the following lemmas, we let ∆ range over any right hand side of a judgment,
except for the chemical judgment.

Lemma 2 (Useless variable) For any judgment of the form A ` ∆, and any
name x that is not free in ∆ we have:

A ` ∆ ⇔ A + A′ ` ∆

where A′ is either x : σ or x : σ, x : ∀X.B.

Lemma 3 (Renaming of type variables) Let η be a substitution on type
variables. We have:

A ` ∆ ⇒ η(A) ` η(∆)

We say that a type scheme ∀X.τ is more general than ∀X ′.τ ′ if τ ′ is of the form
η(τ) for some substitution η replacing type and row variables by types and rows,
respectively. This notion is also lifted to set of assumptions as follows: A′ is
more general than A if A and A′ have the same domain and for each u in their
domain, A′(u) is more general than A(u).

Lemma 4 (Generalization) If A ` ∆ and A′ is more general than A, then
A′ ` ∆.

Lemma 5 (Substitution of a name in a term) If A + x : τ ` ∆ and A `
u : τ then A ` ∆{u/x}. Similarly, if A + x : [mi : τ̃i

i∈I ], x : (` : τ̃`
`∈S) ` ∆ and

A ` y : τ , (A ` y.mi : τ̃i)i∈I , and (A ` y.` : τ̃`)`∈S then A ` ∆{y/x}.

Lemma 6 (Substitution of a class name in a term)
Let A+c : ∀X.ζ(ρ)BW,V ` ∆ and A+B ` C :: ζ(ρ)BW,V and X ⊆ Gen (ρ,B, A).
Then A ` ∆{C/c}.
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B.2 Subject reduction for the chemical semantics (Theo-
rem 1.1)

Proof Let ` (D ° P) and D ° P ≡−→ D′ ° P ′. We demonstrate that
` (D′ ° P ′). According to the rules in Figure 6, there are two cases for the
proof of D ° P ≡−→ D′ ° P ′:

1. an instance of rule Obj, followed by a sequence of Chemistry-Obj;

2. an instance of one of the rules Par, Nil, Public-Comm, Private-Comm,
Red, followed by a sequence of Chemistry.

We discuss the two cases separately.

Case 1. The reduction is D ° ψ #obj x = D init P in Q, P ≡ D, ψx#D °
ψx#P,ψ #Q, P, where x 6∈ fn(D) ∪ fn(P).

On the one hand, if ` (D ° ψ #obj x = D init P in Q, P) (1) and rule
Chemical-Solution, we obtain (Aϕ ` D′ :: Az)ϕz # D′∈D (2), Aψ ` obj x =
D init P in Q and (Aϕ ` P ′)ϕ # P ′∈P (3), where A = ∪ϕz # D′∈D Az. A derivation
of Aψ ` obj x = D init P in Q must have the form:

Object

Aψ ` self(x) D :: ζ(ρ)BW,∅ (4)
X = Gen (ρ,B, Aψ) \ ctv(B |̀ W ) (5)

Aψ + x : ∀X.[ρ], x : ∀X.(B |̀ F) ` P (7)
ρ = B |̀ M (8) Aψ + x : ∀X.[ρ] ` Q (9)

Aψ ` obj x = D init P in Q

On the other hand, if ` (D, ψx#D ° ψx#P,ψ #Q, P) (10) and rule Chemical-

Solution, we obtain (A′ϕ ` D′ :: A′z)ϕz # D′∈D (11), A′ψ ` D :: A′x, A′ψx `
P (12), A′ψ ` Q (13) and (A′ϕ ` P ′)ϕ # P ′∈P (14) where A′ = (∪ϕz # D′∈D A′z)∪
A′x. A derivation of A′ψ ` D :: A′x must have the form:

A′ψ ` self(x)D :: ζ(ρ′)B′W ′,∅ (15) ρ′ = B′ |̀ M (16)
X ′ = Gen (ρ′, B′, A′ψ) \ ctv(B′ |̀ W ′) (17)

A′ψ ` D :: A′x
Definition

where A′x = x : ∀X ′.[ρ]⊕ x : ∀X ′.(B′ |̀ F).
Note that, by definition, A does not bind x because x 6∈ fn(D). Therefore,

by Lemma 2, if either (1) or (10) hold, then we can always choose A or A′ such
that A′ = A + A′x, the judgments (2) and (11) be equivalent, as well as the
judgments (3) and (14). We now focus on the other judgments.

Then, since A′ψ = Aψ + x : ∀X ′. [ρ′], the following premises can be made
equivalent to one another:

(4) ≡ (15): By Lemma 2 and identifying B′ with B, ρ′ with ρ, and W ′ with
W .

(5) ≡ (17): By definition, we now have

X = (ftv(B) ∪ ftv(ρ)) \ (ftv(Aψ) ∪ ctv(B |̀ W ))

X ′ = (ftv(B) ∪ ftv(ρ)) \ (ftv(A′ψ) ∪ ctv(B |̀ W ))
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Since A′ψ is equal to Aψ + x : ∀X.ρ and Aψ does not bind x, we have
X ′ ⊆ X. Conversely, we have X \ X ′ ⊆ ftv(∀X.ρ). Since by definition
ftv(∀X.ρ) does not intersect X, it follows that X \ X ′ is empty, thus
X ⊆ X ′.

(7) ≡ (12): Using the previous equivalences, we now have Ax = A′x. Therefore,
A′ψx is equal to Aψx.

(9) ≡ (13): Same reasoning as the previous case.

(8) ≡ (16): The two equalities are now identical.

To conclude, if (1) holds, then (10) holds by taking A+x : ∀X.[ρ], x : ∀X.(B |̀ F)
for A′, and conversely, if (10) holds, then (1) holds by taking A′ \ x for A.

Case 2. The reduction is D ° P1, P ≡−→ D ° P2, P. There are several
subcases, according to the leaf node in the proof tree.

Case Nil. The equivalence is D ° ψ #0,P ≡ D ° P. Indeed the judgment
A ` ψ #0 is always true, for any environment A.

Case Par. The equivalence is D ° ψ # (P & Q),P ≡ D ° ψ #P, ψ #Q,P. We
apply rule Chemical-Solution, then it suffices to prove that the two judg-
ments Aψ ` P & Q and Aψ ` P , Aψ ` Q are equivalent. This follows by rules
Parallel and Chemical-Solution.

Case Join. This is similar to the above case, and relies on rules Chemical-
Solution, Parallel and Join-Parallel.

Case Public-Comm. The reduction is D, ψx#D ° ψ′ #x.m(ũ),P −→ D,
ψx#D ° ψx#x.m(ũ),P. Let us assume that Aψ ` D :: Ax and Aψ′ `
x.m(ũ) (1). We must show that Aψx ` x.m(ui

i∈I) where ũ = ui
i∈I . A complete

derivation of (1) must be of the form:

Send

Message

Object-Var
. . .

Aψ′ ` x : [m : (τi
i∈I); ρ]

Aψ′ ` x.m : (τi
i∈I)




Object-Var
. . .

Aψ′ ` ui : τi


 i∈I

Aψ′ ` x.m(ui
i∈I)

This derivation, which does not use any internal type assumption of A (any
Private-Message rule), is not affected by replacing Aψ′ with Aψx. Thus,
Aψx ` x.m(ui

i∈I) holds.

Case Private-Comm. The reduction is D, ψx#D ° ψxψ′ #x.f(ũ),P −→
D, ψx#D ° ψx#x.f(ũ),P. Let us assume that Aψ ` D :: Ax and Aψxψ′ `
x.f(ũ) (1). We must show that Aψx ` x.f(ui

i∈I) where ũ = ui
i∈I . A complete

derivation of (1) must be of the form:

Send

Private-Message

x : ∀X.(f : (τi
i∈I); B) ∈ Aψxψ′

Aψxψ′ ` x.f : (τi{γα/α
α∈X}i∈I)




Object-Var
. . .

Aψxψ′ ` ui : τi{γα/α
α∈X}


 i∈I

Aψxψ′ ` x.f(ui
i∈I)
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Note that, the only internal type assumption in the premise is on x, which
remains in Aψx. Thus, as in case Public-Comm, we can replace Aψxψ′ by Aψx

in this derivation and conclude that Aψx ` x.f(ui
i∈I).

Case Red. The reduction is D, ψx#D ° ψx#x.(Mσ),P −→ D, ψx#D °
ψx# (Pσ),P, where D is of the form M . P or D′ and M is of the form
&i∈I `i(x̃i). A derivation of ` (D, ψx#D ° ψx#x.(Mσ),P) must follow from
rule Chemical-Solution with the following premises:

A = (∪ϕz # D′′∈DAz) ∪Ax (1)
(Aϕ ` D′′ :: Az)ϕz # D′′∈D (2)

Aψ ` D :: Ax (3)
Aψx ` x.(Mσ) (4)

(Aϕ ` P ′)ϕ # P ′∈P (5)

The derivation of (3) must end with rule Definition with the premises

Ax = x : ∀X.[ρ], x : ∀X.(B |̀ F) (6)
ρ = B |̀ M (7)

X = Gen (ρ,B, Aψ) \ ctv(B |̀ W ) (8)
Aψ ` self(x)D :: ζ(ρ)BW,∅ (9)

To demonstrate ` (D, ψx#D ° ψx# (Pσ),P) it suffices to show that Aψ `
Pσ. Note that Aψx = Aψ + Ax follows from (1). The derivation of (4) must
end with a rule Join-Parallel. Hence, for each message `i(σ(x̃i)) of Mσ,
we have Aψ + Ax ` x.`i(σ(x̃i)). In turn, this must be derived by rule Send
with the premises Aψ + Ax ` x.`i : τ̃i (10) and Aψ + Ax ` σ(x̃i) : τ̃i (11).
The judgment (10) is derived by either rule Private-Message or Message,
depending on whether ` is private or public. In both cases, each tuple τ̃i is
an instance of the generic type ∀X.B(`i), with a substitution ηi of domain in
X ∩ ftv(B(`i)).

The derivation of (9) must contain a sub-derivation

Reaction
A′ ` M :: B0 (12)

Aψ + x : [ρ], x : (B |̀ F) + A′ ` P (13) dom(A′) = fn(M)
Sub

Aψ + x : [ρ], x : (B |̀ F) ` M . P :: ζ(ρ)Bcl(M),∅
0

Aψ + x : [ρ], x : (B |̀ F) ` M . P :: ζ(ρ)BW,∅
0 (14)

where cl(M) ⊆ W (15) (the judgment (14) is then combined with other judg-
ments for other reaction rules of D by a sequence of Disjunction rules, followed
by a rule Self, to end up with (9)). The internal type B0 is therefore a subset
of B. As regards the premise (12), it is derived by a combination of rules Syn-
chronization, Message-Pattern, and Empty-Pattern. Hence, we have:

A′ ` `i(x̃i) :: `i : B(`i) (16)

for every i ∈ I. By (15) and the definitions of cl(B) and ctv(B |̀ W ), we have
ftv(B(`i)) ∩ ftv(B(`j)) ⊆ ctv(B |̀ W ), hence by (8), ftv(B(`i)) ∩ ftv(B(`j)) ∩
X = ∅, for every distinct i and j in I. Thus, the sets (X ∩ ftv(B(`i)))i∈I , i.e.
dom(ηi)i∈I form a partition of X. Let η be the sum of substitutions ⊕i∈Iηi.
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Observe that the domain of η is included in X and is thus disjoint from free
type variables of Aψ (17).

Applying Lemma 3 to (13), we have η(Aψ + x : [ρ], x : (B |̀ F)) + η(A′) ` P ,
that is, Aψ + x : [η(ρ)], x : η(B |̀ F) + η(A′) ` P . By Lemma 4, we can
let x be used polymorphically, i.e. Aψ + Ax + η(A′) ` P . Similarly, we have
(Aψ +Ax ` σ(xi) : η(τ ′i))

xi:τ
′
i∈A′ by Lemmas 3 and 4 successively applied to the

collection of judgments (11). Thus, by Lemma 5, we derive Aψ + Ax ` Pσ.

B.3 Subject reduction for the rewriting semantics (Theo-
rem 1.2)

We first show a couple of properties relating typing and the set of declared
labels.

Lemma 7 For any class C such that A ` C : ζ(ρ)BV,W , then dl(C) = dom(B).

The proof of this lemma is omitted because it is a straighforward induction on
the depth of A ` C : ζ(ρ)BV,W .

Lemma 8 For any selective refinement clauses S such that A ` S :: BW ⇒
B′W ′,V ′ , we have dom(B′) \ dom(B) ⊆ dl(S).

Proof Selective refinement clauses can always be written as |i∈I Ki ⇒ K ′
i .

P . A proof of A ` S :: BW ⇒ B′W ′,V ′ can only end with rule Modifier
in which the derivation of each premise ends with a rule Modifier-Clause.
Hence, we have at least the judgments

Ai ` Ki :: Bi (18)
Bi ⊆ B (19)

Ai ` K ′
i :: B′

i (20)
B′ = ⊕i∈iB′

i (21)

Hence,

dom(B′) \ dom(B) ⊆ dom(B′) \ (
⋃

i∈I dom(Bi)) by (19)
= (

⋃
i∈I dom(B′

i)) \ (
⋃

i∈I dom(Bi)) by (21)
=

⋃
i∈I(dom(B′

i) \ (
⋃

j∈I dom(Bj)))
⊆ ⋃

i∈I(dom(B′
i) \ dom(Bi))

=
⋃

i∈I(dl(K ′
i) \ dl(Ki))

= dl(S)

We now show that filter rewriting 7−→ preserves typing. We denote with
B \ L the set of pairs ` : τ̃ that belongs to B and such that ` 6∈ L.

Lemma 9 (Filter rewriting) If all the following conditions hold

C with S 7−→ C ′ A ` C :: ζ(ρ)BW,V A ` S :: BW1
1 ⇒ BW2,V2

2

dl(S) ∩ dom(B1) = ∅ B ⊆ B1 B2 |̀ dom(B1) ⊆ B1

then A ` C ′ :: ζ(ρ)(B⊕ (B2 \L))W ′,V ′ for some W ′ ⊆ W ∪ (W2∩dom(B⊕ (B2 \
L))), V ′ ⊆ V ∪ (V2 ∩ (dom(B1) \ L)), and L ⊆ (dl(S) \ dl(C ′)) ∪ (dom(B1) \
dom(B)).
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Proof In this proof, we abbreviate dom(B) by B, for sake of conciseness.

Basic cases.

Case Filter-Apply. Let us assume that

K1 & K . P with K1 ⇒ K2 . Q | S
7−→ K2 & K . P & Q or dl(K1) \ dl(K2) (1)

A ` K1 & K . P :: ζ(ρ)BW,V (2)
A ` K1 ⇒ K2 . Q | S :: BW1

1 ⇒ BW2,V2
2 (3)

((dl(K2) \ dl(K1)) ∪ dl(S)) ∩B1 = ∅ (4)
B ⊆ B1 (5)

B2 |̀ B1 ⊆ B1 (6)

The judgments (2) and (3) are respectively derived by

Sub

Reaction

Synchronization
A′ ` K1 :: B′

1 (7) A′ ` K :: B0 (8)
A′ ` K1 & K :: B′

1 ⊕B0 (9)
A + A′ ` P (10) A′ = fn(K1 & K) (11)

A ` K1 & K . P :: ζ(ρ)(B′
1 ⊕B0)cl(K1&K),∅

A ` K1 & K . P :: ζ(ρ)(B′
1 ⊕B0)W,V

and,

Modifier +Sub

Modifier-Clause

A′′ ` K1 :: B′
1 (12)

A′′ ` K2 :: B′
2 (14)

A + A′′ ` Q (15)

B′
1 ⊆ B1 (13)

A′′ = fn(K2) (16)
W ′

2 = cls(BW1
1 ,K1 ⇒ K2)

A ` K1 ⇒ K2 . Q :: BW1
1 ⇒ B

′W ′
2,dl(K1)\dl(K2)

2 · · ·
A ` K1 ⇒ K2 . Q | S :: BW1

1 ⇒ BW2,V2
2

where B = B′
1 ⊕ B0 (17), cl(K1 & K) ⊆ W (18), B′

2 ⊆ B2 (19), W ′
2 ⊆ W2 and

dl(K1) \ dl(K2) ⊆ V2 (20).
From (7) and (12), A′ and A′′ coincide on fn(K1) because they assign the

same types to fn(K1). Moreover, due to the scope rules of reaction rules and
the selection operator, we can safely assume that A′ ∩ A′′ = fn(K1). Thus,
by Lemma 2 applied to (8), and (14) we derive A′ + A′′ ` K :: B0 (21) and
A′ + A′′ ` K2 :: B′

2 (22). Similarly, by lemma 2 applied to (10) and (15), we
also derive A + A′ + A′′ ` P (23) and A + A′ + A′′ ` Q (24).

Foremost we prove the linearity of K2 & K. Notice that dl(K2) = (dl(K2) \
dl(K1))∪ (dl(K2)∩ dl(K1)) and both left and right hand-sides of the ∪ have an
empty intersection with dl(K). This follows from (4) and from the linearity of
K1 & K.

By rule Synchronization with premises (22) and (21), we derive A′+A′′ `
K2 & K :: B′

2 ⊕ B0 (25). Also, combining the judgments (23) and (24) yields
A + A′ + A′′ ` P & Q (26) using rule Parallel. By premises (11) and
(16) we have A′ ∪ A′′ = fn(K) ∪ fn(K1) ∪ fn(K2). By (16) and (12), we have
fn(K1) ⊆ fn(K2). Hence A′ + A′′ = fn(K2 & K) (27). Therefore, by Reaction
with premises (25), (26), and (27) we derive

A ` K2 & K . P & Q :: ζ(ρ)(B′
2 ⊕B0)cl(K2&K),∅ (28).
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By rule Abstract, we also deduce

A ` dl(K1) \ dl(K2) :: ζ(ρ)B′′
1
∅,dl(K1)\dl(K2) (29)

where B′′
1 = B′

1 \ dl(K2) (30). Hence, Disjunction allows to derive:

A ` K2 & K . P & Q or L′ :: ζ(ρ)(B′
2 ⊕B0 ⊕B′′

1 )cl(K2&K),dl(K1)\dl(K2) (31)

and by rule Sub:

A ` K2 & K . P & Q or L′ :: ζ(ρ)(B′
2 ⊕B0 ⊕B′′

1 )W ′,V ′ (32)

where W ′ = W ∪ cl(K2 & K) and V ′ = V ∪ (dl(K1) \ dl(K2)).
Let L be (dl(S) \ (dl(K2)∪dl(K)∪dl(K1)))∪ ((B1 \B) \dl(K2)), or equiva-

lently, (dl(S)\ (B′
2∪B0∪B′

1))∪ ((B1 \B)\B′
2) (33). Observe that L is choosen

so as to satisfy the condition L ⊆ (dl(S) \ dl(C ′)) ∪ (B1 \ B). To conclude, we
verify that other constraints of the lemma are satisfied for the judgment (32).
That is,

1. B′
2⊕B0⊕B′′

1 = B⊕ (B2 \L). By (6), (13), (17), (19) it is enough to check
the set equality: B′

2∪B0∪B′′
1 = B∪ (B2 \L). Since both sides of (33) are

restrictions outside of the set B′
2, we have L ∩B′

2 ⊂ B (34). Therefore,

B′
2 ∪B0 ∪B′′

1

= B′
2 ∪B0 ∪ (B′

1 \ dl(K2)) by definition of B′
1

= B′
2 ∪B0 ∪ (B′

1 \B′
2)) by (16)

= B′
2 ∪B0 ∪B′

1

= B′
2 ∪B by definition of B

= B ∪ (B2 \ L) by (34)

2. W ′ ⊆ W ∪ (W2 ∩ (B ⊕ (B2 \ L)). Because W ′ = W ∪ cl(K2 & K) and
cl(K2 & K) ⊆ W2 by (18), and cl(K2 & K) ⊆ dl(K2 & K) = B′

2 ∪ B0 ⊆
B ⊕ (B2 \ L) by the equality above.

3. V ′ ⊆ V ∪ (V2 ∩ (B1 \ L)). By definition, V ′ = V ∪ (dl(K1) \ dl(K2))
and dl(K1) \ dl(K2) ⊆ V2 by (20). It remains to prove that dl(K1) \
dl(K2) ⊆ B1 \ L. Since dl(K1) \ dl(K2) ⊆ B1, it suffices to show that
(dl(K1) \dl(K2))∩L = ∅. Obviously, (dl(K1) \dl(K2))∩ (dl(S) \dl(K2 &
K & K1)) = ∅, whilst (dl(K1) \ dl(K2)) ∩ ((B1 \ B) \ dl(K2)) = ∅, since
dl(K1) = B′

1 ⊆ B.

Case Filter-End. Let us assume

M . P with 0 7−→ M . P (1)
A ` M . P :: ζ(ρ)BW,V (2)
A ` 0 :: BW1

1 ⇒ BW2,V2
2 (3)

dl(0) ∩B1 = ∅ (4)
B ⊆ B1 (5)

Since in (3) B2 must be the empty set, we conclude from (2) by choosing L =
B1 \B, W ′ = W , and V ′ = V .
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Case Filter-Abstract. Let us assume

L′ with S 7−→ L′

A ` L′ :: ζ(ρ)BW,V (1)
A ` S :: BW1

1 ⇒ BW2,V2
2

dl(S) ∩B1 = ∅ (2)
B ⊆ B1 (3)

B2 |̀ B1 ⊆ B1 (4)

A derivation of (1) must contain an instance of rule Abstract, hence A ` L′ ::
ζ(ρ)B∅,V and B = V = L′ (5). Let L be (dl(S) \ L′) ∪ (B1 \ B). We show
that (1) satisfies the lemma:

1. B ⊕ (B2 \ L) = B. Since by (4) B2 is compatible with B1 and with B
by (3), it suffices to show that B2 \ L ⊆ B. By (5), it follows that L is
equal to (dl(S) ∪B1) \B (6). Hence:

B2 \ L = ((B2 |̀ B1) ∪ (B2 \B1)) \ L
⊆ (B1 ∪ dl(S)) \ L by (4) and Lemma 8
= (B1 ∪ dl(S)) \ ((B1 ∪ dl(S)) \B)
= (B1 ∪ dl(S)) ∩B

2. W ⊆ W ∪ (W2 ∩ (B ⊕B2 \ L)). Obvious.

3. V ⊆ V ∪ (V2 ∩ (B1 \ L)). Obvious.

Inductive cases.

Case Filter-Next. Let us assume

M . P with K1 ⇒ K2 . Q | S 7−→ C ′ (1)
dl(K1) 6⊆ dl(M) (2)

A ` M . P :: ζ(ρ)BW,V (3)
A ` K1 ⇒ K2 . Q | S :: BW1

1 ⇒ BW2,V2
2 (4)

((dl(K2) \ dl(K1)) ∪ dl(S)) ∩B1 = ∅ (5)
B ⊆ B1 (6)

B2 |̀ B1 ⊆ B1 (7)

The selection clauses S are of the form |i∈I K ′
i ⇒ K ′′

i . Qi. A derivation of (4)
must contain an instance of Modifier, with premises:

A ` K1 ⇒ K2 . Q :: BW1
1 ⇒ B

′W ′
2,V ′2

2 (8)
(A ` K ′

i ⇒ K ′′
i . Qi :: BW1

1 ⇒ B
′′W ′′

i ,V ′′i
i )i∈I

where

B′′
2 = ⊕i∈I B′′

i

B2 = B′
2 ⊕B′′

2 (9)
W ′′

2 =
⋃

i∈I W ′′
i

W2 = W ′
2 ∪W ′′

2 (10)
V ′′

2 =
⋃

i∈I V ′′
i

V2 = V ′
2 ∪ V ′′

2 (11)
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Hence, by rule Modifier, we derive

A ` S :: BW1
1 ⇒ B

′′W ′′
2 ,V ′′2

2 (12)

A derivation of (1) must end with an instance of rule Filter-Next, hence
M . P with S 7−→ C ′ (13). By induction hypothesis applied to (13), (3), (5),
(12), (6), and (7) there must exist some L′, W ′, and V ′ such that

A ` C ′ :: ζ(ρ)(B ⊕ (B′′
2 \ L′))W ′,V ′ (14)

L′ ⊆ (dl(S) \ dl(C ′)) ∪ (B1 \B) (15)
W ′ ⊆ W ∪ (W ′′

2 ∩ (B ⊕ (B′′
2 \ L′))) (16)

V ′ ⊆ V ∪ (V ′′
2 ∩ (B1 \ L′)) (17)

Let us prove that A ` C ′ :: ζ(ρ)(B ⊕ (B2 \ L))W ′,V ′ (18), for L = L′ ∪ B′
2 \

(B1 ∪ B′′
2 ) and check that L, W ′, V ′ satisfy the conditions of the lemma. We

first prove that L ⊆ (((dl(K2) \ dl(K1)) ∪ dl(S)) \ dl(C ′)) ∪ (B1 \ B) (19). By
Lemma 8 applied to (8), we have B′

2 \ B1 ⊆ dl(K2) \ dl(K1) (20). Notice that
dl(C ′) = B ∪B′′

2 \ L′ by Lemma 7 and (14), hence dl(C ′) ⊆ B ∪B′′
2 (21). Thus,

we have:

L = L′ ∪ B′
2 \ (B1 ∪B′′

2 )
= L′ ∪ (B′

2 \B1) \B′′
2

⊆ L′ ∪ (dl(K2) \ dl(K1)) \B′′
2 by (20)

= L′ ∪ (dl(K2) \ dl(K1)) \ (B ∪B′′
2 ) by (5)

⊆ L′ ∪ (dl(K2) \ dl(K1)) \ dl(C ′) by (21)
= (dl(S) \ dl(C ′)) ∪ (B1 \B) ∪ (dl(K2) \ dl(K1)) \ dl(C ′) by (15)
= ((dl(K2) \ dl(K1)) ∪ dl(S)) \ dl(C ′) ∪ B1 \B

To conclude, we check the following properties:

1. B⊕ (B2 \L) = B⊕ (B′′
2 \L′). Since by (7) B2 and B1 agree, and so do B′′

2

and B by (6) and (9), it suffices to check the equality of their domains.
By

B ∪ (B2 \ L) = B ∪ (B2 \ (L′ ∪B′
2 \ (B1 ∪B′′

2 )))
= B ∪ (B2 \ (B′

2 \ (B1 ∪B′′
2 ))) \ L′

= B ∪ ((B′
2 ⊕B′′

2 ) \ (B′
2 \ (B1 ∪B′′

2 ))) \ L′

= B ∪ ((B′
2 \ (B′

2 \ (B1 ∪B′′
2 ))) ∪

(B′
2 \ (B′

2 \ (B1 ∪B′′
2 )))) \ L′

= B ∪ ((B1 ∪B′′
2 ) |̀ B′

2 ∪B′′
2 ) \ L′

= B ∪ (B1 |̀ B′
2) \ L′︸ ︷︷ ︸

⊆B

∪ (B′′
2 |̀ B′

2) \ L′︸ ︷︷ ︸
⊆B′′2 \L′

∪(B′′
2 \ L′)

= B ∪ (B′′
2 \ L′)

2. W ′ ⊆ W ∪ (W2 ∩ B ⊕ (B2 \ L)). This follows from (16), W ′′
2 ⊆ W2 (by

(10)), and B ⊕ (B2 \ L) = B ⊕ (B′′
2 \ L′).

3. V ′ ⊆ V ∪ (V2 ∩ (B1 \ L)). This follows from (17), V2 ⊆ V ′
2 (by (11)) and

L′ ⊆ L (by definition of L′).
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Case Filter-Or. Let us assume that:

C1 or C2 with S 7−→ C ′ (1)
A ` C1 or C2 :: ζ(ρ)BW,V (2)

A ` S :: B1 ⇒ BW2,V2
2 (3)

dl(S) ∩B1 = ∅ (4)
B ⊆ B1 (5)

B2 |̀ B1 ⊆ B1 (6)

A derivation of (2) must end with an instance of rule Disjunction, followed
by a sequence of rules Sub. Hence B is of the form B′

1 ⊕B′
2 (7) and:

A ` C1 :: ζ(ρ)B′
1
W ′

1,V ′1 (8)
A ` C2 :: ζ(ρ)B′

2
W ′

2,V ′2 (9)
W ′

1 ∪W ′
2 ⊆ W (10)

(V ′
1 \ (B′

2 \ V ′
2)) ∪ (V ′

2 \ (B′
1 \ V ′

1)) ⊆ V (11)

The condition (4) implies that dl(S) ∩ Bi = ∅ for i ∈ {1, 2} (12). The reduc-
tion (1) implies that C ′ is of the form C ′1 or C ′2 such that Ci with S 7−→ C ′i for
i ∈ {1, 2} (13). By induction hypothesis applied to (13), (8) and (9), (3), (12),
(5), and (6), it follows that there exist some Li, W ′′

i , and V ′′
i such that

A ` C ′i :: ζ(ρ)(B′
i ⊕ (B2 \ Li))W ′′

i ,V ′′i (14)
Li ⊆ (dl(S) \ dl(C ′i)) ∪ (B1 \B′

i) (15)
W ′′

i ⊆ W ′
i ∪ (W2 ∩B′

i ⊕ (B2 \ Li)) (16)
V ′′

i ⊆ V ′
i ∪ (V2 ∩ (B1 \ Li)) (17)

for i ∈ {1, 2}. By rule Disjunction applied to the two cases of (14) and since
B′

1, B′
2 and B′′

2 are compatible by (6), (5) and by the definition of B′
1 and B′

2,
we have:

A ` C ′1 or C ′2 :: ζ(ρ)(B′
1 ⊕B′

2 ⊕ (B2 \ L1)⊕ (B2 \ L2)
W ′,V ′ (18)

where

W ′ = W ′′
1 ∪W ′′

2

V ′ = V ′′
1 \ (B′

2 ⊕ (B2 \ L2) \ V ′′
2 ) ∪ V ′′

2 \ (B′
1 ⊕ (B2 \ L1) \ V ′′

1 )

Let L be L1 ∩ L2. Then

L = L1 ∩ L2

⊆ ((dl(S) \ dl(C1)) ∪ (B1 \B′
1)) ∩ ((dl(S) \ dl(C2)) ∪ (B1 \B′

2)) by (15)
⊆ (dl(S) \ dl(C1)) ∩ (dl(S) \ dl(C2)) ∪ (B1 \B′

1) ∩ (B1 \B′
2) by distributivity

= (dl(S) \ (dl(C1) ∪ dl(C2))) ∪ (B1 \ (B′
1 ∪B′

2))
= (dl(S) \ dl(C)) ∪ (B1 \B) (19)

To conclude, we prove that (18) satisfies the constraints of the lemma. In-
deed, we have:

1. B ⊕ (B2 \ L) = B′
1 ⊕B′

2 ⊕ (B2 \ L1)⊕ (B2 \ L2). Since B = B′
1 ⊕B′

2 and
B2 \ L = B2 \ L1 ⊕B2 \ L2.
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2. W ′ ⊆ W ∪ (W2 ∩B ⊕ (B2 \ L)). Since W ′ = W ′′
1 ∪W ′′

2 , it suffices to show
that W ′′

i ⊆ W ∪ (W2 ∩B ⊕ (B2 \ L)), for i ∈ {1, 2}. This follows by (16),
(10) and because B′

i ⊕ (B2 \ Li) ⊆ B ⊕ (B2 \ L) (by previous item).

3. V ′ ⊆ V ∪ (V2 ∩ (B1 \ L)). It suffices to show that both

V ′′
1 \ (B′

2 ⊕ (B2 \ L2) \ V ′′
2 ) ⊆ V ∪ (V2 ∩ (B1 \ L))

and
V ′′

2 \ (B′
1 ⊕ (B2 \ L1) \ V ′′

1 ) ⊆ V ∪ (V2 ∩ (B1 \ L))

Each of these two containments follows by (17), which establishes a stronger
relation between a superset of the left hand side and two subsets of the
two right hand sides.

Theorem 3 (Process Reduction) Process rewriting 7−→ preserves typing.

We show that class reduction x7−→ and process reduction 7−→ preserve typing,
simultaneously.

That is, we prove that

1. if A + x : [ρ], x.(B |̀ F) ` C :: ζ(ρ)BW,V and C
x7−→ C ′ then A + x :

[ρ], x.(B |̀ F) ` C ′ :: ζ(ρ)BW,V ;

2. if A ` P and P 7−→ P ′ then A ` P ′.

Proof We reason by induction on the depth of the proofs of C
x7−→ C ′ and

P 7−→ P ′. We write Ax for A + x : [ρ], x.(B |̀ F).

Basic cases for class reduction.

Case Self. Let self(z)C
x7−→ C{x/z} and let Ax ` self(z)C :: ζ(ρ)BW,V .

A derivation of this judgment must end with an instance of Self-Binding,
followed by a sequence of Sub rules. Hence,

Ax + z : [ρ], z.(B |̀ F) ` C :: ζ(ρ)BW ′,V ′

with W ′ ⊆ W and V ′ ⊆ V . Then, by Lemma 5, we have:

Ax ` C{x/z} :: ζ(ρ)BW ′,V ′

We conclude Ax ` C{x/z} :: ζ(ρ)BW,V by rule Sub.

Case Or-Pat. Let J1 or J2 . P
x7−→ J1 . P or J2 . P and let Ax ` J1 or J2 .

P :: ζ(ρ)BW,V (1). The derivation of this judgment must end with the following
derivation followed by a sequence of Sub rules:

Reaction

Alternative
A′ ` J1 :: B1 A′ ` J2 :: B2

A′ ` J1 or J2 :: B
Ax + A′ ` P dom(A′) = fn(J1 or J2) (2)

Ax ` J1 or J2 . P :: ζ(ρ)Bcl(J1)∪cl(J2),∅
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where B is B1⊕B2 and cl(J1)∪cl(J2) ⊆ W . Since fn(J1 or J2) = fn(J1) = fn(J2),
we have:

Disjunction

Reaction

A′ ` Ji :: Bi

Ax + A′ ` P dom(A′) = fn(Ji)

Ax ` Ji . P :: ζ(ρ)Bcl(Ji),∅
i

i = 1, 2

Ax ` J1 . P or J2 . P :: ζ(ρ)Bcl(J1)∪cl(J2),∅

The we conclude Ax ` J1 . P or J2 . P :: ζ(ρ)BW,V by rule Sub.

Case Abstract-Cut. Let C or L
x7−→ C or L′ and Ax ` C or L :: ζ(ρ)BW,V

and L′ = L \ dl(C), with L 6= L′. Therefore L′ ⊆ L (1). The derivation of
the judgment Ax ` C or L :: ζ(ρ)BW,V must end with the following derivation
followed by a sequence of Sub rules:

Disjunction

Abstract
dom(B2) = L

Ax ` L :: ζ(ρ)B∅,L
2

Ax ` C :: ζ(ρ)BW1,V1
1 L′′ = L \ (dom(B1) \ V1)(2)

Ax ` C or L :: ζ(ρ)(B1 ⊕B2)W1,V1∪L′′

where B = B1 ⊕B2, W1 ⊆ W (3) and V1 ∪ L′′ ⊆ V (4).
We first observe that B1 ⊕B2 = B1 ⊕ (B2 |̀ L′). Therefore we can derive:

Disjunction

Abstract
dom(B2 |̀ L′) = L′

Ax ` L′ :: ζ(ρ)(B2 |̀ L′)∅,L
′

Ax ` C :: ζ(ρ)BW1,V1
1 L′′′ = L′ \ (dom(B1) \ V1)(5)

Ax ` C or L′ :: ζ(ρ)(B1 ⊕B2)W1,V1∪L′′′

By (2), (5) and (1), we derive V1 ∪ L′′′ ⊆ V1 ∪ L′′. Hence, by (3), (4) and rule
Sub, we obtain Ax ` C or L′ :: ζ(ρ)(B1 ⊕B2)W,V .

Case Class-Abstract. Let C or ∅ x7−→ C and Ax ` C or ∅ :: ζ(ρ)BW,V .
The derivation of this judgment must end with rule Disjunction followed by
a sequence of Sub rules:

Disjunction
Ax ` C :: ζ(ρ)BW ′,V ′ Ax ` ∅ :: ζ(ρ)∅∅,∅

Ax ` C or ∅ :: ζ(ρ)BW ′,V ′

where W ′ ⊆ W and V ′ ⊆ V . Then, by rule Sub applied to Ax ` C ::
ζ(ρ)BW ′,V ′ , we obtain Ax ` C :: ζ(ρ)BW,V .

Basic cases for processes.

Case Class-Var. Let us assume A ` class c = self(z) C in P (1) and class c =
C in P 7−→ P{C/x}. The final part of the derivation of (1) must have the form

Class
A ` C :: ζ(ρ)BW,V (3) A + c : ∀Gen (ρ,B, A).ζ(ρ)BW,V ` P (2)

A ` class c = C in P

By Lemma 6 applied to (3) and (2), we derive A ` P{C/c}.
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Inductive cases for classes.

Case Class-Context. Let Ax ` E[C] :: ζ(ρ)BW,V and E[C] x7−→ E[C ′]. By
inductive hypothesis, if Ax ` C :: ζ(ρ)B′W ′,V ′ then Ax ` C ′ :: ζ(ρ)B′W ′,V ′ ,
since C

x7−→ C ′. The judgment Ax ` E[C ′] :: ζ(ρ)BV follows by induction on
the structure of E[·]. The details are omitted.

Case Match. Let us assume that A ` match C with S end : ζ(ρ)BW,V (1) and
match C with S end −→ C ′ (2). We must prove that A ` C ′ : ζ(ρ)BW,V (3)

A derivation of (1) must end with an instance of rule Refinement followed
by a sequence of Sub. Hence, B is of the form B1 ⊕B2 (4) and

A ` C :: ζ(ρ)BW1,V1
1 (5)

A ` S :: BW1
1 ⇒ BW2,V2

2 (6)
dl(S) ∩ dom(B1) = ∅ (7)

W1 ∪W2 ⊆ W (8)
V1 ∪ V2 ⊆ V (9)

The derivation of (2) must contain a rule Match with the premises:

C with S −→ C ′ (10)
dl(S) ⊆ dl(C ′) (11)

From (4) it follows that B2 |̀dom(B1) ⊆ dom(B2) (12). Lemma 9 applied to (10),
(5), (6), (7), and (12) implies that

A ` C ′ :: ζ(ρ)(B1 ⊕ (B2 \ L))W ′,V ′ (13)
L ⊆ (dl(S) \ dl(C ′)) ∪ (dom(B1) \ dom(B1)) (14)

W ′ ⊆ W1 ∪ (W2 ∩ dom(B1 ⊕ (B2 \ L))) (15)
V ′ ⊆ V1 ∪ (V2 ∩ (dom(B1) \ L)) (16)

The property (11) combined with (14) imply that L is empty. Therefore W ′ ⊆
W1 ∪W2 and V ′ ⊆ V1 ∪ V2. Hence (3) follows by (13), (8), (9) and rule Sub.

Inductive cases for processes.

Case Class-Red. Let A ` obj x = C init P in Q (1) and obj x = C init P in

Q 7−→ obj x = C ′ init P in P ′, under the assumption that C
x7−→ C ′ (2).

A derivation of (1) has the shape

Object

Self-Binding
A + x : [ρ], x : (B |̀ F) ` C :: ζ(ρ)BW,∅ (3)

A ` self(x) C :: ζ(ρ)BW,∅

ρ = B |̀ M X = Gen (ρ,B, A) \ ctv(B |̀ W )
A + x : ∀X.[ρ], x : ∀X.(B |̀ F) ` P A + x : ∀X.[ρ] ` Q

A ` obj x = C init P in Q

By induction hypothesis applied to (2) and (3), we obtain the judgment A+x :
[ρ], x : (B |̀ F) ` C ′ :: ζ(ρ)BW,∅, which we can substitute in the previous
derivation, thus concluding A ` obj x = C ′ init P in Q.
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B.4 Safety (Theorem 2)

Proof Let us assume ` (D ° P). By Chemical-Solution and Definition,
` (D ° P) holds provided

(Aψ ` D :: Ax)ψx # D∈D (1) (Aψ ` P )ψ # P∈P (2) A = ∪ψx # D∈DAx (3)

We check that no case listed in Definition 1 (Section 6.1) can occur.

No free variables. By definition of type judgments, since (1) hold, every free
object name in D, with ψx#D ∈ D, should appear as a leaf of the proof tree of
Aψ ` D :: Ax. This leaf must be of the form Aψ + A′ ` x : τ . This implies that
x belongs to the domain of Aψ because x is free in D. Similarly, every class
variable in D should belong to the domain of Aψ, which actually only contains
object names. The proof is similar for free names in P using (2).

No runtime failure. Let ψ #x.`(ũ) ∈ P and ψ′x#D ∈ D (4).

1. (no privacy failure) Let ` be a private label f . We prove that ψ′x is a
prefix of ψ. A derivation of Aψ ` x.`(ui

i∈I) must be:

...

Aψ ` x.f : (τi
i∈I)

((5))
(Aψ ` ui : τi)i∈I

Aψ ` x.`(ui
i∈I)

Send

where (5) is an instance of Private-Message. The premise of (5) requires
that x : ∀X.(` : (τi

i∈I); B′) be in Aψ. Therefore, by definition of Aψ,
variable x must appear in ψ. Furthermore, by well-formedness of chemical
solutions, a name can have a unique prefix. Since ψ′ is already a prefix of
x, then ψ must be of the form ψ′xψ′′.

2. (no undeclared label) We show that ` ∈ dl(D). Given (4), the judgment
Aψ′ ` D :: Ax, where Ax = x : ∀X.ρ, x : ∀X.(B |̀ F), follows by rule
Definition applied to (1) with the premises below:

Aψ′ ` self(x) D :: ζ(ρ)BW,∅ (6) ρ = B |̀ M (7)

X = Gen (ρ,B,Aψ′) \ ctv(B |̀ W )

Since Aψ ` x.`(ũ) by (2), either ρ is of the form [` : τ̃ ; ρ′] or B is of the
form (` : τ̃ ;B′) depending on whether ` is public or private. In each case,
using (7), ` is in dom (B). The conclusion follows by Lemma 7.

3. (no arity mismatch) Let D be of the form [M . P ] where M is itself of
the form `(ỹ) & J . We show that ỹ and ũ have the same arities.

For that purpose, it suffices to show that the type of ũ and the type of ỹ
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in A are instances of a same tuple type. A leaf of (6) must be

Reaction




Message-Pattern
(yi : τ ′i ∈ A′)i∈I

A′ ` `(ỹ) :: ` : (τ ′i
i∈I)




`(ey)∈M

A′ ` M :: B
...

dom(A′) = fn(M)
Aψ′ + x : [ρ], x : (B |̀ F) + A′ ` P

Aψ′ + x : [ρ], x : (B |̀ F) ` M . P :: ζ(ρ)Bcl(M),∅

Therefore, the type of ỹ in A′ is B(`). By rules Chemical-Solution and
Definition, A contains a generalization of x : [ρ], x : (B |̀ F). Thus, the
type of x.` in Aψ is a generalization of B(`). The proof tree illustrated
in item 1 is required to prove Aψ ` x.`(ui

i∈I). Then, as a consequence of
rule (5), the type of ũ is an instance of the type of x.` in Aψ, i.e. of the
generalization of the type of ỹ in A′.

No class rewriting failure. Let ψ #P ∈ P, P = obj x = C init Q in Q′, rule
Class-Red does not apply to P , i.e. there is no C ′ such that C

x7−→ C ′, and
P is not a refinement error. We show that P is not a failure; namely, for every
evaluation context E,

1. C 6= E[c], and c is free. By (1), dom(A) only contains object names.
Therefore, by (2), P cannot contain free class names.

2. Let E[L] = C ′ or L (the case E[L] = L or C ′ is similar). We demonstrate
that, if A′ ` C ′ or L :: ζ(ρ)BW,V then L ⊆ V . By rule Abstract,
A′ ` L :: ζ(ρ)B∅,L

1 (8). Let A′ ` C ′ :: ζ(ρ)BW2,V2
2 (9) and V ′

1 = L \
(dom(B2) \ V2) (10) and V ′

2 = V2 \ (dom(B1) \ L) (11). Since there does
not exists C ′′ such that C

x7−→ C ′′, the rule Abstract-Cut cannot be
applied. This means that L = L \ dl(C ′) = L \ dom(B2), which implies
V ′

1 = L. By (8), (9), (10), (11) and rule Disjunction we obtain A′ `
C or L :: ζ(ρ)(B1 ⊕B2)W1∪W2,L∪V ′2 (12).

On the other hand, by (2), a derivation of Aψ ` P must contain (P = obj
x = C init Q in Q′)

Object

Self-Binding
Aψ + x : [ρ], x.(B |̀ F) ` (C ′ or L) :: ζ(ρ)BW,∅(13)

Aψ ` self(x) (C ′ or L) :: ζ(ρ)BW,∅

ρ = B |̀ M X = Gen (ρ, B,A)ctv(B |̀ W )
Aψ + x : ∀X.[ρ], x : ∀X.(B |̀ F) ` Q Aψ + x : ∀X.[ρ] ` Q′

A ` obj x = (C ′ or L) init Q in Q′

To conclude, observe that (12) and (13) do not unify because virtual labels
in (12) are not empty.
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