
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Principled approach to Ornamentation in ML

THOMAS WILLIAMS, Inria

DIDIER RÉMY, Inria

Ornaments are a way to describe changes in datatype de�nitions reorganizing, adding, or dropping some

pieces of data so that functions operating on the bare de�nition can be partially and sometimes totally li�ed

into functions operating on the ornamented structure. We propose an extension of ML with higher-order

ornaments, demonstrate its expressiveness with a few typical examples, including code refactoring, study the

metatheoretical properties of ornaments, and describe their elaboration process. We formalize ornamentation

via a posteriori abstraction of the bare code, called generic li�ing, which lives in a meta-language above ML.

�e li�ed code is obtained by application of the generic li�ing to well-chosen arguments, followed by staged

reduction, and some remaining simpli�cations. We use logical relations to closely relate the li�ed code to the

bare code.

CCS Concepts: •So�ware and its engineering→ Functional languages;

ACM Reference format:
�omas Williams and Didier Rémy. �?. A Principled approach to Ornamentation in ML. 1, 1, Article 1

(January �?), 70 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

Inductive datatypes and parametric polymorphism are two key features introduced in the ML family

of languages in the 1980’s, at the core of the two popular languages OCaml and Haskell. Datatypes

stress the algebraic structure of data while parametric polymorphism allows to exploit universal

properties of algorithms working on algebraic structures and is a key to modular programming

and reusability.

Datatype de�nitions are inductively de�ned as labeled sums and products over primitive types.

However, the same data can o�en be represented with two isomorphic data-structures, using a

di�erent arrangement of sums and products. Two data-structures may also di�er in minor ways,

for instance sharing the same recursive structure, but one carrying an extra information at some

speci�c nodes. Having established the structural ties between two datatypes, one soon realizes that

both admit strikingly similar functions, operating similarly over their common structure. Users

sometimes feel they are repeatedly programming the same operations over and over again with

only minor variations. �e refactoring process by which one adapts existing code to work on

another, similarly-structured datatype requires non-negligible e�orts from the programmer. Can

this process be automated?

�e strong typing discipline of ML is already very helpful for code refactoring. When modifying

a datatype de�nition, it points out all the ill-typed occurrences where some rewriting ought to be

performed. However, while in most cases the adjustments are really obvious from the context, they

still have to be manually performed, one a�er the other. Furthermore, changes that do not lead to

type errors will be le� unnoticed.

Our goal is not just that the new program typechecks, but to carefully track all changes in

datatype de�nitions to automate most of this process. Besides, we wish to have some guarantee

�?. XXXX-XXXX/�?/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:2 Thomas Williams and Didier Rémy

that the new version behaves consistently with the original program except for the code that is

manually added.

�e recent theory of ornaments [3, 4] seems the right framework to tackle these challenges.

It de�nes conditions under which a new datatype de�nition can be described as an ornament of

another. In essence, an ornament is a simple relation between two datatypes—with some restriction

that will be given below. Williams et al. have already explored the interest of ornamentation in the

context of ML and sketched how functions operating on some datatype could be semi-automatically

li�ed to work on its ornamented version instead [19]. We build on their work, also considering an

ML se�ing where ornaments are a primitive notion rather than encoded; we both generalize and

formalize their approach. We also propose new typical uses of ornaments.

Our contributions are the following: we extend the de�nition of ornaments to the higher-order

se�ing and to recursively de�ned ornaments; we give ornaments a semantics using logical relations,

establishing a close correspondence between the bare code and the li�ed code (�eorem 9.9);

we propose a principled approach to the li�ing process, with a posteriori abstraction of the bare

code to a most general syntactic elaborated form, before it is instantiated into a concrete li�ing,

meta-reduced, and simpli�ed back to ML code; this appears to be a general schema for refactoring

tools that should be useful for transformations other than just ornamentation; we introduce an

intermediate meta-language above ML with a restricted form of dependent types, which are used

to keep track of selected branches during pa�ern matching, and could perhaps also be useful for

other purposes.

�e rest of the paper is organized as follows. In the next section, we introduce ornaments by

means of examples. �e li�ing process, which is the core of our contribution is presented intuitively

in section §3. We introduce the meta-language in §4 and present its meta-theoretical properties in §5.

We introduce a logical relation on meta-terms in §6 that serves both for proving the meta-theoretical

properties and for the li�ing elaboration process. In §7, we show how the meta-construction can

be eliminated by meta-reduction. In §8, we give a formal de�nition of ornaments, based on a

logical relation. In §9, we formally describe the li�ing process that transforms a li�ing declaration

into actual ML code, and we justify its correctness. We discuss our implementation and possible

extensions in §10 and related works in §11.

2 Examples of ornaments

Let us discover ornaments by means of examples. All examples preceded by a blue vertical bar have

been processed by a prototype implementation
1
, which follows an OCaml-like

2
syntax. Output of

the prototype appears with a wider green vertical bar. �e code that appears without a vertical mark

is internal intermediate code for sake of explanation and has not been processed. (Our prototype

implementation also comes with a small library of examples
1
.)

2.1 Code refactoring

�e most striking application of ornaments is the special case of code refactoring, which is an

o�en annoying but necessary task when programming. We start with an example reorganizing a

sum data structure into a sum of sums. Consider the following datatype representing arithmetic

1
Available as a joint artifact.

2
h�p://caml.inria.fr/

, Vol. 1, No. 1, Article 1. Publication date: January �?.

http://caml.inria.fr/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:3

expressions, together with an evaluation function.

type expr =

| Const of int
| Add of expr ∗ expr
| Mul of expr ∗ expr

let rec eval a = match a with
| Const i → i
| Add (u, v) → add (eval u) (eval v)

| Mul (u, v) → mul (eval u) (eval v)

�e programmer may realize that the binary operators Add and Mul can be factorized, and thus

prefer the following version expr' using an auxiliary type of binary operators (given on the le�-hand

side of the next code). �ere is a relation between these two types, which we may describe as an

ornament oexpr from the base type expr to the ornamented type expr' (right-hand side).

type binop = Add' | Mul'
type expr' =

| Const' of int
| Binop' of binop ∗ expr' ∗ expr'

type ornament oexpr : expr⇒ expr' with
| Const i ⇒ Const' i
| Add (u, v) ⇒ Binop' (Add', u, v) when u v : oexpr
| Mul (u, v) ⇒ Binop' (Mul', u, v) when u v : oexpr

�is de�nition is to be understood as

type ornament oexpr : expr⇒ expr' with
| Const i− ⇒ Const' i+ when i− ⇒ i+ in int
| Add (u−, v−)⇒ Binop' (Add', u+, v+) when u− ⇒ u+ and v− ⇒ v+ in oexpr
| Mul (u−, v−) ⇒ Binop' (Mul', u+, v+) when u− ⇒ u+ and v− ⇒ v+ in oexpr

�is recursively de�nes the oexpr relation. A clause “x− ⇒ x+ in orn” means that x− and x+ should

be related by the ornament relation orn. �e �rst clause is the base case. By default, the absence of

ornament speci�cation for variable i (of type int) has been expanded to “when i− ⇒ i+ in int” and

means that i− and i+ should be related by the identity ornament at type int , which is also named

int for convenience. �e next clause is an inductive case: it means that Add(u−, v−) and Binop'
(Add'(u+, v+)) are in the oexpr relation whenever u− and u+ on the one hand and v− and v+ on the

other hand are already in the oexpr relation.

In this example, the relation happens to be an isomorphism and we say that the ornament is a

pure refactoring. Hence, the compiler now has enough information to automatically li� the old

version of the code to the new version. We just request this li�ing as follows:

let eval' = li�ing eval : oexpr→

�e expression oexpr→ is an ornament signature, which follows the syntax of types but replacing

type constructors by ornaments. (�e wildcard is part of the ornament speci�cation that may be

inferred; it could have been replaced by int, which is an abstract type and is not ornamented, so

we may use int in place of an identity ornament.) Here, the compiler will automatically elaborate

eval' to the expected code, without any further user interaction:

let rec eval' a = match a with
| Const' i → i
| Binop' (Add', u, v) → add (eval' u) (eval' v)

| Binop' (Mul', u, v) → mul (eval' u) (eval' v)

Not only this is well-typed, but the semantics is also preserved—by construction. Notice that a pure

refactoring also works in the other direction: we could have instead started with the de�nition of

eval' , de�ned the reverse ornament from expr' to expr, and obtained eval as a li�ing of eval' .
Pure refactoring as oexpr are degenerated, but quite interesting cases of ornaments because the

li�ing process is fully automated. �us, the restriction of ornaments to pure refactoring is already

a very useful application. Besides, proper ornaments as described next that decorate an existing

node with new pieces of information can o�en be decomposed into a possibly complex but pure

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:4 Thomas Williams and Didier Rémy

refactoring and another proper, but hopefully simpler ornament. Notice that pure code refactoring

need not even de�ne a new type. One such example is to permute values of a boolean type:

type bool = True | False
type ornament not : bool⇒ bool with True⇒ False | False⇒ True

�en, we may de�ne bor as a li�ing of band, and the compiler carefully inverts the constructors:

let band u v = match u with True→ v | False→ False
let bor = li�ing band : not → not → not
let bor u v = match u with
| True→ True
| False→ v

It may also do this selectively, only at some given occurrences of the bool type. For example, we

may only invert the �rst argument:

let bnotand = li�ing band : not→ bool→ bool
let bnotand u v = match u with
| True→ False
| False→ v

Still, the compiler will carefully reject inconsistencies, such as:

let bandnot = li�ing band : bool→ not→ bool

Indeed, the result should be an ornament of bool.

2.2 Code refinement

Code re�nement is an example of a proper ornament where the intention is to derive new code

from existing code, rather than modify existing code and forget the original version a�erwards. To

illustrate code re�nement, observe that lists can be considered as an ornament of Peano numerals:

type nat = Z | S of nat

type 'a list = Nil | Cons of 'a ∗ 'a list

type ornament 'a natlist : nat⇒ 'a list with
| Z⇒ Nil
| S m⇒ Cons (, m) when m : 'a natlist

Here, the (parametrized) ornament relation 'a natlist is not an isomorphism: a natural number

S m− will be in relation with all values of the form Cons (x, m+) as long as m− is in relation with

m+, for any x. We use an underscore instead of x on the right-hand side to emphasize that x does

not appear on the le�-hand side and thus freely ranges over values of its type. Hence, the mapping

from nat to 'a list is incompletely determined, since we do not know which element to a�ach to a

Cons node coming from a successor node. (Here, the ornament de�nition may also be read in the

reverse direction, which de�nes a projection from 'a list to nat, the length function! but we do

not use this information herea�er.)

�e addition on numbers may have been de�ned as follows on the le�-hand side:

let rec add m n = match m with
| Z→ n
| S m'→ S (add m' n)

val add : nat → nat → nat

let rec append m n = match m with
| Nil → n
| Cons (x, m') → Cons(x, append m' n)

val append : 'a list → 'a list → 'a list

Observe the similarity with append, given above on the right-hand side. Having already recognized

an ornament between nat and list , we expect append to be de�nable as a li�ing of add (below, on

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:5

the le�). However, this returns an incomplete li�ing (on the right):

let append0 =

li�ing add
: natlist → natlist → natlist

let rec append0 m n = match m with
| Nil → n
| Cons (x, m') → Cons (#2, append0 m' n)

Indeed, this requires building a cons node from a successor node, which is underdetermined. �is

is reported to the user by leaving a labeled hole #2 in the generated code. �e programmer may use

this label to provide a patch that will �ll this hole. �e patch may use all bindings that were already

in context at the same location in the bare version. In particular, the �rst argument of Cons cannot

be obtained directly, but only by matching onm again:

let append = li�ing add : natlist → natlist → natlist
with #2←match m with Cons(x,)→ x

�e li�ing is now complete, and produces exactly the code of append given above. �e super�u-

ous pa�ern matching in the patch has been automatically removed: the patch “match m with
Cons(x0,)→ x0” has not just been inserted in the hole, but also simpli�ed by observing that x0 is

actually equal to x and need not be extracted again from m. �is simpli�cation process relies on

the ability of the meta-language to maintain equalities between terms via dependent types, and

is needed to make the li�ed code as close as possible to manually wri�en code. �is is essential,

since the li�ed code may become the next version of the source code to be read and modi�ed by

the programmer. �is is a strong argument in favor of the principled approach that we present

next and formalize in the rest of the paper.

Although the hole cannot be uniquely determined by ornamentation alone, it is here the obvious

choice: since the append function is polymorphic we need an element of the same type as the

unnamed argument of Cons, so this is the obvious value to pick—but not the only one, as one could

also look further in the tail of the list. Instead of giving an explicit patch, we could give a tactic

that would �ll in the hole with the “obvious choice” in such cases. However, while important in

practice, this is an orthogonal issue related to code inference which is not the focus of this work.

Below, we stick to the case where patches are always explicitly determined and we always leave

holes in the skeleton when patches are missing.

�is example is chosen here for pedagogical purposes, as it illustrates the key ideas of ornamen-

tation. While it may seem anecdotal, there is a strong relation between recursive data structures

and numerical representations at the heart of several works [8, 15].

2.3 Global compilation optimizations

Interestingly, code refactoring can also be used to enable global compilation optimizations by

changing the representation of data structures. For example, one may use sets whose elements are

members of a large sum datatype τI
4

= Σj ∈JAj | Σ
k ∈K (Ak of τk) where τ J is the sum Σj ∈JAj , say τ J

containing a few constant constructors and τK are the remaining cases. One may then chose to

split cases into two sum types τ J and τK and use the isomorphism τI set ≈ τ J set× τK set to enable

the optimization of τ J set, for example by representing all cases as an integer—when |J | is not too

large.

2.4 Hiding administrative data

Sometimes data structures need to carry annotations, which are useful information for certain

purposes but not at the core of the algorithms. A typical example is location information a�ached

to abstract syntax trees for error reporting purposes. �e problem with data structure annotations

is that they o�en obfuscate the code. We show how ornaments can be used to keep programming

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:6 Thomas Williams and Didier Rémy

on the bare view of the data structures and li� the code to the ornamented view with annotations.

In particular, scanning algorithms can be manually wri�en on the bare structure and automatically

li�ed to the ornamented structure with only a few patches to describe how locations must be used

for error reporting.

Consider for example, the type of λ-expressions and its call-by-name evaluator:

type 'a option =

| None
| Some of 'a

type expr =

| Abs of (expr→ expr)
| App of expr ∗ expr
| Const of int

let rec eval e = match e with
| App (u, v) →

(match eval u with Some (Abs f)→ Some (f v)

| → None)

| v → Some (v)

�e datatype expr' that holds location information can be presented as an ornament of expr:

type loc = Location of string ∗ int ∗ int
type expr' =

| App' of (expr' ∗ loc) ∗ (expr' ∗ loc)

| Abs' of (expr' ∗ loc → expr' ∗ loc)

| Const' of int

type ornament add loc : expr⇒ expr' ∗ loc with
| Abs f ⇒ (Abs' f ,) when f : add loc→ add loc
| App (u, v) ⇒ (App' (u, v),) when u v : add loc
| Const i ⇒ (Const' i ,)

�e datatype for returning results is an ornament of the option type:

type ('a , 'err) result =

| Ok of 'a
| Error of 'err

type ornament ('a, 'err) optres :

'a option⇒ ('a , 'err) result with
| Some a⇒ Ok a
| None⇒ Error

If we try to li� the function without further information,

let eval incomplete = li�ing eval : add loc→ (add loc, loc) optres

the system will only be able to do a partial li�ing, unsurprisingly:

let rec eval incomplete e = match e with
| (App'(u, v), x) →

begin match (∗ 2 ∗) eval incomplete u with
| Ok (App'(u, v), x) → Error #4

| Ok (Abs' f , x) → Ok (f v)

| Ok (Const' i , x) → Error #4

| Error x → Error #4

end
| (Abs' f , x) → Ok e
| (Const' i , x) → Ok e

Indeed, in the erroneous case eval' must now return a value of the form Error (…) instead of

None, but it has no way to know which arguments to pass to the constructor, hence the holes

labeled #4. Notice that the prototype has exploded the wild pa�ern to consider all possible cases

at occurrences that have been scrutinized in another branch, and thus requires patches in three

places, but they all share the same label as they have the same origin. Two of these patches are

actually di�erent depending on whether the recursive call to eval incomplete succeeds.

To complete the li�ing, we provide the following patch, using the auxiliary identi�er 2 to refer

to the inner match expression, as indicated in the inferred code.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:7

let eval loc = li�ing eval : add loc→ (add loc, loc) optres with
| #4 ← begin match 2 with Error err→ err

| Ok → (match e with (, loc)→ loc) end

We then obtain the expected complete code:

let rec eval loc e = match e with
| (App'(u, v), loc) →

begin match eval loc u with
| Ok (App'(u, v), x) → Error loc
| Ok (Abs' f , x) → Ok (f v)

| Ok (Const' i , x) → Error loc
| Error err → Error err

end
| (Abs' f , loc) → Ok e
| (Const' i , loc) → Ok e

Common branches could actually be refactored using wildcard abbreviations whenever possible,

leading to the following code, but this has not been implemented yet:

let rec eval loc e →match e with
| App' (u, v), loc →

begin match eval loc u with
| Ok (Abs' f , loc) → Ok (f v)

| Ok (,) → Error loc
| Error err → Error err

end
| → Ok e

While this example is limited to the simple case where we only read the abstract syntax tree, some

compilation passes o�en need to transform the abstract syntax tree carrying location information

around. More experiment is still needed to see how the ornament approach scales up here to more

complex transformations. �is might be a case where appropriate tactics for �lling the holes could

be helpful.

�is example suggests a new use of ornaments in a programming environment where the bare

code and the li�ed code will be kept in sync, and the user will be able to switch between the two

views, using the bare code for the core of the algorithm that need not see the decorations and the

li�ed code only when necessary.

2.5 Higher-order and recursive types
Li�ing also works with higher-order types and recursive datatype de�nitions with negative oc-

curences. For example, we could extend arithmetic expressions with nodes for abstraction and

application, with functions represented by functions of the host language:

type expr =

| Const of int
| Add of expr ∗ expr
| Mul of expr ∗ expr
| Abs of (expr→ expr option)

| App of expr ∗ expr

�en, the evaluation function is partial:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:8 Thomas Williams and Didier Rémy

let rec eval e = match e with
| Const i → Some(Const i)
| Add (u , v) →

begin match (eval u, eval v) with
| (Some (Const i1), Some (Const i2))→ Some(Const (add i1 i2))

| → None
end

| Mul (u , v) →

begin match (eval u, eval v) with
| (Some (Const i1), Some (Const i2))→ Some(Const (mul i1 i2))

| → None
end

| Abs f → Some(Abs f)
| App(u, v) →

begin match eval u with
| Some(Abs f)→ begin match eval v with None→ None | Some x→ f x end
| → None
end

val eval : expr → expr option

We could still prefer the following representation factoring the arithmeric operations:

type binop' =

| Add'
| Mul'

type expr' =

| Const' of int
| Binop' of binop' ∗ expr' ∗ expr'
| Abs' of (expr' → expr' option)

| App' of expr' ∗ expr'

�en, we can de�ne an ornament between these types, despite the presence of functions and

negative occurences in the type:

type ornament oexpr : expr⇒ expr' with
| Const (i) ⇒ Const' (i)

| Add (u , v) ⇒ Binop' (Add' , u , v) when u v : oexpr
| Mul (u , v) ⇒ Binop' (Mul' , u , v) when u v : oexpr
| Abs f ⇒ Abs' f when f : oexpr→ oexpr option
| App (u , v) ⇒ App' (u , v) when u v : oexpr

In the clause of Abs, the li�ing of the argument is speci�ed by an higher-order ornament type

oexpr→ oexpr option that recursively uses oexpr as argument of another type, and on the le� of a

an arrow. We can then use this to li� the function eval:

let eval' = li�ing eval : oexpr→ oexpr option
with ornament ∗←@id
val eval' : expr' → expr' option

�e annotation ornament ∗←@id indicates that, for all ornaments that are not otherwise con-

strained, the identity ornament should be used by default. �is is necessary because we create and

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:9

destruct a tuple in eval, but the type of the tuple does not appear in the signature, so we cannot

specify the ornament that should be used through the signature. We give more details in §3.4.

2.6 Partiality

Ornaments de�ne a relation between the bare type and the ornamented type. �ey are de�ned

syntactically, both sides being linear pa�ern expressions. Moreover, the pa�ern for the ornamented

type should be total, i.e. match all expressions of the ornamented type. Conversely, the pa�ern

of the bare type need not be total. When li�ing a pa�ern matching with a partial ornament, the

inaccessible cases will be dropped. On the other hand, when constructing a value that is impossible

in the li�ed type, the user will be asked to construct a patch of the empty type, which could be

�lled for example by an assertion failure. In some cases, the simpli�cation will notice that all

constructions are possible.

For example, notice that our evaluation function de�ned in the previous section only returns in a

small subset of values and that the functions are only called with values, since this is a call-by-value

evaluator. �en, the following type would represent these invariants more accurately:

type expr'' =

| Const'' of int
| Binop'' of binop' ∗ expr'' ∗ expr''
| Abs'' of (value'' → value'' option)

| App'' of expr'' ∗ expr''
and value'' =

| Int'' of int
| Fun'' of (value'' → value'' option)

with the signature of eval'' being:

val eval'' : expr'' → value'' option

We can relate this new representation to the representation expr' by the following mutually

recursive ornaments: while oexpr' is able to map all expression constructors, the ornament oval' is

partial and only maps the constructors that actually correspond to values. �is is an ornament,

because deleting a constructor is equivalent to asking for an information that cannot be produced

(i.e. a value of the empty type). We still have to match all possible constructors, but we map them

to the empty pa�ern, wri�en ˜.

type ornament oexpr' : expr'⇒ expr'' with
| Const' (i) ⇒ Const'' (i)

| Binop' (o , u , v) ⇒ Binop'' (o , u , v) when u v : oexpr'
| Abs' f ⇒ Abs'' f when f : oval' → oval' option
| App' (u , v) ⇒ App'' (u , v) when u v : oexpr'

and oval' : expr' ⇒ value'' with
| Const' i ⇒ Int'' i
| Abs' f ⇒ Fun'' f when f : oval' → oval' option
| Binop'(o,u,v) ⇒ ˜

| App'(u,v) ⇒ ˜

�en, we may li� eval' :

let eval'' = li�ing eval' : oexpr' → oval' option
with ornament ∗←@id

�is ornament does not preserve the recursive structure of the original datatype: the recursive

occurences are transformed into values or expressions depending on their position. �is is a

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:10 Thomas Williams and Didier Rémy

di�erence with prior works [3, 4, 19]: we do not treat recursion speci�cally. Hence, mutually

recursion is not a problem at all, and we can for instance ornament a mutually recursive de�nition

of trees and forests. We may also modify the recursive structure during ornamentation. �ere are

still some limitations during li�ing: since we preserve the structure of the code, we are not able to

transform a single recursive function into a mutually recursive function. �is limits possible li�ing

to those that do not require this unfolding, although unfolding could be done in a preprocessing

pass if needed.

Notice that we could not write a projection function from expr'' to expr', since the behaviour of

the functions in the tree on non-values in not speci�ed anymore. �us, ornaments allow richer

transformations than could be expressed using functions projecting from the ornamented type to

the base type.

3 Overview of the lifting process

Whether used for refactoring or re�nement, ornaments are about code reuse. Code reuse is usually

obtained by modularity, which itself relies on both type and value abstraction mechanisms. Typically,

one writes a generic function дen that abstracts over the representation details, say described by a

structure s of operations on a type τ . Hence, a concrete implementation a is schematically obtained

by the application дen τ s; changing the representation to a small variation of the structure s ′ on

type τ ′, we immediately obtain a new implementation дen τ ′ s ′, say a′.
Although the case of ornamentation seems quite di�erent, as we start with a non-modular imple-

mentation a, we may still get inspiration from the previous schema: modularity through abstraction

and polymorphism is the essence of good programming discipline. Hence, instead of directly going

from a to a′ on some ad hoc track, we may �rst �nd a modular presentation of a as an application

aдen τ s so that moving from a to a′ is just �nding the right parameters τ ′ and s ′ to pass to aдen .

�is is depicted on Figure 1. In our case, the elaboration that �nds the generic termaдen is syntactic

and only depends on the source term a. Hence, the same generic term aдen may be used for di�erent

li�ings of the same source code. �e specialization process is actually performed in several steps,

as we do not want a′ to be just the application of aдen τ ′ s ′, but be presented in a simpli�ed

form as close as possible as to the term we started with and as similar as possible to the code the

programmer would have manually wri�en. Hence, a�er instantiation, we perform meta-reduction,

which eliminates all the abstractions that have been introduced during the elaboration—but not

others. �is is followed by simpli�cations that will mainly eliminate intermediate pa�ern matchings.

Having recovered a generic, modular schema, we may use parametricity results, based on logical

relations. As long as the arguments s and s ′ passed to the polymorphic function aдen are related—

and they are by the ornamentation relation!—the two applications aдen τ s and aдen τ ′ s ′ are

also related. Since meta-reduction preserves logical equivalence, it only remains to check that the

simpli�cation steps also preserve equivalence to establish a relationship between the bare term a
and the li�ed term a′ (see §7).

�e li�ing process is formally described in section §9. In the rest of this section, we present it

informally on our running example.

3.1 Encoding ornaments

Ornamentation only a�ects datatypes, so a program can be li�ed by simply inserting some code

to translate from and to the ornamented type at occurrences where the base datatype is either

constructed or destructed in the original program.

We now explain how this code can be automatically inserted by li�ing. For sake of illustration,

we proceed in several incremental steps.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:11

a ∼ aдen τ s

aдen
a0 = aдen τ

′ s ′

a1

a′ ∼ aдen τ
′ s ′

elaboration

li�ing

instantiation

specialization

trivial

specialization

meta-reduction

simpli�cation

Fig. 1. Overview of the lifting process

Intuitively, the append function should have the same structure as add, and operate on con-

structors Nil and Cons similarly to the way add proceeds with constructors S and Z. To make this

correspondence explicit, we may see a list as a nat-like structure where just the head of the list

has been transformed. For that purpose, we introduce an hybrid open version of the datatype of

Peano naturals, called the skeleton, using new constructors Z' and S' corresponding to Z and S but

remaining parameterized over the type of the argument of the constructor S:

type 'a nat skel = Z' | S' of 'a

We de�ne the head projection of a list into nat skel3 where the head is transformed and the tail

stays a list:

let proj nat list : 'a list → 'a list nat skel = fun m //=⇒match m with
| Nil → Z'
| Cons (, m') → S' m'

We use annotated versions of abstractions fun x //=⇒ a and applications a#b called meta-functions

and meta-applications to keep track of helper code and distinguish it from the original code, but

these can otherwise be read as regular functions and applications.

Once an 'a list has been turned into 'a list nat skel, we can pa�ern match on it in the same

way we matched on nat in the de�nition of add. Hence, the de�nition of append should look like:

let rec append1 m n = match proj nat list # m with
| Z' → n
| S' m'→ … S' (append1 m' n) …

In the second branch, we must construct a list out of the hybrid list-nat skeleton S' (append1 m' n).

We use a helper function:

| S' m'→ cstr nat list 1 (S'(append m' n)) …

Of course, cstr nat list requires some supplementary information x to put in the head of the list:

let cstr nat list : 'a list nat skel → 'a → 'a list = fun n x //=⇒match n with
| Z' → Nil
| S' n' → Cons (x, n')

As explained above (§2.2), this supplementation is (match m with Cons (x,)→ x). and must be

user provided as patch #2. Hence, the li�ing of add into lists is:

3
Our naming convention is to use the su�x nat list for the functions related to the ornament from nat to list .

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:12 Thomas Williams and Didier Rémy

let rec append2 m n = match proj nat list # m with
| Z' → n
| S' m'→ cstr nat list # (S'(append2 m' n)) # (match m with Cons (x,)→ x)

�is version is correct, but not �nal yet, as it still contains the intermediate hybrid structure, which

will eventually be eliminated.

However, before we see how to do so in the next section, we �rst check that our schema extends

to more complex examples of ornaments. Assume, for instance, that we also a�ach new information

to the Z constructor to get lists with some information at the end, which could be de�ned as:

type ('a , 'b) listend = Nilend of 'b | Consend of 'a ∗ ('a , 'b) listend

We may write encoding and decoding functions as above:

let proj nat listend = fun l →match l with
| Nilend → Z'
| Consend (,l') → S' l'

let cstr nat listend = fun n x→match n with
| Z' → Nilend x
| S' l' → Consend (x,l')

However, a new problem appears: we cannot give a valid ML type to the function cstr nat listend ,

as the argument x should take di�erent types depending on whether n is zero or a successor. �is

is solved by adding a form of dependent types to our intermediate language—and �nely tuned

restrictions to guarantee that the generated code becomes typeable in ML a�er some simpli�cations.

�is is the purpose of the next section.

3.2 Eliminating the encoding

�e mechanical ornamentation both creates intermediate hybrid data structures and includes extra

abstractions and applications. Fortunately, these additional computations can be avoided, which

not only removes sources of ine�ciencies, but also helps generate code with fewer indirections

that is more similar to hand-wri�en code.

We �rst perform meta-reduction of append2, which removes all helper functions (we actually

give di�erent types to ordinary and meta functions so that meta-functions can only be applied

using meta-applications and ordinary functions can only be applied using ordinary applications):

let rec append3 m n = match (match m with Nil→ Z' | Cons (x, m')→ S' m') with
| Z'→ n
| S' m'→ b where b is match S'(append3 m' n) with

| Z' −> Nil

| S' r' → Cons ((match m with Cons(x,)→ x), r')

(�e grayed out branch is inaccessible). Still, append3 computes two pa�ern matchings that do

not appear in the manually wri�en version append. Interestingly, both of them can be eliminated.

Extruding the inner match on m in append3, we get:

let rec append4 m n = match m with
| Nil → (match Z' with Z'→ n | S' m' −> b)

| Cons (x, m') → (match S' m' with Z' −> n | S' m'→ b)

Since we know that m is equal to Cons(x,m') in the Cons branch, the expression b simpli�es

to Cons(x, append m' n). A�er removing all remaining dead branches, we obtain the manually

wri�en version append:

let rec append = fun m n→
match m with
| Nil → n
| Cons (x, m') → Cons (x, append m' n)

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:13

3.3 Inferring a generic lifting

We have shown a speci�c ornamentation append of add. However, instead of producing such

an ornamentation directly, we �rst generate a generic li�ing of add, as explained above, that is

abstracted over all possible instantiations and patches, and only then specialize it to some speci�c

ornamentation by passing the encoding and decoding functions as arguments, as well as a set of

patches describing how to generate the additional data.

Let us detail this process on the add running example, which we remind below.

let rec add = fun m n→match m with
| Z→ n
| S m'→ S(add m' n)

�ere are two places where add can be generalized: the pa�ern matching on m, and the construc-

tion S(add m' n) in the successor branch. We do not generalize the base case because we want

to preserve the syntactical structure of add. �e ornamentation constraints are analyzed using

a form of elaborating type inference, by simultaneously inferring ornaments and inserting the

corresponding code transformations: we infer that m can be replaced by any ornament nat ty of

naturals, which will be given by a pair of functions mproj and mcstr to destruct nat ty into a nat skel
and construct a nat ty from a nat skel, respectively; we also infer that n and the result must be

the same ornament of naturals, given by another pair of functions nproj and ncstr. We thus obtain

a description of all possible syntactic ornaments of the base function, i.e. those ornaments that

preserve the structure of the original code:

let add gen = fun mproj mcstr nproj ncstr p1
//=⇒

let rec add gen' m n = match mproj # m with
| Z' → n
| S' m'→ ncstr # S'(add gen' m' n) # (p1 # add gen' # m # m' # n)

in add gen'

Notice that since m is only destructured and n is only constructed, mcstr and nproj are unused in this

example, but we keep them as parameters for regularity of the encoding. �e patch p1 describes

how to obtain the missing information from the environment (namely add gen, m, n, m') when

building a value of the ornamented type. While the parameters mproj, mcstr, nproj, ncstr will be

automatically instantiated, the code for patches will have to be user-provided.

�e generalized function abstracts over all possible ornaments, and must now be instantiated by

some speci�c ornaments. For a trivial example, we may decide to ornament nothing, i.e. just li� nat
to itself using the identity ornament on nat, which amounts to passing to add gen the following

trivial functions:

let proj nat nat = fun x //=⇒

match x with Z→ Z' | S x→ S' x
let cstr nat nat = fun x () //=⇒

match x with Z'→ Z | S' x→ S x

�ere is no information added, so we may use the following unit patch for p1 (the information

returned will be ignored anyway):

let unit patch = fun //=⇒ ()

let add1 = add gen # proj nat nat # cstr nat nat # proj nat nat # cstr nat nat # unit patch

As expected, meta-reducing add1 and simplifying the result returns the original program add.

We may also instantiate the generic li�ing add gen with the ornament between natural numbers

and lists and the following patch:

let append patch = fun m //=⇒match m with Cons(x,)→ x
let append5 = add gen # proj nat list # cstr nat list # proj nat list # cstr nat list # append patch

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:14 Thomas Williams and Didier Rémy

EnvE

` ∅

EnvVar

` Γ
Γ ` τ : Sch x # Γ

` Γ,x : τ

EnvTVar

` Γ
Γ ` κ : wf α # Γ

` Γ,α : κ

K-Var

α : Typ ∈ Γ

Γ ` α : Typ

K-Base

ζ : (Typ)i → Typ (Γ ` τi : Typ)i

Γ ` ζ (τi)i : Typ

K-Arr

Γ ` τ1 : Typ Γ ` τ2 : Typ

Γ ` τ1 → τ2 : Typ

K-SubTyp

Γ ` τ : Typ

Γ ` τ : Sch

K-All

Γ,α : κ ` τ : Sch

Γ ` ∀α : Typ τ : Sch

Fig. 2. Kinding rules for ML

Meta-reduction of append5 gives append2 which can then be simpli�ed to append, as explained

above.

�e generic li�ing is not exposed as is to the user because it is not convenient to use directly.

Positional arguments are not practical, because one must reference the generic term to understand

the role of each argument. We can solve this problem by a�aching the arguments to program

locations and exposing the correspondence in the user interface. For example, in the li�ing of add
to append shown in the previous section, the location #2 corresponds to the argument p1.

Patches can be automatically inferred in some cases: some patches are trivial such as the unit

patch in the li�ing of add to itself, and some other patches disappear because they are located in a

dead branch.

3.4 Lifting and ornament specifications

A li�ing de�nition comes with an ornament signature which is propagated during the elaboration

to choose the appropriate ornaments and li�ings of the types appearing in the de�nition. �is

process will be described in §9. However, this mechanism is not always su�cient for specifying

all ornaments. In particular, it cannot describe the ornament of types of subexpressions used for

auxiliary computations that do not appear in the type of the whole expression. In such cases, the

elaboration is incomplete or fails and additional information must be provided as additional li�ing

rules. We may tell the elaboration to choose natlist whenever an unspeci�ed ornament of nat is

needed. A common situation is to use the identity ornament by default (if no other rule applies).

During elaboration, required li�ings are chosen in the environment of already existing ones.

Even when the ornament type is fully determined, a li�ing may be required at some type while

none or several
4

are available. In such situations, li�ing information must also be provided as

additional rules.

4 Meta ML

As explained above (§3), we elaborate programs into an extended meta-language mML that extends

ML with dependent types and has separate meta-abstractions and meta-applications. We describe

mML as an extension of ML in two steps: we �rst enrich the language with equality constraints

in typing judgments, obtaining an intermediate language eML. We then add meta-operations to

obtain mML. Our design is carefully cra�ed so that programs that have an mML typing containing

only eML types can be meta-reduced to eML (�eorem 5.38). Moreover, under additional conditions,

these can be simpli�ed into ML programs (§7). It is also an important aspect of our design that

4
Indeed, there may be two li�ing of the same function with the same ornament but di�erent patches.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:15

κ ::= Typ | Sch
τ ,σ ::= α | τ → τ | ζ τ | ∀(α : Typ) τ

Γ ::= ∅ | Γ,x : τ | Γ,α : Typ
ζ ::= unit | bool | nat | list | . . .

a,b ::= x | let x = a in a | fix (x : τ) x . a | a a | a τ

| Λ (α : Typ). u | d τ a | match a with P → a

P ::= d τ x

v ::= d τ v | fix (x : τ) x . a

u ::= x | d τ u | fix (x : τ) x . a | u τ | Λ (α : κ). u

| let x = u in u | match u with P → u

Fig. 3. Syntax of ML

Var

` Γ x : σ ∈ Γ

Γ ` x : σ

TAbs

Γ,α : Typ ` u : σ

Γ ` Λ (α : Typ). u : ∀(α : Typ) σ

TApp

Γ ` τ : Typ Γ ` a : ∀(α : Typ) σ

Γ ` a τ : σ [α ← τ]

Fix

Γ,x : τ1 → τ2,y : τ1 ` a : τ2

Γ ` fix (x : τ1 → τ2) y. a : τ1 → τ2

App

Γ ` b : τ1 Γ ` a : τ1 → τ2

Γ ` a b : τ2

Let-Mono

Γ ` τ ′ : Typ Γ ` a : τ ′ Γ,x : τ ′ ` b : τ

Γ ` let x = a in b : τ

Let-Poly

Γ ` σ : Sch Γ ` u : σ Γ,x : σ ` b : τ

Γ ` let x = u in b : τ

Con

d : ∀(α j : Typ) j (τi)i → τ (Γ ` τj : Typ) j (Γ ` ai : τi [α j ← τj]
j)i

Γ ` d (τj)
j (ai)

i
: τ [α j ← τj]

j

Match

Γ ` τ : Sch (di : ∀(αk : Typ)k (τi j)
j → ζ (αk)

k)i

Γ ` a : ζ (τk)
k (Γ, (xi j : τi j [αk ← τk]

k) j ` bi : τ)i

Γ ` match a with (di (τik)
k (xi j)

j → bi)
i

: τ

Fig. 4. Typing rules of ML

mML is only used as an intermediate to implement the generic li�ing and the elaboration process

and that li�ed programs eventually falls back in the ML subset.

Notation

We write (Qi)
i ∈I

for a tuple (Q1, ..Qn). We o�en omit the set I in which i ranges and just write

(Qi)
i
, using di�erent indices i , j, and k for ranging over di�erent sets I , J , and K ; we also write Q

if we do not have to explicitly mention the components Qi . In particular, Q stands for (Q, ..Q)
in syntax de�nitions. We write Q[zi ← Qi]

i ∈I
, or Q[zi ← Qi]

i
for short, for the simultaneous

substitution of zi by Qi in Q for all i in I .

4.1 ML

We consider an explicitly typed version of ML. In practice, the user writes programs with implicit

types that are elaborated into the explicit language, but we leave out type inference here for sake

of simplicity
5
. �e programmer’s language is core ML with recursion and datatypes. Its syntax is

5
�e issue of type inference is orthogonal, since the generic li�ing is obtained from the typed term.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:16 Thomas Williams and Didier Rémy

E ::= [] | E a | v E | d (v, ..v,E,a, .. a) | Λ (α : Typ). E | E τ | match E with P → a | let x = E in a

(fix (x : τ) y. a) v −→h
β a[x ← fix (x : τ) y. a,y ← v]

(Λ (α : Typ). v) τ −→h
β v[α ← τ]

let x = v in a −→h
β a[x ← v]

match dj τj (vi)
i with (dj τj (x ji)

i → aj)
j −→h

β aj [xi j ← vi]
i

Context-Beta

a −→h
β b

E[a] −→β E[b]

Fig. 5. Reduction rules of ML

described in Figure 3. To prepare for extensions, we slightly depart from traditional presentations.

Instead of de�ning type schemes as a generalization of monomorphic types, we do the converse

and introduce monotypes as a restriction of type schemes. �e reason to do so is to be able to see

both ML and eML as sublanguages of mML—the most expressive of the three. We use kinds to

distinguish between the types of the di�erent languages: for ML we only need a kind Typ, to classify

the monomorphic types, and its superkind Sch, to classify type schemes. Still, type schemes are

not �rst-class, since polymorphic type variables range only over monomorphic types, i.e. those of

kind Typ.

We assume given a set of type constructors, wri�en ζ . Each type constructor has a �xed

signature of the form (Typ, .. Typ) ⇒ Typ. We require that type expressions respect the kinds of

type constructors and type constructors are always fully applied.

�e grammar of types is given on the le�-hand side of Figure 3. Well formedness of types and

type schemes are asserted by judgments Γ ` τ : Typ and Γ ` τ : Sch, de�ned on Figure 7.

We assume given a set of data constructors. Each data constructor d comes with a type signature,

which is a closed type scheme of the form ∀(αi : Typ)i (τj) j → ζ (αi)
i
. For technical reasons, we

assume that all datatypes contain at least one value (note that function types always contain as a

value a function that takes an argument and never terminates). �is assumption could be relaxed,

at the cost of a more complex presentation. Pa�ern matching is restricted to complete, shallow

pa�erns. Instead of having special notation for recursive functions, functions are always de�ned

recursively, using the construction fix (f : τ1 → τ2) x . a. �is avoids having two di�erent syntactic

forms for values of function type. We still use the standard notation λ (x : τ1). a for non-recursive

functions, but we just see it as a shorthand for fix (f : τ1 → τ2) x . a where f does not appear free

in a and τ2 is the function return type.

�e language is equipped with a weak (no reduction under binders), le�-to-right, call-by-value

small-step reduction semantics. �e evaluation contexts E and the reduction rules are given in

Figure 5. �is reduction is wri�en −→β , and the corresponding head-reduction is wri�en −→h
β .

Reduction must proceed under type abstractions, so that we have a type-erasing semantics.

Typing environments Γ contain term variables x : τ and type variables α : Typ. Well-formedness

rules for types and environments are given in �gures 2 and 4. We use the convention that type

environments do not map the same variable twice. We write z # Γ to mean that z is fresh for Γ, i.e.

it is neither in the domain nor in the image of Γ. Kinding rules are straightforward. Rule K-SubTyp

says that any type of the kind Typ, i.e. a simple type, can also be considered as a type of the kind

Sch, i.e. a type scheme. �e typing rules are just the explicitly typed version of the ML typing

rules. Typing judgments are of the form Γ ` a : τ where Γ ` τ : Sch. Although we do not have

references, we still have a form of value restriction: Rule Let-Poly restricts polymorphic binding to

a class of non-expansive terms u, de�ned on Figure 3, that extends values with type abstraction,

application, pa�ern matching, and binding of non-expansive terms—whose reduction always

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:17

let x = u in b −→h
ι b[x ← u]

(Λ (α : Typ). u) τ −→h
ι u[α ← τ]

match dj τj (ui)
i with (dj τj (x ji)

i → τj)
j ∈J −→h

ι τj [x ji ← ui]
i

match dj τj (ui)
i with (dj τj (x ji)

i → aj)
j ∈J −→h

ι aj [x ji ← ui]
i

Context-Iota

a −→h
ι b

C[a] −→ι C[b]

Fig. 6. New reduction rules of eML

terminate. Binding of an expansive term is still allowed (and is heavily used in the elaboration), but

its typing is monomorphic as described by Rule Let-Mono.

4.2 Adding term equalities

�e intermediate language eML extends ML with term equalities and type-level matches. Type-level

matches may be reduced using term equalities accumulated along pa�ern matching branches.

We describe the syntax and semantics of eML below, but do not discuss its metatheory, as it is a

sublanguage of mML, whose meta-theoretical properties will be studied in the following sections.

�e syntax of eML terms is the same as that of ML terms, except for the syntax of types, which

now includes a pa�ern matching construct that matches on values and returns types. �e new

kinding and typing rules are given on Figure 7. We classify type pa�ern matching in Sch to prevent

it from appearing deep inside types. Typing contexts are extended with type equalities, which will

be accumulated along pa�ern matching branches:

τ ::= . . . | match a with P → τ Γ ::= . . . | Γ,a =τ b

A let binding introduces an equality in the typing context witnessing that the new variable is

equal to its de�nition, while we are typechecking the body (rules Let-eML-Mono and Let-eML-Poly);

similarly, both type-level and term-level pa�ern matching introduce equalities witnessing the branch

under selection (rules K-Match and Match-eML). Type-level pa�ern matching is not introduced by

syntax-directed typing rules. Instead, it is implicitly introduced through the conversion rule Conv.

It allows replacing one type with another in a typing judgment as long as the types can be proved

equal, as expressed by an equality judgment Γ ` τ1 ' τ2 de�ned on Figure 8.

We de�ne the judgment generically, as equality on kinds and terms will intervene later: we use

the metavariable X to stand for either a term or a type (and later a kind), and correspondingly,

Y stands for respectively a type, a kind (and later the sort of well-formed kinds). Equality is an

equivalence relation (C-Refl, C-Sym, C-Trans) on well-typed terms and well-kinded types. Rule

C-Red-Iota allows the elimination of type-level matches through the reduction −→ι , de�ned on

Figure 6, but also term-level matches, let bindings, type abstraction and type application. Since it is

used for equality proofs rather than computation, and in possibly open terms, it is not restricted to

evaluation contexts but can be performed in an arbitrary contextC and uses a call-by-non-expansive

term strategy. It does not include reduction of term abstractions, so as to be terminating. �e

equalities introduced in the context are used through the rule C-Eq. �is rule is limited to equalities

between non-expansive terms . Conversely, C-Split allows case-spli�ing on a non-expansive term

of a datatype, checking the equality in each branch under the additional equality learned from the

branch selection.

Finally, we allow a strong form of congruence (C-Context): if two terms can be proved equal,

they can be substituted in any context. �e rule is stated using a general context typing: we note

Γ ` C[Γ′ ` X : Y ′] : Y if there is a derivation of Γ ` C[X] : Y such that the subderivation concerning

X is Γ′ ` X : Y ′. �e context Γ′ will hold all equalities and de�nitions in the branch leading up

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:18 Thomas Williams and Didier Rémy

Conv

Γ ` τ1 ' τ2 Γ ` a : τ1

Γ ` a : τ2

EnvEq

` Γ Γ ` τ : Sch Γ ` a : τ Γ ` b : τ

` Γ,a =τ b

K-Match

Γ ` a : ζ (τk)
k (di : ∀(αk : Typ)k (τi j)

j → ζ (αk)
k)i

(Γ, (xi j : τi j [αk ← τk]
k) j ,a =ζ (τk)k di (τik)

k (xi j)
j ` τ ′i : Sch)i

Γ ` match a with (di (τik)
k (xi j)

j → τ ′i)
i

: Sch

Let-eML-Mono

Γ ` τ : Typ Γ ` a : τ
Γ,x : τ ,x =τ a ` b : τ ′

Γ ` let x = a in b : τ ′

Let-eML-Poly

Γ ` τ : Sch Γ ` u : τ
Γ,x : τ ,x =τ u ` b : τ ′

Γ ` let x = u in b : τ ′

Match-eML

Γ ` τ : Sch Γ ` a : ζ (τk)
k (di : ∀(αk : Typ)k (τi j)

j → ζ (αk)
k)i

(Γ, (xi j : τi j [αk ← τk]
k) j ,a =ζ (τk)k di (τi j)

k (xi j)
j ` bi : τ)i

Γ ` match a with (di (τi j)
k (xi j)

j → bi)
i

: τ

Fig. 7. New typing rules for eML

C-Refl

Γ ` X : Y

Γ ` X ' X

C-Sym

Γ ` X1 ' X2

Γ ` X2 ' X1

C-Trans

Γ ` X1 ' X2 Γ ` X2 ' X3

Γ ` X1 ' X3

C-Context

Γ ` C[Γ′ ` X1 : Y ′] : Y Γ ` X1 ' X2

Γ ` C[X1] ' C[X2]

C-Red-Iota

X1 −→ι X2 Γ ` X1 : Y1

Γ ` X1 ' X2

C-Eq

(u1 =τ u2) ∈ Γ
′

Γ ` u1 ' u2

C-Split

Γ ` u : ζ (αk)
k

(di : ∀(αk)
k (τi j)

j → ζ (αk)
k)i (Γ, (xi j : τi j [αk ← τk]

k) j ,u = di (τi j)
j (xi j)

j ` X1 ' X2)
i

Γ ` X1 ' X2

Fig. 8. Equality judgment for eML

to X . �is means that, when proving an equivalence under a branch, we can use the equalities

introduced by this branch.

Rule C-Context could have been replaced by one congruence rule for each syntactic construct of

the language, but this would have been more verbose, and would require adding new equality rules

when we extend eML to mML. Rule C-Context enhances the power of the equality. In particular,

it allows case spli�ing on a variable bound by an abstraction. For instance, we can show that

terms λ (x : bool). x and λ (x : bool). match x with True → True | False → False are equal, by

reasoning under the context λ (x : bool). [] and case-spli�ing on x . �is allows expressing a number

of program transformations, among which let extrusion and expansion, eta-expansion, etc. as

equalities. �is help with the ornamentation: almost all pre- and post-processing on the terms

preserve equality (for example in §7), and thus many other useful properties (for example, they can

to be put in the same contexts, and are interchangeable for the logical relation we de�ne in §6).

Under an incoherent context, we can prove equality between any two types: if the environment

contains incoherent equalities liked1 τ1 a1 = d2 τ2 a2 , we can prove equality of any two typesσ1 and

σ2 as follows: consider the two types σ ′i equal to match di τi ai with d1 τ1 a1 → σ1 | d2 τ2 a2 → σ2.

By C-Context and C-Eq, they are equal. But one reduces to σ1 and the other to σ2. �us, the code in

provably unreachable branches need not be well typed. When writing eML programs, such branches

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:19

κ ::= . . . | Met | τ → κ | ∀(α : κ) κ

τ ,σ ::= . . . | ∀] (α : κ). τ | Π(x : τ). τ | Π(� : a =τ a). τ | Λ
] (α : κ). τ | τ] τ | λ] (x : τ). τ | τ] a

a,b ::= . . . | λ] (x : τ). a | a]u | Λ] (α : κ). a | a] τ | λ] (� : a =τ a). a | a] �

u ::= . . . | λ] (x : τ). a | Λ] (α : κ). a | λ] (� : a =τ a). a

Fig. 9. Syntax of mML

can be simply ignored, for example by replacing their content with () or any other expression. �is

contrasts with ML, where one needs to add a term that fails at runtime, such as assert false.

Restricting equalities to be used only between non-expansive terms is necessary to get subject

reduction in eML: since reduction of beta-redexes is disable when testing for equality, we only allow

using equalities between terms that will never be a�ected by reduction of beta-redexes. We would

not have preservation otherwise. Consider for example the following term:

match (λ (x : unit). True) () with
| True→ match (λ (x : unit). True) () with True→ () | False→ 1 + True
| False→ ()

It would correctly type if we allowed the use of equalities between expansive terms: we could prove

from the equalities (λ (x : unit). True) () = True and (λ (x : unit). True) () = False that the branch

containing 1+True is dead. But, a�er one reduction step, the �rst occurrence of (λ (x : unit).True) ()
reduces to True, and to prove the incoherence we need to reduce the application in the second

occurrence, which we do not want to do to preserve termination of −→ι . �us we need to forbid

equalities between terms containing application in a position where it may be evaluated.

Instead of forbidding to introduce equalities between non-expansive terms, we check that

equalities are between non-expansive terms when they are used. In mML, this allows pu�ing some

equalities in the context, even if it is not known at introduction time that they will reduce (by

meta-reduction) to non-expansive terms because the values of some variables are yet unknown.

�e code that uses the equality must still be aware of the non-expansiveness of the terms.

We also restrict case-spli�ing to non-expansive terms. Since they terminate, this greatly simpli�es

the metatheory of eML.

Forbidding the reduction of application in −→ι makes −→ι terminate (see Lemma 5.40). �is

allows the transformation from eML to ML to proceed easily: in fact, the transformation can be

adapted into a typechecking algorithm for eML.

Note that full reduction would be unsound in eML: under an incoherent context, it is possible

to type expressions such as True True, i.e. progress would not hold if this were in an evaluation

context. However, full reduction is not part of the dynamic semantics of eML, but only used in its

static semantics to reason about equality. It is then unsurprising—and harmless that progress does

not hold under an incoherent context.

4.3 Adding meta-abstractions

�e language mML is eML extended with meta-abstractions and meta-applications, with two goals

in mind: �rst, we need to abstract over all the elements that appear in a context so that they can be

passed to patches; second, we need a form of strati�cation so that a well-typed mML term whose

type and typing context are in eML can always be reduced to a term that can be typed in eML,

i.e. without any meta-operations. �e program can still be read and understood as if eML and

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:20 Thomas Williams and Didier Rémy

(λ] (x : τ). a)]u −→h
]
a[x ← u]

(Λ] (α : κ). a)] τ −→h
]
a[α ← τ]

(λ] (� : b1 =τ b2). a)] � −→
h
]
a

(λ] (x : τ ′). τ)] u −→h
]
τ [x ← u]

(Λ] (α : κ). τ)] τ ′ −→h
]
τ [α ← τ ′]

Context-Meta

a −→h
]
b

C[a] −→] C[b]

Fig. 10. The −→] reduction for mML

S-Type

Γ ` Typ : wf
S-Scheme

Γ ` Sch : wf
S-Meta

Γ ` Met : wf

S-VArr

Γ ` τ : Met Γ ` κ : wf

Γ ` τ →` κ : wf

S-TArr

Γ ` κ1 : wf Γ,α : κ1 ` κ2 : wf

Γ ` ∀(α : κ1) κ2 : wf

Fig. 11. Well-formedness rules for mML

K-Conv

Γ ` τ1 : κ Γ ` κ ' κ ′

Γ ` τ1 : κ ′

K-SubEq

Γ ` τ : Sch

Γ ` τ : Met

K-Pi

Γ ` τ1 : Met Γ,x ` : τ1 ` τ2 : Met

Γ ` Π(x ` : τ1). τ2 : Met

K-Forall-Meta

Γ,α : κ ` τ : Met Γ ` κ : wf

Γ ` ∀] (α : κ). τ : Met

K-Pi-Eq

Γ ` a : τ ′ Γ ` b : τ ′ Γ ` τ ′ : Sch Γ, (a =τ ′ b) ` τ : Met

Γ ` Π(� : a =τ ′ b). τ : Met

K-TLam

Γ,α : κ1 ` τ : κ2

Γ ` Λ] (α : κ1). τ : ∀(α : κ1) κ2

K-TApp

Γ ` τ1 : ∀(α : κa) κb Γ ` τ2 : κa

Γ ` τ1] τ2 : κb [α ← τ2]

K-VLam

Γ ` τ1 : Met Γ,x : τ1 ` τ2 : κ2

Γ ` λ] (x : τ1). τ2 : τ1 → κ2

K-VApp

Γ ` τ1 : τ2 → κ2 Γ ` a : τ2

Γ ` τ1] a : κ2

Fig. 12. Kinding rules for mML

TAbs-Meta

Γ,α : κ ` a : τ

Γ ` Λ] (α : κ). a : ∀] (α : κ). τ

TApp-Meta

Γ ` a : ∀] (α : κ). τ1 Γ ` τ2 : κ

Γ ` a] τ2 : τ1[α ← τ2]

Abs-Meta

Γ ` τ1 : Met Γ,x : τ1 ` a : τ2

Γ ` λ] (x : τ1). a : Π(x : τ1). τ2

App-Meta

Γ ` a : Π(x : τ1). τ2

Γ ` u : τ1

Γ ` a]u : τ2[x ← u]

EApp

Γ ` a1 ' a2

Γ ` b : Π(� : a1 =τ ′ a2). τ

Γ ` b] � : τ

EAbs Γ ` τ : Sch Γ ` a1 : τ
Γ ` a2 : τ Γ, (a1 =τ a2) ` b : τ ′

Γ ` λ] (� : a1 =τ a2). b : Π(� : a1 =τ a2). τ
′

C-Eq

(a1 =τ a2) ∈ Γ a1 −→
∗

]
u1 a2 −→

∗

]
u2

Γ ` u1 ' u2

C-Red-Meta

X1 −→
∗

]
X2 Γ ` X1 : Y

Γ ` X1 ' X2

Fig. 13. Typing and equality rules for mML

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:21

mML reduction were interleaved, i.e. as if the encoding and decodings of ornaments were called at

runtime, but may all happen at ornamentation time.

�e syntax of mML is described on Figure 9. We only describe the di�erences with eML. Terms

are extended with meta-abstractions and the corresponding meta-applications on non-expansive

terms, types, and equalities, while types are extended with meta-abstractions and meta-applications

on non-expansive terms and types. Both meta-abstractions and meta-applications are marked with

] to distinguish them from ML abstractions and applications.

�e restriction of meta-applications to the non-expansive subset of terms is to ensure that

non-expansive terms are closed under meta-reductionas both the value restriction in ML and the

treatment of equalities in eML rely on the stability of non-expansive terms by substitution. A

non-expansive term should remain non-expansive a�er substitution. �erefore, we may only allow

substitution by non-expansive terms. In particular, arguments of redexes in Figure 10 must be

non-expansive. To ensure that meta-redexes can still always be reduced before other redexes,

we restrict all arguments of meta-applications in the grammar of mML to be non-expansive. To

allow some higher-order meta-programming (as simple as taking ornament encoding and decoding

functions as parameters), we add meta-abstractions, but not meta-applications, to the class of

non-expansive terms u. �e reason is that we want non-expansive terms to be stable by reduction,

but the reduction of a meta-redexes could reveal an ML redex. A simple way to forbid meta-redexes

in non-expansive terms is to forbid meta-application.

Equalities are unnamed in environments, but we use the notation � to witness the presence of an

equality in both abstractions Π(� : a =τ a). τ and λ] (� : a =τ a). τ and applications τ] �.
�e meta-reduction, wri�en −→] , is de�ned on Figure 10. It is a strong reduction, allowed in

arbitrary contexts C . �e corresponding head-reduction is wri�en −→h
]
.

�e introduction and elimination rules for the new term-level abstractions are given on Figure 13.

�e new kinding rules for type-level abstraction and application are given on Figure 12. We

introduce a kind Met, superkind of Sch (Rule K-SubEq), to classify the types of meta-abstractions.

�is enforces a phase distinction where meta-constructions cannot be bound or returned by eML
code. �e grammar of kinds is complex enough to warrant its own sorting judgment, noted

Γ ` κ : wf and de�ned on Figure 11.

We must revisit equality. Kinds can now contain types, that can be converted using Rule K-Conv.

�e equality judgment is enriched with closure by meta-reduction (Rule C-Red-Meta). To prevent

meta-reduction from blocking equalities, Rule C-Eq is extended to consider equalities up to meta-

reduction. �e strati�cation ensures that a type-level pa�ern matching cannot return a meta-type.

�is prevents conversion from a�ecting the meta part of a type. �us, the meta-reduction of well-

typed program does not get stuck, even under arbitrary contexts—in particular under incoherent

branches.

5 The metatheory of mML

In this section we present the results on the metatheory of mML that we later use to prove the

correctness of the encoding of ornaments.

We write −→ for the union of −→β , −→ι , and −→] and −→∗ for its transitive closure. �e

calculus is con�uent.

Theorem 5.1 (Confluence). Any combination of the reduction relations −→ι , −→β , −→] is

con�uent.

Below we show that meta-reduction can always be performed �rst—hence at compilation time.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:22 Thomas Williams and Didier Rémy

C-Context’

Γ ` C[Γ′ ` X1 : Y ′] : Y Γ ` C[Γ′ ` X2 : Y ′] : Y Γ ` X1 ' X2

Γ ` C[X1] ' C[X2]

C-Red-Iota’

X1 −→ι X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ ` X1 ' X2

C-Red-Meta’

X1 −→
∗

]
X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ ` X1 ' X2

Fig. 14. Stricter rules for equality

5.1 A temporary definition of equality

�e rules for equality given previously omit some hypotheses that are useful when subject re-

duction is not yet proved. To guarantee that both sides of an equality are well-typed, we need

to replace C-Red-Meta with C-Red-Meta’, C-Red-Iota with C-Red-Iota’ and C-Context with rule

C-Context’, given on Figure 14. Admissibility of C-Context will be a consequence of Lemma 5.17,

and admissibility of C-Red-Meta and C-Red-Iota will be consequences of subject reduction. Since

the original rules are less constrained, they are also complete with respect to the rules used in this

section. �us, once the proofs are done we will be able to use the original version.

5.2 Strong normalization for −→]

Our goal in this section is to prove that meta-reduction and type reduction are strongly normalizing.

�e notations used in this proof are only used here, and will be re-used for other purposes later in

this article.

Theorem 5.2 (Strong normalization for meta-reduction). �e reduction −→] is strongly

normalizing.

As usual, the proof uses reducibility sets.

De�nition 5.3 (Reducibility set). A set S of terms is called a reducibility set if it respects the

properties C1-3 below. We write Ca the set of reducibility sets of terms.

C1 every term a ∈ S is strongly normalizing;

C2 if a ∈ S and a −→] a
′

then a′ ∈ S;

C3 if a is not a meta-abstraction, and for all a′ such that a −→] a
′
, a′ ∈ S then a ∈ S.

Similarly, replacing terms with types and kinds, we obtain a version of the properties C1-3 for sets

of types and sets of kinds. A set of types or kinds is called a reducibility set if it respects those

properties, and we write Ct the set of reducbility sets of types, and Ck the set of reducibility sets of

kinds.

Let Na be the set of all strongly normalizing terms, Nt the set of all strongly normalizing types,

and Nk the set of all strongly normalizing kinds.

Lemma 5.4. Na, Nt, and Nk are reducibility sets.

Proof. �e properties C1-3 are immediate from the de�nition. �

De�nition 5.5 (Interpretation of types and kinds). We de�ne an interpretation 〈〈κ〉〉 of kinds as sets

of possible interpretations of types, with 1 the set with one element •. �e interpretation is given

on Figure 15

On Figure 16, we also de�ne an interpretation JκKρ of kinds as sets of types and an interpretation

Jτ Kρ of a type τ under an assignment ρ of reducibility sets to type variables by mutual induction

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:23

〈〈Typ〉〉 = {Na}

〈〈Sch〉〉 = {Na}

〈〈Met〉〉 = Ca

〈〈∀(α : κ1) κ2〉〉 = 〈〈κ1〉〉 → 〈〈κ2〉〉

〈〈τ →` κ〉〉 = 1→ 〈〈κ〉〉
〈〈(a1 =τ a2) → κ〉〉 = 1→ 〈〈κ〉〉

Fig. 15. Interpretation of kinds as sets of interpretations

JTypKρ = JSchKρ = JMetKρ = Nt
J∀(α : κ1) κ2Kρ = {τ ∈ Nt | ∀τ

′ ∈ Jκ1Kρ ,τ] τ ′ ∈ Jκ2Kρ[α←Jτ ′Kρ]
}

Jτ → κKρ = {τ ∈ Nt | ∀u ∈ Jτ Kρ ,τ]u ∈ JκKρ }
J(a1 =τ a2) → κKρ = {τ ∈ Nt | τ] � ∈ JκKρ }

JαKρ = ρ (α)
Jτ1 → τ2Kρ = Jζ τ Kρ = Jmatch a with . . .Kρ = J∀(α : Typ) . . .Kρ = Na

JΠ(x : τ1). τ2Kρ = {a ∈ Na | ∀u ∈ Jτ1Kρ ,a]u ∈ Jτ2Kρ }
JΠ(� : a1 =τ a2). τ

′Kρ = {a ∈ Na | a] � ∈ Jτ ′Kρ }
J∀] (α : κ). τ Kρ = {a ∈ Na | ∀τ

′ ∈ JκKρ ,∀S ∈ 〈〈κ〉〉,a] τ ′ ∈ Jτ Kρ[α←S]}

Jλ] (x : τ ′). τ Kρ = Jλ] (� : a1 =τ ′ a2). τ Kρ = λ • . Jτ Kρ
JΛ] (α : κ). τ Kρ = λSα ∈ 〈〈κ〉〉. Jτ Kρ[α←Sα]

Jτ1] τ2Kρ = Jτ1Kρ Jτ2Kρ
Jτ] uKρ = Jτ] �Kρ = Jτ Kρ •

Fig. 16. Interpretation of kinds and types as sets of types and terms

De�nition 5.6 (Type context). We will write ρ � Γ if for all (α : κ) ∈ Γ, ρ (α) ∈ 〈〈κ〉〉.

Lemma 5.7 (Eqal kinds have the same interpretation). If Γ ` κ1 ' κ2, then 〈〈κ1〉〉 = 〈〈κ2〉〉.

Proof. By induction on the derivation of the judgment Γ ` κ1 ' κ2. We can assume that all

reductions in the rules C-Red-Iota’ and C-Red-Meta’ are head reductions (otherwise we simply

need to compose with C-Context.

• Re�exivity, symmetry and transitivity translate trivially to equalities.

• �ere is no head-reduction on kind, and the rule C-Eq does not apply either.

• For C-Split, use the fact that every datatype is inhabited, and conclude from applying the

induction hypothesis to any of the cases.

• For C-Context, proceed by induction on the context. If the context is empty, use the

induction hypothesis. Otherwise, note that the interpretation of a kind only depends on

the interpretation of its (direct) subkinds, and the interpretation of the direct subkinds are

equal either because they are identical, or by induction on the context. �

Lemma 5.8 (Interpretation of kinds and types). Assume ρ � Γ. �en:

• If Γ ` κ : wf, then JκKρ is well-de�ned, and JκKρ ∈ Ct.
• If Γ ` τ : κ, then Jτ Kρ is well-de�ned, and we have Jτ Kρ ∈ 〈〈κ〉〉.

Proof. By simultaneaous induction on the sorting and kinding derivations. �e case of all syntax-

directed rules whose output is interpreted asNa orNt is follows by Lemma 5.4. For the variable rule,

use the de�nition of ρ � Γ applied to the variable. For abstraction, abstract, add the interpretation

to the context and interpret. For application, use the type of JκKρ for functions. For K-Conv, use

Lemma 5.7 to deduce that the interpretation of the kinds are the same. For the subkinding rules

(K-SubTyp, K-SubSch, K-SubEq), use the fact that 〈〈Typ〉〉 = 〈〈Sch〉〉 = 〈〈Sch〉〉 ⊆ 〈〈Met〉〉.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:24 Thomas Williams and Didier Rémy

�e rules S-VArr, S-Tarr, S-EArr, K-Forall, K-Pi, K-Pi-Eq are similar. We only give the proof for

K-Pi: Assume S1 and S2 are reducibility sets. We will prove C1-3 for S = {a ∈ Na | ∀u ∈ S1,a]u ∈
S2}.

C1 S is a subset of Na.

C2 Consider a ∈ S and a′ such that a −→] a
′
. For a given u ∈ S1, a]u ∈ S2 −→] a

′]u. �us,

a′]u ∈ S2 by C2 for S2. �en, a′ ∈ S .

C3 Consider a, not an abstraction, such that if a −→] a′, a′ ∈ S . For u ∈ S1, we’ll prove

a]u ∈ S2. Since a is not an abstraction, a]u reduces either to a′]u with a −→] a′, or

a]u ′ with u −→] u
′
. In the �rst case, a′ ∈ S by hypothesis and u ∈ S1, so a′]u ∈ S2. In the

second case, u ′ ∈ S1 by C2, so a]u ′ ∈ S2. By C3 for S2, because a]u is not an abstraction,

a]u ∈ S2. �

We need the following substitution lemma:

Lemma 5.9 (Substitution).

For all τ , κ, τ ′, α , and ρ, we have both Jτ Kρ[α←Jτ ′Kρ]
= Jτ [α ← τ ′]Kρ and JκKρ[α←Jτ ′Kρ]

= Jκ[α ←

τ ′]Kρ .

Proof. By induction on types and kinds. �

We then need to prove that conversion is sound with respect to the relation. We start by proving

soundness of reduction:

Lemma 5.10 (Soundness of reduction). Let −→ stand for −→ι ∪ −→] . Assume that ρ � Γ,
and τ , τ ′, κ, κ ′ are well-kinded (or well-formed) in Γ. �en Jτ Kρ = Jτ ′Kρ whenever τ −→ τ ′ and
JκKρ = Jκ ′Kρ whenever κ −→ κ ′.

Proof. By structural induction on the context in which head reduction occurs. �e only inter-

esting context is the hole []. Consider the di�erent kinds of head-reduction on types (the induction

hypothesis is not concerned with terms, and there is no head-reduction on kinds).

• �e cases of all meta-reductions are similar. Consider (Λ] (α : κ). τ)] τ ′ −→h
]
τ [α ← τ ′].

�e interpretation of the le�-hand side is (λSα ∈ 〈〈κ〉〉. Jτ Kρ[α←Sα]) Jτ ′Kρ = Jτ Kρ[α←Jτ ′Kρ]

and the interpretation of the right-hand side is Jτ [α ← τ ′]Kρ = Jτ Kρ[α←Jτ ′Kρ]
by substitution

(Lemma 5.9).

• In the case of match-reduction, the arguments of the meta-reduction have kind Sch, thus

by Lemma 5.8, their interpretation is Na. �

Lemma 5.11 (Soundness of conversion). If ρ � Γ and Γ ` τ1 ' τ2, then Jτ1Kρ = Jτ2Kρ . If
Γ ` κ1 ' κ2, then Jκ1Kρ = Jκ2Kρ

Proof. By induction on the equality judgment.

• �e rules C-Refl, C-Sym and C-Trans respect the property (by re�exivity, symmetry, transi-

tivity of equality).

• �e equalities are not used, thus C-Split does not a�ect the interpretation (just consider

one of the sub-proofs).

• �e rule C-Eq does not apply to types and kinds.

• For reductions (C-Red-Iota’, C-Red-Meta’), use the previous lemma.

• For C-Context’, proceed by induction on the context. �e interpretation of a type/kind

depends only on the interpretation of its subterms. �

Now we can prove the fundamental lemma:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:25

Lemma 5.12 (Fundamental lemma). We say ρ,γ � Γ if ρ � Γ and for all (x ,τ) ∈ Γ, γ (x) ∈ Jτ Kρ .
Suppose ρ,γ � Γ. �en:

• If Γ ` κ : wf, then γ (κ) ∈ Nk.

• If Γ ` τ : κ, then γ (τ) ∈ JκKρ .
• If Γ ` a : τ , then γ (a) ∈ Jτ Kρ .

Proof. By mutual induction on typing, kinding, and well-formedness derivations. We will

examine a few representative rules:

• If the last rule is a conversion, use soundness of conversion.

• If the last rule is App. Assume ρ,γ � Γ, and consider two terms a and b such that γ (a) ∈
Jτ1 → τ2Kρ and γ (b) ∈ Jτ1Kρ . We need to show: γ (a b) = γ (a) γ (b) ∈ Jτ2Kρ = Na (because

τ2 is necessarily of kind Typ). Consider then a′ and b ′ normal forms of γ (a) and γ (b). a′ b ′

is a normal form of γ (a b). �us, γ (a b) ∈ Na.

• If the last rule is a meta-application App-Meta

Γ ` a : Π(x : τ1). τ2 Γ ` b : τ1

Γ ` a]b : τ2[x ← b]

Consider ρ,γ � Γ. �en, by induction hypothesis, we have: γ (a) ∈ JΠ(x : τ1). τ2Kρ , and

γ (b) ∈ Jτ1Kρ . We thus have: γ (a]b) = γ (a)]γ (b) ∈ Jτ2Kρ . But the interpretation of types

does not depend on terms: Jτ2Kρ = Jτ2[x ← b]Kρ . It follows that γ (a]b) ∈ Jτ2[x ← b]Kρ .

• If the last rule is a meta-abstraction Abs-Meta:

Γ,x : τ1 ` a : τ2

Γ ` λ] (x : τ1). a : Π(x : τ1). τ2

Consider ρ,γ � Γ. Consider b ∈ Jτ1Kρ . We need to prove that γ (λ] (x : τ1). a)]b = (λ] (x :

τ1). γ (a))]b ∈ Jτ2Kρ). Let us use C3: consider all possible reductions. We will proceed by

induction on the reduction of γ (A) = A′, with the hypothesis ∀ (B ∈ Jτ2Kρ) A′[x ← B] (true

for γ (A) and conserved by reduction), and on the reduction of B (B ∈ Jτ1Kρ is conserved by

reduction).

– We can only reduce the type τ ′
1

a �nite number of types by induction hypothesis. It is

discarded a�er reduction of the head redex.

– IfA′ −→] A
′′

, (λ] (x : τ1).a
′)]b −→] (λ] (x : τ1).a

′′)]b, and we continue by induction.

– If B −→] B
′
, (λ] (x : τ1). a

′)]b −→] (λ] (x : τ1). a
′)]b ′, and we continue by induction.

– If we reduce the head redex, (λ] (x : τ1). a
′)]b −→] a′[x ← b]. But by hypothesis,

a′[x ← b] ∈ Jτ2Kρ . �

We can now prove the main result of this section:

Proof. [Proof of �eorem 5.2] Consider a kind, type, or term X that is well-typed in a context Γ.

We can take the identity substitution γ (x) = x for all x ∈ Γ and apply the fundamental lemma. All

interpretations are subsets of Na, thus X ∈ Na. �

5.3 Contexts, substitution and weakening

We de�ne a weakening judgment Γ1 � Γ2 for typing environments that also includes conversion on

the types and kinds in the environment.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:26 Thomas Williams and Didier Rémy

WEnv-Empty

∅� ∅

WEnv-Weaken-Var

Γ1 � Γ2

Γ1 � Γ2,x
`

: τ

WEnv-Conv-Var

Γ1 � Γ2 Γ2 ` τ1 ' τ2

Γ1,x
`

: τ1 � Γ2,x
`

: τ2

WEnv-Weaken-TVar

Γ1 � Γ2

Γ1 � Γ2,α
`

: κ

WEnv-Conv-TVar

Γ1 � Γ2 Γ2 ` κ1 ' κ2

Γ1,α : κ1 � Γ2,α : κ2

WEnv-Weaken-Eq

Γ1 � Γ2

Γ1 � Γ2, (a =τ b)

WEnv-Conv-Eq

Γ1 � Γ2 Γ2 ` τ1 ' τ2 Γ2 ` a1 ' a2 Γ2 ` b1 ' b2

Γ1, (a1 =τ1
b1) � Γ2, (a2 =τ2

b2)

Lemma 5.13. Weakening is re�exive and transitive: for all well-formed environments Γ1, Γ2 and Γ3,

we have:

• Γ1 � Γ1 and

• if Γ1 � Γ2 and Γ2 � Γ3, then Γ1 � Γ3.

Proof. Re�exivity is proved by induction on ` Γ1. Transitivity is proved by induction on the

two weakening judgments. �

Lemma 5.14 (Weakening and conversion). Let Γ1, Γ2, Γ
′
1
, Γ′

2
be well-formed contexts. Suppose

Γ1 � Γ2 and Γ′
2
� Γ′

1
. �en:

• If Γ1 ` X : Y , then Γ2 ` X : Y .
• If Γ1 ` X1 ' X2, then Γ2 ` X1 ' X2.

• If Γ1 ` C[Γ′
1
` X : Y ′] : Y , then Γ2 ` C[Γ′

2
` X : Y ′] : Y .

Proof. Proceed by mutual induction on the typing, kinding, sorting, and equality judgment. All

rules grow the context only by adding elements at the end, and the elements added will be the

same in both contexts, thus preserving the weakening relation. �en we can use the induction

hypothesis on subderivations.

�en, we have to consider the rules that read from the context: they are Var, K-Var and C-Eq.

For these rules, proceed by induction on the weakening derivation. Consider the case of Var on a

variable x . Most rules do not in�uence variables. �ere will be no weakening on x because the

term types in the stronger context and variables are supposed distinct. �e variable x types in

the context by hypothesis, so we cannot reach WEnv-Empty. �e renaming case is WEnv-Conv-Var.

Suppose Γ1 = Γ′
1
,x : τ1, Γ2 = Γ′

2
,x : τ2 and Γ2 ` τ1 ' τ2. �en, we can obtain a derivation of Γ2 ` x : τ1

by using Var, ge�ing a type τ2 and converting. �

Lemma 5.15 (Substitution preserves typing).

Suppose Γ ` u : τ . �en,

• if Γ,x : τ , Γ′ ` X : Y , then Γ, Γ′[x ← u] ` X [x ← u] : Y [x ← u];

• if Γ,x : τ , Γ′ ` X1 ' X2, then Γ, Γ′[x ← u] ` X1[x ← u] ' X2[x ← u].

Suppose Γ ` τ : κ. �en,

• if Γ,α : κ, Γ′ ` X : Y , then Γ, Γ′[α ← τ] ` X [α ← τ] : Y [α ← τ];

• if Γ,α : κ, Γ′ ` X1 ' X2, then Γ, Γ′[α ← τ] ` X1[α ← τ] ' X2[α ← τ].

Proof. By mutual induction. We use weakening to grow the context on the typing/kinding

judgment of the substituted term/type. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:27

Lemma 5.16 (Substituting eqal terms preserves eqality).

• Assume Γ ` τ1 ' τ2 and Γ,α : κ ` X : Y and Γ ` τi : κ. �en, Γ ` X [α ← τ1] ' X [α ← τ2].

• Assume Γ ` u1 ' u2 and Γ,x : τ ` X : Y and Γ ` ui : τ . �en, Γ ` X [x ← u1] ' X [x ← u2].

Lemma 5.17 (Substituting eqal terms preserves typing). Assume Γ ` C[Γ′ ` X1 : Y ′] : Y
and Γ′ ` X1 ' X2. �en, Γ ` C[Γ′ ` X2 : Y ′] : Y .

Proof. We prove these two results by mutual induction on, respectively, the typing derivation

Γ,α : κ ` X : Y and the typing derivation Γ ` C[Γ′ ` X1 : Y ′] : Y .

For the �rst lemma, for each construct, prove equality of the subterms, and use congruence

and transitivity of the equality. Use weakening on the equality if there are introductions. Use the

second lemma to get the required typing hypotheses.

For the second lemma, the interesting cases are the dependent rules, where a term or type

in term-position in a premise of a rule appears either in the context of another premise, or in

type-position in the conclusion. When a term or type appears in the context, we use context

conversion. �e other type of dependency uses substitution in the result, which is handled by the

�rst lemma (Lemma 5.16) �

Note that these lemmas imply that C-Context is admissible.

In order to prove subject reduction, we will need to prove that restricting the rule C-Eq to

non-expansive terms only is enough to preserve types, even when applying the reduction −→β :

this reduction should not a�ect any equality that is actually used in the typing derivation.

De�nition 5.18 (Always expansive term). A term a is said to be always expansive if it does not

reduce by −→] to a non-expansive term.

Lemma 5.19 (Always expansive redexes). Let a be of the form b1 b2. �en a is always expansive.

Proof. Meta-reduction does not change the shape of the term. �

Lemma 5.20 (Useless eqalities). Let a1 or a2 be always expansive, and suppose Γ ` ai : τ . �en

Γ, (a1 =τ a2) ` X : Y if and only if Γ ` X : Y .

Proof. �e “only if” direction is a direct consequence of weakening. For the other direction,

proceed by induction on the typing derivation. �e only interesting rule is C-Eq. But by de�nition,

an equality containing an always expansive term is not usable in equalities. �

Lemma 5.21 (Non-dependent contexts for always expansive terms). Consider an evaluation

context E and an always expansive term a such that Γ ` E[Γ′ ` a : τ] : Y . �en, if Γ′ ` a′ : τ , we also
have Γ ` E[Γ′ ` a′ : τ] : Y

Proof. We prove simultaneously that pu�ing an always expansive term in an evaluation context

gives an always expansive term, and that the context is not dependent. �e case of the hole is

immediate. We will examine the case of Let-Poly, which show the important ideas: consider a
non-expansive, and a1 = let x = a in b. a1 is always expansive: any meta-reduction will be

to something of the form let x = a2 in b2 with a −→∗
]
a2, but a is always expansive, so a2 is

expansive, thus let x = a2 in b2 is expansive too. It also admits the same types: suppose we have a

derivation Γ,x : τ , (x =τ a) ` b : τ ′. �en by Lemma 5.20, Γ,x : τ ` b : τ ′ and thus by weakening

Γ,x : τ , (x =τ a
′) ` b : τ ′. �e hypotheses of the rule Let-Poly are preserved, so the conclusion is

too: let x = a in b and let x = a′ in b have the same type. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:28 Thomas Williams and Didier Rémy

5.4 Analysis of conversions and subject reduction

To prove subject reduction, we need results allowing us to split a conversion between compound

types or kinds into a conversion between their subtypes or subkinds. For example, from Γ ` τ1 →

τ2 ' τ ′
1
→ τ ′

2
, we need to extract Γ ` τ1 ' τ ′

1
and Γ ` τ2 ' τ ′

2
. �e easiest way to prove this

is to proceed in a strati�ed way. We extract a subreduction −→t
]

of −→] that only contains the

reductions on types, and −→a
]

that only contains the reductions on terms. �en, we consider the

reductions in order: �rst −→t
]
, then −→a

]
, then −→β and −→ι .

�e following lemma is easily derived from the new de�nition of equality (it requires subject

reduction otherwise):

Lemma 5.22 (Eqalities are between well-typed things). Let Γ be a well-formed context.

Suppose Γ ` X1 ' X2. �en, there exists Y1,Y2 such that Γ ` X1 : Y1 and Γ ` X2 : Y2.

Proof. By induction on a derivation. �is is true for C-Red-Meta’, C-Red-Iota’, C-Context’, C-Eq

and C-Refl. For C-Sym and C-Trans, apply the induction hypothesis on the subderivations. �

We de�ne a decomposition of kinds into a head and a tuple of tails. �e meta-variable h stands

for a head. �e decomposition is unique up to renaming.

Typ � Typ ◦ () Sch � Sch ◦ () Met � Met ◦ () τ →` κ � →`
tk ◦ (τ ,κ)

(a =τ b) → κ � →ek ◦ (a,b,τ ,κ) ∀(α : κ) κ ′ � ∀(α :) ◦ (κ,κ ′)

Lemma 5.23 (Analysis of conversions, kind-level). Suppose Γ ` κ ' κ ′. �en, κ ′ and κ ′

decompose as κ � h ◦ (Xi)
i
and κ � h′ ◦ (X ′i)

i
, with h = h′ and Xi = X ′i .

Proof. By induction on a derivation of Γ ` κ ' κ ′. We can suppose without loss of generality

that all reductions are head-reductions by spli�ing a reduction into a C-Context and the actual

head-reduction.

• For C-Refl, we have κ = κ ′. Moreover, all kinds decompose, thus κ has a decomposition

κ � h ◦ (Xi)
i
. By hypothesis, ` Γκ. Invert this derivation to �nd that theXi are well-kinded

or well-sorted. �us, we can conclude by re�exivity: Γ ` Xi ' Xi .

• For C-Sym and C-Trans, apply analysis of conversions to the subbranch(es), then use C-Sym

or C-Trans to combine the subderivations on the decompositions.

• For C-Split, apply the lemma in each branch. �ere exists at least one branch, from

where we get equality of the heads. For equality of the tails, apply C-Split to combine the

subderivations.

• �e rules C-Red-Meta’ and C-Red-Iota’ do not apply because there is no head-reduction on

kinds.

• For rule C-Context, either the context is empty and we can apply the induction hypothesis,

or the context is non-empty. In this case, the heads are necessarily equal. We can extract

one layer from the context. �en, for the tail where the hole is, we can apply C-Context

with the subcontext. For the other tails, by inverting the kinding derivation we can �nd

that they are well sorted. �us we can apply C-Refl to get equality.

�

We can then prove subject reduction for the type-level meta-reduction.We will use the following

inversion lemma:

Lemma 5.24 (Inversion for type-level meta-reduction). Consider an environment Γ.

• If Γ ` λ] (x : τ ′
1
). τ2 : τ1 → κ, then Γ,x : τ1 ` τ2 : κ.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:29

• If Γ ` Λ] (α : κ ′
1
). τ : ∀(α : κ1) κ2, then Γ,α : κ1 ` τ : κ2.

• If Γ ` λ] (� : a′
1
=τ ′ a

′
2
). τ ′′ : (� : a1 =τ a2) → κ, then Γ, (a1 =τ a2) ` τ

′′
: κ.

Proof. We will study the �rst case, the two other cases are similar. Suppose the last rule is

not K-Conv. �en, it is a syntax directed rule, so it must be K-VLam, and we have Γ,x : τ1 ` τ2 : κ.

Otherwise, we can collect by induction all applications of K-Conv leading to the application of

K-VLam. We obtain (by the previous case) a derivation of Γ,x : τ ′′
1
` τ2 : κ ′, with (combining

all conversions using transitivity) an equality Γ ` τ1 → κ ' τ ′′
1
→ κ ′. By the previous lemma

(Lemma 5.23), we have Γ ` τ1 ' τ
′′
1

and Γ ` κ ' κ ′. �

Lemma 5.25 (Subject reduction, type-level meta-reduction). Suppose X −→t
]
X ′ and Γ `

X : Y . �en, Γ ` X ′ : Y .

Proof. �e reduction is a head-reduction τ −→t
]
τ ′ in a context C . If we can prove subject

reduction for τ −→t
]
τ ′, we can conclude by Lemma 5.17, because the reduction implies Γ ` τ ' τ ′.

Let us prove subject reduction for the head-reduction: suppose τ −→t
]
τ ′ and Γ ` τ : κ. We want

to prove Γ ` τ ′ : κ.

Consider a derivation of Γ ` τ : κ whose last rule is not a conversion. It is thus a syntax-

directed rule. We will consider as an example the head-reduction from τ = (λ] (x : τ1). τ2)] u to

τ ′ = τ2[x ← u].

Since the last rule of Γ ` (λ] (x : τ1). τ2)] u : κ is syntax-directed, we can invert it and obtain

Γ ` u : τ1 and Γ ` λ] (x : τ1). τ2 : τ1 → κ, We apply inversion (Lemma 5.24) and obtain

Γ,x : τ1 ` τ2 : κ. Finally, by substitution (Lemma 5.15), we obtain Γ ` τ2[x ← u] : κ, i.e.

Γ ` τ ′ : κ. �

�is is su�cient to prove the following lemma:

Lemma 5.26 (Normal derivations, type-level meta-reduction). Suppose Γ ` X1 ' X2, where

X1 and X2 are normal terms, types or kinds for −→] . �en, there exists a derivation of Γ `n X1 ' X2,

where Γ `n X1 ' X2 is a limited version of Γ ` X1 ' X2 where the rule C-Red-Meta is limited to −→a
]
.

More precisely, this judgment is de�ned from the following rules:

C-Refl

Γ ` X : Y

Γ `n X ' X

C-Sym

Γ `n X1 ' X2

Γ `n X2 ' X1

C-Trans

Γ `n X1 ' X2 Γ `n X2 ' X3

Γ `n X1 ' X3

C-Context

Γ ` C[Γ′ ` X1 : Y ′] : Y Γ `n X1 ' X2

Γ `n C[X1] ' C[X2]

C-Red-Iota’

X1 −→ι X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ `n X1 ' X2

C-Red-Meta’

X1 −→
a
]
X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ `n X1 ' X2

C-Eq

a1 −→
∗

]
u1 a2 −→

∗

]
u2 (a1 =τ a2) ∈ Γ

Γ `n u1 ' u2

C-Split

Γ ` u : ζ (αk)
k

(di : ∀(αk)
k (τi j)

j → ζ (αk)
k)i (Γ, (xi j : τi j [αk ← τk]

k) j ,u = di (τi j)
j (xi j)

j `n X1 ' X2)
i

Γ `n X1 ' X2

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:30 Thomas Williams and Didier Rémy

Proof. We prove a stronger result: suppose Γ ` X1 ' X2, and X ′
1
, X ′

2
are the −→t

]
normal forms

of X1 and X2. �en, for all context C such that Γ ` Xi : Yi and Γ′ ` C[Γ ` Xi : Yi] : Y ′i , if X ′i are the

normal forms of C[Xi], then Γ `n X ′
1
' X ′

2
. In this proof, we’ll say “normal forms” without further

quali�cation for −→t
]

normal forms.

We proceed by induction on the derivation. We assume all reductions are head-reductions.

• �e property is symmetric, so it is preserved by C-Sym.

• For C-Refl: by subject reduction, if a term is well-typed, its normal form is well-typed too.

• For C-Trans, we get the result by unicity of the normal form.

• For C-Context, we fuse the contexts and use the induction hypothesis.

• For C-Red-Meta’, if the reduction is a type-level meta reduction, it becomes a C-Refl on the

(well-typed) normal form.

• For the other rules, we follow the same pa�ern. We �rst normalize the context to a multi-

context, represented by a term with a free variable x (or α): C[x] has a normal form Xc .

We also normalize X1 and X2 to X ′′
1

and X ′′
2

, and prove Γ ` X ′′
1
' X ′′

2
.

– For C-Eq, we can completely normalize the terms.

– For C-Red-Meta’ and C-Red-Iota’, head-reduction and normalization commute: if X1

head-reduces to X2, then X ′′
1

head-reduces to X ′′
2

.

We now have to prove that the normal form of C[Xi] is Xc [x ← Xi].

– It is immediate if the hole is a term: no type-level meta-reduction rule depends on the

shape of a term.

– For type-level iota reduction, we use a typing argument: X ′′
1

is a type-level match,

thus has kind Sch, thus X ′′
2

has kind Sch by subject reduction. �en, X ′′
2

cannot be a

type-level abstraction, because by Lemma 5.23 the kinds of type-level abstractions are

not convertible to Sch.

Finally, we can conclude by C-Context. �

We prove a decomposition result on meta-conversions: types and kinds that start with a meta

head keep their heads, and their tails stay related. In order to prove this, we extend the decoding

into a head and tails to types. Note that not all types have a head: applications and variables, for

example, have no head yet, but they can gain one a�er reduction.

∀] (α : κ). τ � ∀] (α :). ◦ (κ,τ) Π(x : τ). τ ′ � Π(x :). ◦ (τ ,τ ′)

Π(� : b =τ b
′). a � Π(� : =). ◦ (b,b ′,τ ,a) ∀(α : Typ) τ � ∀(α : Typ) ◦ (τ)

τ1 → τ2 � →� ◦ (τ1,τ2) ζ (τi)
i � ζ ◦ (τi)

i

�e meta-heads are all heads that can not be generated by ML reduction in well-kinded types, i.e.

all except ∀(α : Typ) , →� and ζ
�e head-decomposition of types and kinds is preserved by reduction:

Lemma 5.27 (Reduction preserves head-decomposition). Consider a type or kind X that

decomposes as X � h ◦ (Xi)
i
. �en, if X −→∗

]
X ′, X ′ decomposes as X ′ � h ◦ (X ′i)

i
, and for all i ,

Xi −→
∗

]
X ′i .

Proof. �e head never reduces. �

From this we can prove a generic result of separation and projection:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:31

Lemma 5.28 (Eqality preserves the head). Consider a type or kind X that decomposes as

X � h ◦ (Xi)
i
, andX ′ that decomposes asX ′ � h′ ◦ (X ′j)

j
. �en, ifh orh′ is a meta head, Γ ` X ' X ′,

h = h′ and for all i , Γ ` Xi ' X ′i .

Proof. We can start by −→t
]
-normalizing both sides. �e heads stay the same, and the tails are

equivalent. �en consider (using Lemma 5.26) a normal derivation of the result. In the following,

we assume X and X ′ are −→t
]
-normal and the derivation is normalized.

We then proceed by induction on the size of the derivation Γ `n X ' X ′, proving a strengthened

result: suppose X decomposes as X � h ◦ (Xi)
i
, and either Γ `n X ' X ′ or Γ `n X ′ ' X . �en,

X ′ � h ◦ (X ′i)
i
, with Γ ` Xi ' X ′i .

• �ere is no di�culty with the rules C-Refl, C-Sym, C-Trans, C-Split.

• For C-Context on the empty context, we apply the induction hypothesis. Otherwise, the

head stays the same, and the equality is applied in one of the tails.

• C-Eq does not apply on types.

• Since both X and X ′ are types, instances of C-Red-Meta’ distribute in the tails. �at is also

the case for instances of C-Red-Iota’ that do not reduce the head directly.

• For −→h
ι : X has a head, so the reduction is necessarily X ′ −→h

ι X . X and X ′ cannot be

kinds, so they are types τ and τ ′. We have τ ′ = match dj (ui)
i with (dj (xi j)

i → τj)
j ∈J

and

τ = τj [xi j ← ui]
i
. �e term τj has the same head as τ . Moreover, inverting the last syntactic

rule of a kinding derivation for τ ′, we obtain Γ ` τj : Sch. We want to show that this is

impossible. Consider the last syntactic rule of this derivation. It is of the form Γ ` τj : κ,

with κ , Sch. Moreover, we have Γ ` κ ' Sch. But this is absurd by Lemma 5.23. �

�en, we get subject reduction for term-level part of −→] . We �rst prove an inversion lemma:

Lemma 5.29 (Inversion, meta, term level). Consider an environment Γ.

• If Γ ` λ] (x : τ ′
1
). a : Π(x : τ1). τ2, then Γ,x : τ1 ` a : τ2.

• If Γ ` Λ] (α : κ ′). a : ∀] (α : κ). τ , then Γ,α : κ ` a : τ .
• If Γ ` λ] (� : b ′

1
=τ ′ b

′
2
). a : Π(� : b1 =τ b2). τ

′′
, then Γ, (b1 =τ b2) ` a : τ ′′.

Proof. Similar to the proof of Lemma 5.24. �

Lemma 5.30 (Subject reduction for −→]). Let Γ be a well-formed context. Suppose X −→] X
′
.

�en, if Γ ` X : Y , Γ ` X ′ : Y .

Proof. Add the term-level part to the proof of Lemma 5.25 �

We can normalize further the conversions between two −→] normal forms:

Lemma 5.31 (Normal derivations, type-level meta-reduction). Suppose Γ ` X1 ' X2, where

X1 and X2 are normal terms, types or kinds for −→] . �en, there exists a derivation of Γ `n X1 ' X2,

where Γ `n X1 ' X2 is a limited version of Γ ` X1 ' X2 where the rule C-Red-Meta is limited to −→a
]
.

More precisely, this judgment is de�ned from the following rules:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:32 Thomas Williams and Didier Rémy

C-Refl

Γ ` X : Y

Γ `n X ' X

C-Sym

Γ `n X1 ' X2

Γ `n X2 ' X1

C-Trans

Γ `n X1 ' X2 Γ `n X2 ' X3

Γ `n X1 ' X3

C-Red-Iota’

X1 −→ι X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ `n X1 ' X2

C-Red-Meta’

X1 −→
a
]
X2 Γ ` X1 : Y1 Γ ` X2 : Y2

Γ `n X1 ' X2

C-Context

Γ ` C[Γ′ ` X1 : Y ′] : Y Γ `n X1 ' X2

Γ `n C[X1] ' C[X2]

C-Eq

a1 −→
∗

]
u1 a2 −→

∗

]
u2 (a1 =τ a2) ∈ Γ

Γ `n u1 ' u2

C-Split

(di : ∀(αk)k (τi j)j → ζ (αk)k)i
(Γ, (xi j : τi j [(αk ← τk)k])j , (u = di (xi j)) `

n X1 ' X2)i Γ ` u : ζ (τk)k

Γ `n X1 ' X2

Proof. Similar to Lemma 5.26. �

We can now prove a projection result for eML. �e corresponding separation result is more

complex and will be proved separately.

Lemma 5.32 (Projection for eML). Consider X and X ′ decomposing as X � h ◦ (Xi)
i
and

X ′ � h ◦ (X ′i)
i
. Suppose Γ ` X ' X ′. �en, Γ ` Xi ' X ′i .

Proof. �e result for non-ML heads is already implied by the previous lemma. We can suppose

that X and X ′ are types τ and τ ′ and are normal for −→] , and that we have a normal derivation of

Γ ` τ ' τ ′.
We derive a stronger result: we de�ne a function tails(h;τ) that returns the tails of a type,

assuming it has a given eML head. We use Anya to stand for any well-typed term, Anyt for a

well-kinded type, and Anyk for a well-sorted kind (for example, Anya = λ (x : Anyt). x , Anyt =
∀(α : Typ) α and Anyk = Typ).

tails(h;τ) = (Xi)
i

if τ � h ◦ (Xi)
i

tails(h;match a with (Pi → τi)
i) = (match a with (Pi → Xi j)

i) j if tails(h;τi) = (Xi j)
j

tails(h;τ) = (Any)i

Note that the action of taking the tail commutes with substitution of terms: tails(h;τ [x ← u]) =
tails(h;τ)[x ← u]. Moreover, if τ is well-typed, its tails tails(h;τ) are well-typed or kinded (by

inversion of the last syntax-directed rule of a kinding of τ).

�en, we show by induction on a normal derivation that whenever Γ ` τ ' τ ′, for any ML head

h, Γ ` tails(h;τ)i ' tails(h;τ ′)i . �is is su�cient, because tails(h;τ)i = Xi and tails(h;τ ′)i = X ′i .
We suppose that the reductions are head-reductions, and that all applications of C-Context use

only a shallow context.

• For C-Refl, invert the typing derivation to ensure that the tails are well-typed.

• �ere is no di�culty for C-Sym and C-Trans.

• For C-Split: prove the equality in each branch and merge using C-Split.

• �e rule C-Eq does not apply in a typing context.

• For C-Red-Iota’, the only possible head-reduction is a reduction of a type-level match:

suppose we have τ = match dj (ui)
i with (dk (xki)

i → τk)
k

and τ ′ = τj [x ji ← ui]
i
.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:33

Dt ::= []] a | []] τ | []] �

Dv ::= []] a | []] τ | []] � | [] a | [] τ | match [] with P → a

ct ::= λ] (x : τ). τ | Λ] (α : κ). τ | λ] (� : a =τ a). τ

cv ::= λ] (x : τ). a | λ] (x : τ). a | Λ] (α : κ). a | λ] (� : a =τ a). a

| λ (x : τ). a | fix (x : τ) x . a | Λ (α : Typ). a | d (a)

Fig. 17. Destructors and constructors

�en, compute the tail: tails(h;τ)l = match dj (ui)
i with (dk (xki)

i → Xkl)
k

where Xkl =

tails(h;τk)l and tails(h;τ ′) = tails(h;τj)[x ji ← ui]
i
. �e tails are well-typed, and reduce to

one another, thus we can conclude by C-Red-Iota’

• For C-Context, consider the di�erent cases:

– If the context is of the form C = match C ′ with (Pi → τi)
i

and is applied to X1 and

X2, we have Γ ` C ′[X1] = C ′[X2] '. �en we can substitute in the tails.

– If the context is of the form C = match a with (Pi → τi)
i | Pj → C ′, we can use

the induction hypothesis: the tails of the case where the hole is are equal, so we can

substitute in the global tails.

– All other contexts distribute immediately in the tails. �

We obtain subject reduction.

Theorem 5.33 (Subject reduction). Suppose Γ is well-formed, X −→ X ′ and Γ ` X : Y . �en,

Γ ` X ′ : Y .

Proof. We need to prove subject reduction for −→ι and −→β . We prove this for head-reduction

as in the other subject reduction results (see Lemma 5.25). For −→ι , we can use the same technique

as in the other proofs since C-Red-Iota’ allows injecting −→ι in the equality.

For −→β , there are two cases. If we reduce an application, the evaluation context E is not

dependent according to Lemma 5.21. In the other cases, the reduction is actually a −→ι reduction.

�

Theorem 5.34 (Eqal things have the same types, kinds, and sorts). Consider a context Γ.
Suppose Γ ` X1 ' X2. �en, for all Y , Γ ` X1 : Y if and only if Γ ` X2 : Y .

Proof. By induction on a derivation. �is is immediate for re�exivity, transitivity and symmetry.

Reduction preserves types by subject reduction. Substitution preserves types too. �

We can now use the simpli�ed version of equality (C-Eq, C-Red-Iota, C-Red-Meta).

5.5 Soundness for −→]

We now show that meta-reductions are sound in any environment, and ML reductions are sound in

the empty environment.

We de�ne (see Figure 17) constructors ct and cv at the level of types and terms, and destructor

contexts, or simply destructors, Dt and Dv for types and terms. Some destructors destruct terms

but return types.

Moreover, we de�ned the predicate meta on constructors and destructors that do not belong to

eML (hence, use a meta-construction at the toplevel)

Theorem 5.35 (Soundness, meta). Let Γ be an environment. �en:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:34 Thomas Williams and Didier Rémy

• If Γ ` Dt[ct] : Y , then Dt[ct] −→
h
.

• If Γ ` Dv[cv] : Y , then Dv[cv] −→
h
.

Proof. By case analysis on the destructor. We consider the case Dt = []] τ . Consider the various

cases for ct: by Lemma 5.28, the only possible case is ct = Λ] (α : κ). τ ′. �en, Dt[ct] reduces. �

5.6 Reducing mML to eML

We will now show that any mML term that can be typed in an environment without any meta

construct normalizes by −→] to an eML term of the same type. It does not su�ce to normalize

the term and check that it does not contain any mML syntactic construct and conclude by subject

reduction: we have to show the existence of an eML typing derivation of the term.

De�nition 5.36 (Meta-free context). A meta-free context is a context where the types of all (term)

variables have kind Sch, and all type variables have kind Typ. A term is said to be meta-closed if it

admits a typing under a meta-free context. A term is said to be eML-typed if moreover its type has

kind Sch. A type is said to be eML-kinded if moreover it has kind Sch (or one of its subkinds).

Theorem 5.37 (Classification of meta-normal forms). Consider a normal, meta-closed term

or type. �en, it is an eML term or type, or it is not eML-typed (or eML-kinded) and starts with a meta

abstraction.

Proof. By induction on the typing or kinding derivation. Consider the last rule of a derivation:

• If it is a kind conversion K-Conv, by Lemma 5.23, it is a trivial conversion.

• If it is a type conversion, by �eorem 5.34, the kind of the type is preserved.

• If it is a construct in ML syntax: the subderivations on terms and types are also in meta-

closed environments and eML-typed or eML-kinded, and we apply the induction hypothesis.

• If it is a meta-abstraction, it is not eML-typed or eML-kinded because of non-confusion of

kinds.

• If it is a meta-application: let us consider the case of term-level meta type-application. �e

other cases are similar. We have a = b] τ . b is typeable in a meta-closed context but is not

eML-typed. �us, it is a meta-abstraction. By soundness, a reduces, thus is not a normal

form. �

We prove that all mML derivations on eML syntax that can be derived in mML can also be derived

in eML. �e di�culty comes from equalities: transitivity allows us to make mML terms appear in

the derivation; these must be reduced to eML while maintaining a valid typing derivation.

Theorem 5.38 (eML terms type in eML). In eML, consider an environment Γ; terms (resp. types,

kinds) X , X1, and X2; and a type (resp. kind, sort) Y . �en:

• If ` Γ in mML, then there is a derivation of ` Γ in eML.
• If Γ ` X : Y in mML, then there is a derivation of Γ ` X : Y in eML.
• If Γ ` X1 ' X2 in mML, then there is a derivation of Γ ` X1 ' X2 in eML.

Proof. By mutual induction.

We need to strengthen the induction for the typing derivations: we prove that, for any mML
type, kind or sort Y ′, if Γ ` X : Y ′, Y ′ reduces to Y in eML and Γ ` X : Y . �en notice that the

conversions only happen between normal eML terms, so we can apply the results on equalities.

For equalities, normalize the derivations as in Lemma 5.31, but simultaneously transform the

typing derivations into eML derivations (this must be done simultaneously otherwise we cannot

control the size of the new derivations). �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:35

�e main result of this section follows.

Theorem 5.39 (Reduction from mML to eML). If Γ ` a : τ and Γ ` τ : Sch are eML judgments

that are derivable in mML, then there exists a reduction a −→] a
′
such that Γ ` a′ : τ holds in eML.

Note that this implies that eML also admits subject reduction.

Proof. �e well-typed term a normalizes by −→] to an irreducible term a′. By subject reduction,

Γ ` a′ : τ . By classi�cation of values, it is an eML term. By �eorem 5.38, there is a derivation of

Γ ` a′ : τ in eML. �

5.7 Soundness, via a logical relation for −→ι

We prove that −→ι is normalizing, on all terms (including ill-typed terms):

Lemma 5.40 (Nomalization for −→ι). �e reduction −→ι is strongly normalizing.

Proof. We say that a term, type or kind is good if it admits no in�nite reduction sequence, and if

it reduces to Λ (α : Typ). u, for all good types τ , u[α ← τ] is good. Goodness is stable by reduction.

We will prove the following property by induction on a term, type or kindX : supposeγ associates

type and term variables to good terms and types. �en, γ (X) is good. Let us consider the di�erent

cases:

• If X is a variable, γ (X) is good by hypothesis.

• If X = Λ (α : Typ). u: by induction hypothesis, γ (u) is good for all γ , thus γ (X) admits no

in�nite reduction sequence. Moreover, if X reduces to Λ (α : Typ). u ′, u ′[α ← τ] can be

obtained by reduction from (γ [α ← τ]) (u), and thus is good.

• Suppose no head-reduction occurs from γ (X). �en, since the subterms normalize, γ (X)
normalizes. We will now only consider the terms where head-reduction could occur.

• If X = a τ , suppose γ (X) reduces to a term that head-reduces. �en, this term is X ′ =
(Λ (α : Typ). u) τ , that reduces to u[α ← τ]. Since a is good, the result is good too.

• If X = let x = a1 in a2 has a head-reduction, it is from let x = u in a′
2

to a′
2
[x ← u], where

γ (a1) reduces to u and γ (a2) reduces to a′
2
. �e term u is good, thus (γ [x ← u])a2 is good

and reduces to a′
2
[x ← u].

• Similarly for type and term-level pa�ern matching.

�

We then prove soundness of the −→ι reduction. �is is done via a logical relation (essentially,

implementing an evaluator for the non-expansive terms of eML with the reduction −→ι). �is then

allows proving (syntactically) that all conversions in the empty environment are between types

having the same head (up to reduction). Let us note u −→!

ι v if all reduction paths from u terminate

at v .

We start by de�ning a unary logical relation specialized to −→ι on Figure 18. It includes

an interpretation V[τ]γ of values of type τ , an interpretation E[τ]γ of terms as normalizing to

the appropriate values, an interpretation G[γ]τ of the typing environments as environments

associating variables to non-expansive terms. We also de�ne binary interpretations (although they

are interpreted in an unary environment). EqE[τ]γ of equality at type τ , via an interpretation

EqV[τ]γ of equality for values. We will omit the typing and equality conditions in the de�nitions.

�e unary interpretation only contains terms that normalize, while the binary interpretation

contains both pairs of terms that normalize by −→ι , and pairs of terms stuck on a beta-reduction

step. We write ` γ : Γ to mean that γ is a well-typed environment that models Γ, and ` γ1 ' γ2 if all

components of γ1 and γ2 are equal.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:36 Thomas Williams and Didier Rémy

G[Γ] ⊆ {γ | ` γ : Γ}
G[Γ,x : τ] = {γ [x ← u] | γ ∈ G[Γ] ∧ u ∈ E[τ]γ }

G[Γ,α : Typ] = {γ [α ← (γ (τ),E[τ]γ ,EqE[τ]γ)] | γ ∈ G[Γ]}

G[Γ, (a1 =τ a2)] = {γ ∈ G[Γ] | a1,a2 non-expansive =⇒ (γ (a1),γ (a2)) ∈ EqE[τ]γ }

E[τ]γ ⊆ {a | ∅ ` a : γ (τ)}
E[τ]γ = {u | ∃ (v) u −→!

ι v ∧v ∈ V[τ]γ }

V[τ]γ ⊆ {v | ∅ ` v : γ (τ)}
V[α]γ = γ (α)
V[τ1 → τ2]γ = {fix (x : τ ′

1
→ τ ′

2
) y. a}

V[∀(α : Typ) τ]γ = {(Λ (α : Typ). v) | ∀ (∅ ` τ ′ : Typ) v[α ← τ ′] ∈ E[τ]γ [α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)]}

V[ζ (τi)
i
]γ = {(d (vj)

j) | (d : ∀(αi : Typ)i (τj) j → ζ (αi)
i) ∧ ∀ (j) vj ∈ Vk [τj [αi ← τi]

i
]γ }

V[match a with (di (xi j)
j → τi)

i
]γ =

{
V[τj]γ [xi j←vj]j if γ (a) −→!

ι di (vj)
j

∅ otherwise

EqG[Γ] ⊆ {(γ1,γ2) | ` γ1 ' γ2}

EqG[Γ,x : τ] = {(γ1[x ← u1],γ2[x ← u2]) | (γ1,γ2) ∈ EqG[Γ] ∧ (u1,u2) ∈ EqE[τ]γ1
}

EqG[Γ,α : Typ] =

(
γ [α ← (γ1 (τ1),E[τ1]γ1

,EqE[τ2]γ1
)],

γ [α ← (γ2 (τ2),E[τ1]γ2
,EqE[τ2]γ2

)]

) �������

(γ1,γ2) ∈ EqG[Γ]

∧ E[τ1]γ1
= E[τ2]γ2

∧ EqE[τ1]γ1
= EqE[τ2]γ2

EqG[Γ, (a1 =τ a2)] =

{
(γ1,γ2) ∈ G[Γ]

�����
a1,a2 non-expansive =⇒

(γ1 (a1),γ1 (a2)) ∈ EqE[τ]γ1
∧ (γ2 (a1),γ2 (a2)) ∈ EqE[τ]γ2

}
EqE[τ]γ ⊆ {(a1,a2) | ∅ ` a1 ' a2}

EqE[τ]γ =

{
(u1,u2)

�����
(∃ (v1 v2) u1 −→

!

ι v1 ∧ u2 −→
!

ι v2 ∧ (v1,v2) ∈ EqV[τ]γ)
∨ (∀ (v1 v2) ¬(u1 −→

!

ι v1) ∧ ¬(u2 −→
!

ι v2))

}
EqV[τ]γ ⊆ {(v1,v2) | ∅ ` v1 ' v2}

EqV[α]γ = γ (α)
EqV[τ → τ ′]γ = {(fix (x : τ1 → τ ′

1
) y. a1, fix (x : τ2 → τ ′

2
) y. a2)}

EqV[∀(α : Typ) τ]γ =

{(
Λ (α : Typ). v1,
Λ (α : Typ). v2

) �����
∀ (∅ ` τ ′ : Typ)

(v1[α ← τ ′],v2[α ← τ ′]) ∈ V[τ]γ [α←EqE[τ ′]γ]

}
EqV[ζ (τi)

i
]γ =

{
(d (vj)

j ,d (w j)
j)

�����
d : ∀(αi : Typ)i (τj) j → ζ (αi)

i

∧((vj ,w j) ∈ EqV[τj [αi ← τi]
i
]γ)

j

}
EqV[match a with (di (xi j)

j → τi)
i
]γ =

{
EqV[τj]γ [xi j←vj]j if γ (a) −→!

ι di (vj)
j

∅ otherwise

Fig. 18. Logical relation for −→ι

�e de�nition of the interpretations is well-founded, by induction on types, and, for datatypes, by

induction on the values (because the values appearing inside datatype constructors are necessarily

values of a datatype, or functions from terms).

De�nition 5.41 (Valid environment). An environment γ is valid if for all α such that γ (α) =
(τ , S,R),

• For all u ∈ S , ∅ ` u : τ .

• �e restriction of R to S is an equivalence relation.

Lemma 5.42 (Definition of the interpretations). �e interpretations are de�ned for wall-

kinded terms and well-formed environments:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:37

• If ` Γ, G[Γ] is well-de�ned and all its elements are valid, and EqG[Γ] is well-de�ned and

re�exive on G[Γ].

• If Γ ` τ : Sch, for all γ ∈ G[Γ], E[τ]γ is de�ned, all its elements are non-expansive terms of

type γ (τ), and EqE[τ]γ is an equivalence relation on E[τ]γ .

Proof. By mutual induction on the kinding and well-formed derivations. �

As usual, we need to prove a substitution result:

Lemma 5.43 (Substitution). Consider a valid environment γ . �en,

• E[τ [x ← u]]γ = E[τ]γ [x←u]

• EqE[τ [x ← u]]γ = EqE[τ]γ [x←u]

• E[τ [α ← τ ′]]γ = E[τ]γ [α←(γ (τ ′),E[τ ′]γ ,EqE[τ ′]γ)]
• EqE[τ [x ← τ ′]]γ = EqE[τ]γ [α←(γ (τ ′),E[τ ′]γ ,EqE[τ ′]γ)]

Proof. By induction on τ . �

We also need to prove that reducing a value in the environment does not change the interpretation:

Lemma 5.44 (Reduction in the environment). Consider a valid environment γ , and u −→ι u
′
.

�en,

• E[τ]γ [x←u] = E[τ]γ [x←u′]
• EqE[τ]γ [x←u] = EqE[τ]γ [x←u′]

Proof. By induction on τ . �e term variables in γ are used for substituting into types for the

typing side-conditions. Since ∅ ` u ' u ′, the typing side-conditions stay true by Lemma 5.16.

�ey also occur in the interpretation of pa�ern matching. But, for all terms a, (γ [x ← u]) (a) and

(γ [x ← u ′]) (a) normalize to the same term. �

Lemma 5.45 (Eqality in the environment). Consider a valid environment γ and τ1, S,R such

that γ [α ← (τ1, S,R)] is valid. Suppose ∅ ` τ1 ' τ2. �en,

• γ [α ← (τ2, S,R)] is valid;
• for all types τ , E[τ]γ [α←(τ1,S,R)] = E[τ]γ [α←(τ2,S,R)];

• for all types τ , EqE[τ]γ [α←(τ1,S,R)] = EqE[τ]γ [α←(τ2,S,R)].

Proof. By induction. �e type τ1 occurs only in the conclusion of typing derivations. Use

conversion and ∅ ` τ1 ' τ2 to get the same derivations with τ2. �

Lemma 5.46 (Reduction preserves interpretation). Suppose τ −→ι τ
′
. �en,

• E[τ]γ = E[τ ′]γ ;
• EqE[τ]γ = EqE[τ ′]γ .

Proof. We will show the lemma for E[τ]γ . We eliminate the context of the reduction by

induction. If we pass to a reduction between terms, it is in the argument of a type-level match.

�en, the two terms normalize to the same term. �e only type-level reduction is the reduction of

the type-level match:

match dj τj (ui)
i with (dj τj (x ji)

i → τj)
j ∈J −→h

ι τj [x ji ← ui]
i

Let us show that the two types have the same interpretation. We have dj τj (ui)
i −→!

ι dj τj (vi)
i
,

where ui −→
!

ι vi . �us, the interpretation of the le�-hand side is E[τ]γ [x ji←vi]i = E[τ]γ [x ji←ui]i

by Lemma 5.44. By substitution (Lemma 5.43), E[τ]γ [x ji←ui]i = E[τ [x ji ← ui]
i
]γ . �is is the

interpretation of the right-hand side. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:38 Thomas Williams and Didier Rémy

Lemma 5.47 (Evaluation for −→ι). Suppose ` Γ. �en:

• if Γ ` u : τ , then for all γ ∈ G[Γ], γ (u) ∈ E[τ]γ ;

• if Γ ` τ1 ' τ2, then for all (γ1,γ2) ∈ EqG[Γ], E[τ1]γ = E[τ2]γ and EqE[τ1]γ1
= EqE[τ2]γ2

;

• if Γ ` a1 ' a2 and Γ ` a1 : τ , then for all (γ1,γ2) ∈ EqG[Γ], (γ1 (a1),γ2 (a2)) ∈ EqE[τ]γ1
;

• if Γ ` τ : Sch, then for all (γ1,γ2) ∈ EqG[Γ], EqE[τ]γ1
= EqE[τ]γ2

;

• if Γ ` a : τ , then for all (γ1,γ2) ∈ EqG[Γ], (γ1 (a),γ2 (a)) ∈ EqE[τ]γ1
.

Proof. We prove these results by mutual induction on the derivations.

For the result on typing derivations, let us consider the di�erent rules:

• For Var on x : τ : by hypothesis, γ (x) ∈ E[τ]γ .

• For Conv: use the second lemma to show the interpretations of the two types are the same.

• For Fix: any two well-typed abstractions are linked at an arrow type.

• �e rule App cannot occur as the �rst rule in the typing of a non-expansive term.

• For TAbs:

TAbs

Γ,α : Typ ` u : τ

Γ ` Λ (α : Typ). u : ∀(α : Typ) τ

Considerγ ∈ G[Γ] and ∅ ` τ ′ : Typ. Λ (α : Typ).u normalizes to Λ (α : Typ).v withu −→!

ι v .

By induction hypothesis, (γ [α ← τ ′]) (u) ∈ E[τ]γ [α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)]. Moreover, it reduces

to (γ [α ← τ ′]) (v) = γ (v)[α ← τ ′]. �us, γ (v)[α ← τ ′] ∈ E[τ]γ [α←(τ ′,E[τ ′]γ ,EqE[τ ′]γ)].

• For TApp:

TApp

Γ ` τ ′ : Typ Γ ` u : ∀(α : Typ) τ

Γ ` u τ ′ : τ [α ← τ ′]

Consider γ ∈ G[Γ]. �ere exists τ ′′ such that γ (τ ′) −→!

ι τ
′′

. �en, ∅ ` τ ′′ : Typ. �ere

exists v such that γ (u) −→!

ι v . By inductive hypothesis, v ∈ V[∀(α : Typ) τ]γ . �us, there

exists v ′ such that v = Λ (α : Typ). v ′, and v ′[α ← τ ′′] ∈ E[τ]γ [α←(τ ′′,E[τ ′′]γ ,EqE[τ ′′]γ)] =

E[τ [α ← τ ′′]]γ = E[τ [α ← τ ′]]γ by Lemmas 5.43 and 5.46. We need to prove γ (u τ ′) ∈
E[τ [α ← τ ′]]γ . But we have γ (u τ ′) −→∗ι (Λ (α : Typ). v ′) τ ′′ −→ι v

′
[α ← τ ′′].

• �e other cases are similar.

For the result on equalities between types, by induction on a derivation. We suppose that the

context rule is always used with a shallow context.

• For C-Sym and C-Trans, use the induction hypothesis and symmetry/transitivity of equality.

• For C-Refl, use re�exivity on types.

• For C-Context: apply the induction hypothesis on the modi�ed subterm if it is a type, and

re�exivity on the other subterms.

• Otherwise, it is the argument of a type-level pa�ern matching. We have Γ ` a1 : ζ (τi)
i
,

Γ ` a2 : ζ (τi)
i
, and Γ ` a1 ' a2. By the third result, (γ1 (a1),γ2 (a2)) ∈ EqE[ζ (τi)

i
]γ1

. If both

do not normalize to a value, the two interpretations of the pa�ern matching are empty.

Otherwise they normalize to d (v1j)
j

and d (v2j)
j

such that (v1j ,v2j) ∈ EqE[τj]γ1
where the

τj are the types of the arguments. �us, (γ1[x j ← v1j]
j ,γ2[x j ← v2j]

j) ∈ EqG[Γ, (x j : τj)
j
],

and we can interpret the selected branch in these environments.

• For C-Split on a term Γ ` u : τ ′, use re�exivity on types to prove that (γ1 (u),γ2 (u)) ∈
EqE[τ ′]γ1

. Moreover, γ1 (u) ∈ E[τ ′]γ1
, thus the terms normalize to a value. �en, select the

case corresponding to the constructor, construct an environment as in the previous case,

and use the induction hypothesis.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:39

• For C-Red-Iota, suppose we have a head-reduction (otherwise, use C-Context). �en, it is

the reduction of a pa�ern matching. Proceed as in C-Split.

• �e rule C-Eq does not apply on types.

For the result on equalities between terms:

• �e cases of C-Sym, C-Trans and C-Split are similar to the same cases on types.

• For C-Refl, use re�exivity on terms.

• For C-Red-Iota, proceed as in C-Red-Iota for types.

• For C-Eq, consider the two equal terms u1,u2. From γ1 we get (γ1 (u1),γ1 (u2)) ∈ EqE[τ]γ1
.

Moreover, by re�exivity on u2, (γ1 (u2),γ2 (u2)) ∈ EqE[τ]γ1
. We conclude by transitivity of

EqE[τ]γ1
.

• For C-Context, examine the di�erent typing rules as in the �rst result, and use re�exivity

when needed.

For the re�exivity results, examine the di�erent typing rules as in the �rst result. Take special

care for variables. �e interpretations of the type variables are the same. For term variables

appearing in terms, they are bound to related terms. Finally, for type-level pa�ern matching, the

interpretations of the term in the environments are related by re�exivity. �

�e following result is then a direct consequence:

Lemma 5.48 (Separation for −→ι). Suppose ∅ ` τ1 ' τ2. �en if τ1 and τ2 have a head, it is the

same.

Proof. Apply the previous result with the empty environment. �e interpretations of types

with distinct heads are distinct. �

Theorem 5.49 (Soundness, empty environment).

• If ∅ ` Dt[ct] : Y , then Dt[ct] −→
h
.

• If ∅ ` Dv[cv] : Y , then Dv[cv] −→
h
.

Proof. Similar to �eorem 5.35, but use the separation theorem for empty environments. �

6 A step-indexed logical relation on mML

To give a semantics to ornaments and establish the correctness of elaboration, we de�ne a step-

indexed logical relation on mML. We later give a de�nition of ornamentation using the logical

relation. Instead of de�ning a relation compatible with the strong and non-deterministic reduction

on mML, we choose a more standard presentation and de�ne a deterministic subset of the reduction.

We also ignore all reductions on types. �is relation will be used to prove soundness for eML, and

that eML programs can be transformed into equivalent ML programs.

6.1 A deterministic reduction

We never need to evaluate types for reduction to proceed to a value. �us, our reduction will ignore

the types appearing in terms (and the terms appearing in these types, etc.) and only reduce the term

part that actually computes. We de�ne a subreduction 7→ of −→ by restricting the reduction −→]

to a call-by-name le�-to-right strategy. �e deterministic meta-reduction is de�ned as applying

only in ML evaluation contexts. We extend the ML reduction to also occur on the le�-hand side

of meta-applications. �is does not change the metatheory of the language, as such terms are

necessarily ill-typed, but it allows us to use the same evaluation contexts for ML reduction and

meta-reduction. �e values are also extended to contain meta-abstractions. By a similar argument,

these values are not passed to any eML construct because they have type Met, which is not allowed

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:40 Thomas Williams and Didier Rémy

E ::= . . . | E]u | E] τ | E] �

v ::= . . . | λ] (x : τ). a | Λ] (α : κ). a | λ] (� : a =τ a). a

Ctx-Det-Meta

a −→h
]
b

E[a] 7→ E[b]

Ctx-Beta-Meta

a −→h
β b

E[a] 7→ E[b]

Fig. 19. Deterministic reduction 7→ for mML

in eML. With these changes, we get a deterministic meta-reduction 7→ de�ned as the ML and meta

head-reductions for terms, applied under the extended ML evaluation contexts E. We write 7→h
the

associated head-reduction, i.e. the union of all head-reduction of terms.

�e reduction 7→ admits the usual properties: it is deterministic (and thus con�uent), and the

values are irreducible.

Lemma 6.1. Values v are irreducible for 7→.

Proof. We show a slightly more general result: if a value v is of the form E[a], then a not a

value v ′. �is is enough, as values do not head-reduce.

Proceed by induction on v . Assume v is E[a]. If E is the empty context, a is v which is a value.

Otherwise, only constructors can appear as the root of both an evaluation context and a value.

�en, the context E is of the form d (v ′,E ′,b), and v = d (v ′′). �us, E ′[a] is a value, and we use

the induction hypothesis to show that a is a value. �

Lemma 6.2 (Determinism). Consider a term a. �en, there exists at most one term a′ such that

a 7→ a′.

Proof. We show, by induction on the term, that there exists at most one decomposition a = E[b],

with b head-reducible. �is su�ces because head-reduction is deterministic. We have shown in the

previous proof that values don’t admit such a decomposition.

Consider the di�erent cases for a.

• a is an abstraction or a �xed point: it does not decompose further since there is no appro-

priate non-empty evaluation context.

• a is d (a)ii : either it is a value, or we can decompose the sequence (a)ii = (b) jj ,b, (v)
k
k , with

b not a value. Necessarily, E = d ((b) jj ,E
′, (v)kk) (because E cannot be empty: constructors

do not reduce). But then, b admits a unique decomposition as E ′[b ′].
• a is let x = a1 in a2: If a1 is a value, then it does not decompose, and the only possible

context is the empty context []. Otherwise, it admits at most one decomposition E ′[b], and

a admits only the decomposition let x = E ′[b] in a2.

• a is a1 a2: If a2 is not a value, a does not head-reduce and the only possible decomposition

of E is a1 E
′
. Since a2 decomposes uniquely, E ′ is unique, thus E is unique. Otherwise a2 is a

value v , If a1 is not a lambda, a does not head-reduce, and the only possible decomposition

of E is E ′ v . By induction, E ′ is unique. If both are values, the only possible evaluation

context is the empty context.

• Cases for all others applications are similar, except that there is no context allowing the

reduction of the right-hand side of the application, thus it is not necessary to check whether

it is a value.

�

We can now link the deterministic reduction 7→ and the full reduction −→.

We �rst note that ML reduction is impossible on values:

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:41

Lemma 6.3. If v −→ a, then we actually have v −→] a and a is a value.

Proof. �e ML reduction −→β is included in 7→, and values do not reduce for 7→. By induction

on the values, we can prove that redexes only occur under abstractions. �us, the term remains a

value a�er reduction. �

We write −→λ the reduction that only reduces ML term abstractions. It is also the subset of −→β
reductions that are not included in −→ι .

Lemma 6.4 (Commutations for well-typed terms). Meta-reductions can always be done �rst,

moreover, β-reductions and ι-reductions commute. More precisely, assume X1 is a well-typed term:

• If X1 −→ι X2 −→] X3, then X1 −→] X4 −→
∗
ι X3 for some X4.

• If X1 −→λ X2 −→] X3, then X1 −→
∗

]
X4 −→λ X3 for some X4.

• If X1 −→λ X2 and X1 −→ι X3, then X2 −→
∗
ι X4 and X3 −→λ X4 for some X4.

Proof. For the �rst two commutations: a typing argument prevents −→ι and −→λ from creating

meta-redexes. For the third property: note that −→ι cannot duplicate a −→λ redex in an evaluation

context. �

Lemma 6.5 (Normalization for −→ι and −→]). �e union of −→ι and −→] is strongly normal-

izing on well-typed terms.

Proof. Consider a term X . By König’s lemma (since by �eorem 5.2, there is a �nite number of

possible reductions from one term), all possible −→] reduction sequences from X are of length at

most k for some k . Consider an in�nite (−→ι ∪ −→]) reduction sequence from X . It has k −→]

reductions or less. Otherwise, we could use Lemma 6.4 to put k + 1 −→] reductions at the start of

the sequence. �us, a�er the last −→] reduction, there is an in�nite sequence of −→ι reduction.

But this is impossible by Lemma 5.40. �

Lemma 6.6 (Weak normalization implies strong normalization). Consider a term a. Suppose
there exists a terminating reduction path from a. �en, all reduction sequences are �nite.

Proof. We show that all reduction sequences from a have the same number of −→λ reductions.

We can, without loss of generality (by Lemma 6.4) assume that a is meta-normal and that the

reduction path is meta-normal.

Consider a normalizing reduction sequence from a. We are interested in the −→λ reductions.

�us, we decompose the sequence as a = a0 −→
∗
ι a
′
0
−→λ a1 −→

∗
ι a
′
1
. . . −→λ an −→

∗
ι a
′
n . Consider

a longer reduction sequence from a. We can decompose it as a �nite sequence a = b0 −→
∗
ι b
′
0
−→λ

b1
Let us show by induction that for all i ≤ n, there exists ci such that a′i −→

∗
ι ci and b ′i −→

∗
ι ci .

�is is true for 0. Suppose it is true for i . �en, we can use Lemma 6.4 to transport the reductions

at the next step, and conclude by con�uence. Finally, a′n = cn since a′n is irreducible. But, since b ′n
reduces by −→λ , cn reduces by −→λ . �

�is su�ces to show that the reductions coincide, up to reduction under abstractions:

Lemma 6.7 (Eqivalence of the deterministic reduction).

• If a 7→ v and a normalizes by −→ to a′, then v −→∗ a′.
• If a −→∗ v , then a 7→ v ′ for some v ′. More precisely:

– If a −→∗ d (vi)
i
, then a 7→∗ d (v ′i)

i
and for all i , v ′i −→

∗

]
vi .

– If a −→∗ fix (x : τ1) y. b, then a 7→
∗ fix (x : τ1) y. b and b ′ −→∗

]
b.

– If a −→∗ λ] (x : τ). b, then a 7→∗ λ] (x : τ ′). b ′ and b ′ −→∗
]
b.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:42 Thomas Williams and Didier Rémy

– If a −→∗ Λ] (α : κ). b, then a 7→∗ Λ] (α : κ ′). b ′ and b ′ −→∗
]
b.

– If a −→∗ λ] (� : a1 =τ a2). b, then a 7→
∗ λ] (� : a′

1
=′τ a

′
2
). b ′ and b ′ −→∗

]
b.

Proof. �e �rst result is rephrasing of Lemma 6.6. Consider the second result. We start by

proving that whenever a 7→ v ′, v ′ has the correct form. �is is a consequence of con�uence, and

the fact that head constructors are preserved by reduction.

�en, we only need to prove that the deterministic reduction does not get stuck when the full

reduction does not: suppose a −→ v , then either a is a value or a 7→. We will proceed by structural

induction on a.

• If a = x , a does not reduce.

• Consider a = let x = a1 in a2. �e let binding cannot be the root of a value, so −→ will

reduce it at some point: there exists a1 −→
∗ v1. By induction hypothesis, a1 reduces or is a

value. If it is a value, a head-reduces, and otherwise the subterm a1 reduces.

• Suppose a is an abstraction. �en it is a value.

• Suppose a is an application. We will only consider the case a = a1 a2, the cases of the other

applications are similar. A value cannot start with an application. �us, the application

will be reduced at some points. �en, there exists τ , b and w such that a1 −→
∗ λ (x : τ). b

and a2 −→
∗ w . Suppose a2 is not already a value. �en, by induction hypothesis it reduces,

so a reduces by 7→. Otherwise, suppose a1 is not already a value. �en, by induction

hypothesis it reduces by 7→, and a reduces. Otherwise, we have a = (λ (x : τ). b) v , and a is

head-reducible.

• Consider a = d (ai)
i
. It reduces by −→ to a value that is necessarily of the form d (vi)

i
, with

ai −→
∗ vi . If all ai are values, a is a value. Otherwise, consider the last index i such that ai

is not a value. �en, by induction hypothesis, it reduces by 7→. �us, a reduces by 7→.

• Consider a = match b with (dj τj (x ji)
i → aj)

j
. A value cannot start with a pa�ern

matching, so −→ will reduce it at some point. �us, there exists d and (ai)
i

such that

b −→∗ d (ai)
i
. �us, there exists (a′i)

i
such that b 7→∗ d (a′i)

i
. If the reduction takes one

step or more, a reduce under the pa�ern matching. Otherwise, the pa�ern matching itself

reduces.

�

6.2 Counting steps

We de�ne an indexed version of this reduction as follows: the beta-reduction and the expansion

of �xed points in ML take one step each, and all other reductions take 0 steps. �en, 7→i is the

reduction of cost i , i.e. the composition of i one-step reductions and an arbitrary number of zero-step

reductions. �e full de�nition of the indexed reduction is given on Figure 20. Since 7→0 is a subset

of the union of −→ι and −→] , it terminates.

6.3 Semantic types and the interpretation of kinds

We want to de�ne a typed, binary, step-indexed logical relation. �e (relational) types will be

interpreted as pairs of (ground) types and a relation between them. �is relation is step-indexed,

i.e. it is de�ned as the limit of a sequence of re�nement of the largest relation between these types.

�e type-level functions are interpreted as function between these representation, i.e. a pair of

type-level functions for the le�- and right-hand side and a function of step-indexed relations subject

to a causality constraint.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:43

(fix (x : τ) y. a) v 7→h
1
a[x ← fix (x : τ) y. a,y ← v]

(Λ (α : Typ). v) τ 7→h
0
v[α ← τ]

let x = v in a 7→h
0
a[x ← v]

match dj τj (vi)
i with

(dj τj (x ji)
i → aj)

j
7→h

0
aj [xi j ← vi]

i

(λ] (x : τ). a)]u 7→h
0
a[x ← u]

(Λ] (α : κ). a)] τ 7→h
0
a[α ← τ]

(λ] (� : b1 =τ b2). a)] � 7→
h
0
a

Context

a 7→h
i b

E[a] 7→i E[b]

Identity

a 7→0 a

Composition

a1 7→i a2 a2 7→j a3

a1 7→i+j a3

Fig. 20. The counting reduction 7→i

Env-TVar

` γ : Γ ∅ ` τ : γ (κ)

` γ [α ← τ] : Γ,α : κ

Env-Var-NonExp

` γ : Γ ∅ ` u : γ (τ)

` γ [x ← u] : Γ,x : τ

Env-Eq

` γ : Γ ∅ ` γ (a) ' γ (b)

` γ : Γ, (a =τ b)

Env-Empty

` ∅ : ∅

Fig. 21. The environment typing judgment ` γ : Γ

�e interpretation of kinds is parameterized by a pair of term environments for the le� and

right-hand side of the relation. �e environments must be well-typed: we de�ne a judgment ` γ : Γ
that checks that all bindings in γ have the right type or kind.

�en, we de�ne by induction on kinds an interpretation K [κ]γ1,γ2
, de�ned for all κ, γ1, γ2 such

that there exists Γ such that (` Γ : γi)
i

and Γ ` κ : wf. �e interpretation is a set of triples

(τ1, (S j)
j≤i ,τ2) such that (∅ ` τi : γi (κ))

i
. In the interpretation of the base kinds Typ, Sch,Met, the

S j are a decreasing sequence of relations on values of the correct types. For higher-order constructs,

the S j are functions that map interpretations of one kind to interpretations of another kind. Equality

between the interpretations is considered up to type equality.

Lemma 6.8. �e interpretation of kinds is well-de�ned.

Proof. We must prove that the types appearing in the triples are correctly kinded. �is is

guaranteed by the kinding conditions in each case. �

Lemma 6.9 (Eqal kinds have eqal interpretations). Consider ` γ1,γ2 : Γ. �en, if Γ ` κ1 '

κ2, K [κ1]γ1,γ2
= K [κ2]γ1,γ2

.

Proof. By induction on the kinds: Lemma 5.23 allows us to decompose the kinds and get equality

between the parts. For the kinding conditions, note that if Γ ` κ1 ' κ2, then ` γ1 (κ1) ' γ2 (κ2). �

6.4 The logical relation

We de�ne a typed binary step-indexed logical relation on mML equipped with 7→. �e interpretation

of types of terms Ek [τ]γ goes through an interpretation of types as a relation on valuesVk [τ]γ .

�ese interpretations depend on an environment γ . �e interpretation of a type of terms as values

is an arbitrary relation between values. �e interpretation of types of higher kind is a function

from the interpretation of its arguments to the interpretation of its result. Typing environments

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:44 Thomas Williams and Didier Rémy

K [κ ∈ {Typ, Sch, Sch,Met}]γ1,γ2
=

(τ1, (R j)

j≤i ,τ2)

�������

` τ1 : κ ∧ ` τ2 : κ
∧ ∀ (j ≤ i) ((v1,v2) ∈ R j) ` v1 : τ1∧ ` v2 : τ2

∧ ∀ (j ≤ k ≤ i) ,R j ⊇ Rk

K [∀(α : κ1) κ2]γ1,γ2
=

(τ1, (Fj)

j≤i ,τ2)

�������

` τ1 : ∀(α : γ1 (κ1)) γ1 (κ2)∧ ` τ2 : ∀(α : γ2 (κ1)) γ2 (κ2)
∧ ∀j ≤ i, (τ ′

1
, (Sk)

k≤j ,τ ′
2
) ∈ K [κ1]γ1,γ2

(τ1] τ
′
1
, (Fk (Sk))

k≤j ,τ2] τ
′
2
) ∈ K [κ2]γ1[α←τ ′

1
],γ2[α←τ ′

2
]

K [τ → κ]γ1,γ2
=

(τ1, (fj)
j≤i ,τ2)

������������

` τ1 : γ1 (τ) → γ1 (κ)∧ ` τ2 : γ2 (τ) → γ2 (κ)
∧ ∀ (u1,u2) (` u1 : γ1 (τ)∧ ` u2 : γ2 (τ))

=⇒ (τ1] u1, (fj (u1,u2))
j≤i ,τ2] u2) ∈ K [κ]γ1,γ2

∧ ∀u1,u2,u
′
1
,u ′

2
, (` u1 ' u

′
1
∧ ` u2 ' u

′
2
)

=⇒ ∀j, fj (u1,u2) = fj (u
′
1
,u ′

2
)

K [(a =τ b) → κ]γ1,γ2
=

{
K [κ]γ1,γ2

if ` γ1 (a) ' γ1 (b)∧ ` γ2 (a) ' γ2 (b)
{•} otherwise

Fig. 22. Interpretation of kinds

Γ are interpreted as a set of environments γ that map types variables to either relations in (for

arguments of kind Sch) or syntactic types (for higher-kinded types), and term variables to pairs of

(related) terms. Equalities are interpreted as restricting the possible environments to those where

the two terms can be proved equal using the typing rules.

Each step of the relation is a triple (τ1, (R j)
j≤i ,τ2). For compacity, we will only specify the value

of Ri and leave implicit the values of τ1 and τ2 (that are simply obtained by applying γ1,γ2 to the

type τ).

�e relation Ek [τ]γ is de�ned so that the le�-hand side term terminates whenever the the

right-hand side term, i.e. the le�-hand side program terminates more o�en. In particular, every

program is related to the never-terminating program at any type. �is is not a problem: if we need

to consider termination, we can use the reverse relation, where the le� and right side are exchanged.

�is is what we will do on ornaments: we will �rst show that, for arbitrary patches, the ornamented

program is equivalent but terminates less, and then, assuming the patches terminate, we show that

the base program and the li�ed program are linked by both the normal and the reverse relation.

Let us justify that this de�nition is well-founded. �e interpretation of kinds is de�ned by

structural induction on the kind. �e interpretation of contexts is de�ned by structural induction

on the context, and is well-founded as long as the relation on terms and values is de�ned. �e

interpretation of values (and terms) is de�ned by induction, �rst on the indices, then on the structure

of the type. �e case of datatypes is particular: then, the interpretation is de�ned by induction on

the term. Only datatypes and arrows can appear in the type of a �eld of a constructor, and arrows

decrease the index. �us, the de�nition is well-founded.

We now prove that well-formed contexts and well-kinded types have a de�ned interpretation.

Lemma 6.10 (Well-kinded types, well-formed contexts have an interpretation). Let Γ be

a context.

• Suppose ` Γ. �en, for all k , Gk [Γ] is de�ned.

• Suppose Γ ` τ : κ. �en, for all k and for all γ ∈ Gk [Γ], Vk [τ]γ is de�ned, and Vk [τ]γ ∈

K [κ]γ1,γ2
.

• Suppose Γ ` τ : Met. �en, for all k and for all γ ∈ Gk [Γ], Ek [τ]γ is de�ned.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:45

Gk [∅] = {∅}

Gk [Γ,x : τ] = {γ [x ← (u1,u2)] | (u1,u2) ∈ Ek [τ]γ ∧ γ ∈ Gk [Γ]}

Gk [Γ,α : κ] = {γ [α ← (τ1, (R j)
j≤k ,τ2)] | (τ1, (R j)

j≤k ,τ2) ∈ K [κ]γ1,γ2
∧ γ ∈ Gk [Γ]}

Gk [Γ, (a1 =τ a2)] = {γ ∈ Gk [Γ] | (` γ1 (a1) ' γ1 (a2)) ∧ (` γ2 (a1) ' γ2 (a2))}

Ek [τ]γ = {(a1,a2) | ∀i, ∀v2, a2 7→i v2 =⇒ ∃v1, a1 7→
∗ v1 ∧ (v1,v2) ∈ Vk−i [τ]γ }

Vk [α]γ = γ (α)
Vk [τ1] τ2]γ = Vk [τ1]γ Vk [τ2]γ
Vk [τ]u]γ = Vk [τ]γ (γ1 (u),γ2 (u))
Vk [τ] �]γ = Vk [τ]γ •

Vk [Λ] (α : κ). τ]γ = λ (R ∈ K [κ]γ1,γ2
).Vk [τ]γ [α←R]

Vk [λ] (x : κ). τ]γ = λ ((u1,u2) ∈ Term × Term).Vk [τ]γ [x←(u1,u2)]

Vk [λ] (� : a1 =τ2
a2). τ1]γ = λ (• ∈ 1).Vk [τ1]γ

Vk [τ1 → τ2]γ =

(
fix (x : τ ′

1
→ τ ′

2
) y. a1,

fix (x : τ ′′
1
→ τ ′′

2
) y. a2

) �������

∀ (j < k) (v1,v2) ∈ Vj [τ1]γ =⇒(
a1[x ← (fix (x : τ ′

1
→ τ ′

2
) y. a1),y ← v1],

a1[x ← (fix (x : τ ′′
1
→ τ ′′

2
) y. a2),y ← v2]

)
∈ Ej [τ2]γ

Vk [Π(x : τ1). τ2]γ =

{(
λ] (x : τ ′

1
). a1,

λ] (x : τ ′′
1
). a2

) �����
∀ (j ≤ k) (u1,u2) ∈ Ej [τ1]γ =⇒

(a1[x ← u1],a2[x ← u2]) ∈ Ej [τ2]γ [x←(u1,u2)]

}
Vk [Π(� : b1 =τ b2). τ

′
]γ =

{(
λ] (� : . . .). a1,

λ] (� : . . .). a2

) �����
(∅ ` γ1 (a1) ' γ1 (a2) ∧ ∅ ` γ2 (a1) ' γ2 (a2))

=⇒ (a1,a2) ∈ Ek [τ ′]γ

}
Vk [∀(α : Typ) τ]γ =

{(
Λ (α : Typ). u1,
Λ (α : Typ). u2

) �����
∀ ((τ1, (R j)

j≤k ,τ2) ∈ K [κ]γ1,γ2
)

(u1,u2) ∈ Vk [τ]γ [α←(τ1, (Rj) j≤k ,τ2)]

}
Vk [∀] (α : κ). τ]γ =

{(
Λ] (α : κ1). a1,

Λ] (α : κ2). a2

) �����
∀ ((τ1, (R j)

j≤k ,τ2) ∈ K [κ]γ1,γ2
)

(a1,a2) ∈ Ek [τ]γ [α←(τ1, (Rj) j≤k ,τ2)]

}
Vk [ζ (τi)

i
]γ =

{
(d (vj)

j ,d (w j)
j)

�����
(d : ∀(αi : Typ)i (τj) j → ζ (αi)

i)
∧ ∀ (j) (vj ,w j) ∈ Vk [τj [αi ← τi]

i
]γ

}
Vk [match a with (di (xi j)

j → τi)
i
]γ =

{
Vk [τj]γ [xi j←(vj ,v ′j)]

j if γ1 (a) 7→0 di (vj)
j ∧ γ2 (a) 7→0 di (v

′
j)
j

∅ otherwise

Fig. 23. Definition of the logical relation

Proof. By mutual induction on the kinding and well-formedness relations. Use the previous

lemma for K-Conv. �e interpretations of relational types are formed between base types of the right

kinds. It remains to check that the interpretation of types of base kinds are decreasing with k . �is

can be shown by the same induction that guarantees the induction is well-founded: all de�nitions

using interpretations in contravariant position are explicitly made decreasing by quantifying on

the rank. �

Lemma 6.11 (Substitution commutes with interpretation). For all environments γ , index k ,
we have:

Vk [τ [α ← τ ′]]γ = Vk [τ]γ [α←Vk [τ ′]γ]

Vk [τ [x ← u]]γ = Vk [τ]γ [x←(γ1 (u),γ2 (u))]
K [κ[α ← τ ′]]γ1,γ2

= K [κ]γ1[α←γ1 (τ ′)],γ2[α←γ2 (τ ′)]
K [κ[x ← u]]γ1,γ2

= K [κ]γ1[x←γ1 (u)],γ2[x←γ2 (u)]

Proof. By structural induction on τ , κ. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:46 Thomas Williams and Didier Rémy

Lemma 6.12 (Fundamental lemma). • Suppose Γ ` a : τ . �en, for all k , γ ∈ Gk [Γ],

(γ1 (a),γ2 (a)) ∈ Ek [τ]γ .

• Suppose Γ ` τ1 ' τ2. �en, for all k , γ ∈ Gk [Γ],Vk [τ1]γ = Vk [τ2]γ .

Proof. By induction on the structure of the relation, and on the typing or equality derivations.

For equality proofs:

• Re�exivity, transitivity and symmetry are immediate.

• For head-reduction, the only possible reduction is application.

• For C-Context, proceed by induction on the context then apply the inductive hypothesis (for

types), or in the case of match use the fact that equal terms have the same head-constructor

in empty environments (Lemma 5.48).

• For C-Split on a term u: apply the induction hypothesis on Γ ` u : ζ (τi)
i
. We have:

(γ1 (u),γ2 (u)) ∈ Ek [ζ (τi)
i
]γ . Since γ1 (u) and γ2 (u) are closed, non-expansive terms, they

reduce in 0 steps to values (v1,v2) ∈ Vk [ζ (τi)
i
]γ (this is a consequence of re�exivity for

the logical relation on −→ι , a�er −→] normalization). In particular, they have the same

head-constructor and the �elds of the constructors are related. We can then add the �elds

and the equality to the context, and apply the inductive hypothesis on the appropriate

constructor.

For typing derivations, we will only examine the cases of Var, Conv, Fix, and App.

• �e Var rule is:

Var

x : τ ∈ Γ

Γ ` x : τ

Consider γ ∈ Gk [Γ]. By de�nition, (γ1 (x),γ2 (x)) ∈ Vk [Γ]γ . �us, (γ1 (x),γ2 (x)) ∈ Ek [Γ]γ .

• Consider the Conv rule:

Conv

Γ ` τ1 ' τ2 Γ ` a : τ1

Γ ` a : τ2

Let γ ∈ Gk [Γ]. By inductive hypothesis, (γ1 (a),γ2 (a)) ∈ Ek [τ1]γ , andVk [τ1]γ = Vk [τ2]γ .

�us, (γ1 (a),γ2 (a)) ∈ Ek [τ2]γ = Ek [τ1]γ .

• Consider the Fix rule:

Fix

Γ,x : τ1 → τ2,y : τ1 ` a : τ2

Γ ` fix (x : τ1 → τ2) y. a : τ1 → τ2

Consider γ ∈ Gk [Γ]. We want to prove (fix (x : γ1 (τ1) → γ1 (τ2)) y. γ1 (a), fix (x : γ2 (τ1) →
γ2 (τ2)) y. γ2 (a)) ∈ Vk [τ1 → τ2]γ . Consider j < k , and (v1,v2) ∈ Vj [τ1]γ . We need to show:

(γ1 (a)[x ← fix (x : γ1 (τ1) → γ1 (τ2)) y. γ1 (a),y ← v1],
γ2 (a)[x ← fix (x : γ2 (τ1) → γ2 (τ2)) y. γ2 (a),y ← v2]) ∈ Vj [τ2]γ Note that by weakening,

γ ∈ Gj [Γ]. Moreover, by induction hypothesis at rank j < k , (fix (x : γ1 (τ1) → γ1 (τ2))y.γ1 (a), fix (x :

γ2 (τ1) → γ2 (τ2)) y. γ2 (a)) ∈ Vj [τ1 → τ2]γ . Consider

γ ′ = γ [x ← (fix (x : γ1 (τ1) → γ1 (τ2)) y. γ1 (a),
fix (x : γ2 (τ1) → γ2 (τ2)) y. γ2 (a)),y ← (v1,v2)]. �en, γ ′ ∈ Gj [Γ,x : τ1 → τ2,y : τ1]. �us,

by induction hypothesis at rank j < k , (γ ′
1
(a),γ ′

2
(a)) =

(γ1 (a)[x ← fix (x : γ1 (τ1) → γ1 (τ2)) y. γ1 (a),y ← v1]

,γ2 (a)[x ← fix (x : γ2 (τ1) → γ2 (τ2)) y. γ2 (a),y ← v2]) ∈ Vj [τ2]γ ′ = Vj [τ2]γ .

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:47

• Consider the App rule:

App

Γ ` b : τ1 Γ ` a : τ1 → τ2

Γ ` a b : τ2

Let γ ∈ Gk [Γ]. Suppose γ2 (a) γ2 (b) 7→i v2. We want to show that there exists v1 such that

γ1 (a) γ1 (b) 7→
∗ v1 and (v1,v2) ∈ Vk−i [τ2]γ .

Since γ2 (a) reduces to a value, there exists w2,w
′
2

such that γ2 (a) 7→i1 w2, γ2 (b) 7→i1
w ′

2
. By induction hypothesis on a and b, there exists values w1,w

′
1

such that (w1,w2) ∈
Vk−i1 [τ1 → τ2]γ and (w ′

1
,w ′

2
) ∈ Vk−i2 [τ1]γ . We can apply the �rst property at rank

k − i1 − i2 − 1: there exists a′
1
,a′

2
,τ ′

1
,τ ′′

1
such that w1 = fix (x : τ ′

1
→ τ ′

2
) y. a′

1
and

w2 = fix (x : τ ′′
1
→ τ ′′

2
) y. a′

2
, and also (a′

1
[x ← . . . ,y ← w ′

1
],a′

2
[x ← . . . ,y ← w ′

2
]) ∈

Ek−i1−i2−1[τ2]γ . �en, we have: a′
2
[x ← . . . ,y ← w ′

2
] 7→i3 v2 with i = i1 + i2 + i3 + 1, and

a′
1
[x ← . . . ,y ← w ′

1
] 7→∗ v1. �us, (v1,v2) ∈ Vk−i [τ2]γ .

�

6.5 Closure by biorthogonality

We want our relation to be compatible with substitution. We build a closure of our relation:

essentially, the relation at a type relates all programs that cannot be distinguished by a context that

does not distinguish programs we de�ned to be equivalent. To be well-typed, our notion of context

must be restricted to only allow equal programs to be substituted. �is is enough to show that it

embeds contextual equivalence and substitution.

We will assume that there exists a type unit with a single value (). Consider two closed terms

a1 and a2. We note a1 - a2 if and only if a1 and a2 both have type unit, and if a2 reduces to (), a1

reduces to () too.

We will consider the relation E[τ]γ without indices as the limit of Ek [τ]γ .

We can then de�ne a relation on contexts. �is relation must take equality into accounts:

two unequal terms cannot necessarily be put in the same context, because the context might be

dependent on the term we put in. �us, our relation on contexts only compares contexts at terms

equal to a given term.

De�nition 6.13 (Relation on contexts). We note (C1,C2) ∈ C[τ | a1,a2]γ i�:

• ∅ ` C1[∅ ` a1 : γ1 (τ)] : unit and ∅ ` C2[∅ ` a2 : γ2 (τ)] : unit
• for all a′

1
,a′

2
such that ∅ ` a′i : γi (τ), (∅ ` ai ' a′i) and (a′

1
,a′

2
) ∈ E[τ]γ , we have

C1[a1] - C2[a2].

From this relation on context we can de�ne a closure of the relation:

De�nition 6.14 (Closure of the logical relation). We note (a1,a2) ∈ E
2
[τ]γ i�:

• ∅ ` a1 : γ1 (τ) and ∅ ` a2 : γ2 (τ)
• for all (C1,C2) ∈ C[τ | a1,a2]γ , C1[a1] - C2[a2].

We obtain a relation that includes the previous relation, and allows substitution, contextual

equivalence, etc. We introduce a notation that includes quanti�cation on environments:

Lemma 6.15 (Inclusion). Suppose (a1,a2) ∈ Ek [τ]γ . �en (a1,a2) ∈ E
2
[τ]γ .

Proof. Expand the de�nitions. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:48 Thomas Williams and Didier Rémy

Lemma 6.16 (Inclusion in contextual eqivalence). Suppose that for all γ ∈ Gk [Γ], (a1,a2) ∈
E2

[τ]γ . �en, for all contexts C such that ∅ ` C[Γ ` a1 : τ] : unit and ∅ ` C[Γ ` a2 : τ] : unit, we
have C[a1] - C[a2].

Proof. By induction on the context. As in the proof of the fundamental lemma, each typing rule

induces an equivalent deduction rule for the logical relation. For example, the Let-Poly rule becomes

(assuming the typing conditions are met): if (a1,a2) ∈ E
2
[τ0]γ , and for all (v1,v2) ∈ E[τ0]γ

such that ∅ ` ai ' vi , we have (b1[x ← (v1,v2)],b2[x ← (v1,v2)]) ∈ E
2
[τ]γ [x←(v1,v2)], then

(let x = a1 in b1, let x = a2 in b2) ∈ E
2
[τ]γ . We use the induction hypothesis on the subterm that

contains the hole, and the fundamental lemma for the other subterms. �

Lemma 6.17 (Contextual eqivalence implies relation). Consider a1,a2 such that Γ ` ai : τ
and Γ ` a1 ' a2. Moreover, suppose that they are contextually equivalent: if ∅ ` C[Γ ` a1 : τ] : unit,
then C[a1] - C[a2] and C[a2] - C[a1]. �en, for all γ ∈ Gk [Γ], (γ (a1),γ (a2)) ∈ E

2
[τ]γ .

Proof. We have (γ (a1),γ (a1)) ∈ Ek [τ]γ . ConsiderC1,C2 such thatC1[γ (a1)] - C2[γ (a1)]. �en,

by contextual equivalence, we can substitute γ (a1) by γ (a2) in the right-hand side. �

Lemma 6.18 (Reduction). Suppose a1 −→ a2, and C[a1],C[a2] have the same type τ in the empty

environment. �en, (C[a1],C[a2]) ∈ E2
[τ]γ .

Proof. Use Lemma 6.16, add the context C , use Lemma 6.17. �

�ese de�nitions give a restricted form of transitivity. Full transitivity may hold but is not

easy to prove: essentially, it requires inventing out of thin air a context “between” two contexts,

that is related to the �rst one in a speci�c environment and to the second one in another speci�c

environment. If we restrict ourselves to the sides of an environment, then we can simply reuse

the same context. a side of an environment is, in spirit, a relational version of the le� and right

environment γ1 and γ2.

De�nition 6.19 (Sides of an environment). Consider an environment γ . Its le� and right sides ϵ1γ
and ϵ2γ are de�ned as follows:

• ϵ1γ (x) = (γ1 (x),γ1 (x)) and ϵ2γ (x) = (γ2 (x),γ2 (x));
• ϵ1γ (α) = {(v1,v2) | ∀w, (v1,w) ∈ γ (α) ⇔ (v1,w) ∈ γ (α)} and ϵ2γ (α) = {(w1,w2) |
∀v, (v,w1) ∈ γ (α) ⇔ (v,w2) ∈ γ (α)} if α is interpreted by a relation;

• the sides of interpretations of types of higher-order kinds are interpreted pointwise on the

base kinds.

Lemma 6.20 (Properties of sides). • If an environment γ veri�es an equality a1 =τ a2,

then its sides respect this equality

• If (a1,a2) ∈ Ek [τ]γ , then (ai ,ai) ∈ Ek [τ]ϵiγ .

• If γ ∈ Gk [Γ], then ϵ1γ ∈ Gk [Γ] and ϵ2γ ∈ Gk [Γ].

Proof. By induction on the structure of the logical relation. �

Lemma 6.21 (Side-transitivity). Consider an environment γ , and suppose:

• (a0,a1) ∈ E
2
[τ]ϵ1γ and ∅ ` a0 ' a1;

• (a1,a2) ∈ E
2
[τ]γ ;

• (a2,a3) ∈ E
2
[τ]ϵ2γ and ∅ ` a2 ' a3.

�en, (a0,a3) ∈ E
2
[τ]γ .

Proof. Consider (C0,C3) ∈ C[τ | a0,a3]γ . �en, we have (C0,C0) ∈ C[τ | a0,a1]ϵ1γ , and

(C3,C3) ∈ C[τ | a2,a3]ϵ1γ , and (C0,C3) ∈ C[τ | a1,a3]ϵ1γ . Conclude by transitivity of -. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:49

Lemma 6.22 (Eqality implies relation). Suppose Γ ` a1 : τ and Γ ` a1 ' a2. �en, for all

γ ∈ Gk [Γ], (γ (a1),γ (a2)) ∈ E
2
[τ]γ .

Proof. By induction on an equality derivation. Since the relation is not symmetric, we a stronger

result by induction on derivations: if Γ ` a1 ' a2, then for all γ ∈ Gk [Γ], (γ (a1),γ (a2)) ∈ E
2
[τ]γ

and (γ (a2),γ (a1)) ∈ E
2
[τ]γ . �en, each rule translates to one of the previous lemmas. �

7 Simplification from eML to ML

Consider an ML environment Γ, an ML type τ , and an eML term a, such that Γ ` a : τ hold in eML.

Our goal is to �nd a term a′ such that Γ ` a′ : τ holds in ML and that is equivalent to a: Γ ` a ' a′.
�is is a good enough de�nition, since all terms that are provably equal are related. Restricting the

typing derivation of a′ to ML introduces two constraints. First, no type-level pa�ern matching can

appear in the types in the term. �en, we must ensure that the term admits a typing derivation

that does not involve conversion and pa�ern matching.

�e types appearing in the terms are only of kind Typ, thus they cannot contain a type-level

pa�ern matching, and explicitly-typed bindings cannot introduce in the context a variable whose

kind is not Typ. �ere remains the case of let bindings: they can introduce a variable of kind Sch.

We can get more information on these types by the following lemma, that proves that “stuck” types

such as match f x with (di (yj)
j → τi)

i
do not contain any term:

Lemma 7.1 (Match trees). A type τ is said to be a match tree if the judgment Γ ` τ tree de�ned
below holds:

Tree-Scheme

Γ ` τ : Sch

Γ ` τ tree

Tree-Match

(di : ∀(αk)
k (τi j)

j → ζ (αk)
k)i

Γ ` a : ζ (τk)
k

(
Γ, (xi j : τi j [αk ← τk]

k) j , a =ζ (τk)k di (τik)
k (xi j)

j ` τ ′i tree
) i

Γ ` match a with (di (τik)
k (xi j)

j → τ ′i)
i tree

Suppose all types of variables in Γ are match trees. If Γ ` a : τ , there exists a type τ ′ such that

Γ ` τ ' τ ′ and Γ ` τ ′ tree.

Proof. By induction on the typing derivation of a. Consider the di�erent rules:

• By hypothesis on Γ, the output of Var is a match tree.

• �e outputs of rules TAbs, TApp, Fix, App, and Con have kind Sch, thus are match trees.

• Consider a conversion Conv from τ to τ ′. If τ is equal to a match tree, then τ ′ is equal to a

match tree by transitivity.

• For rule Let-Poly:

Let-Poly Γ ` τ : Sch
Γ ` u : τ Γ,x : τ , (x =τ u) ` b : τ ′

Γ ` let x = u in b : τ ′

By induction hypothesis, the type of u is equal in Γ to a match tree. �us we can assume

that τ is a match tree. �en, all types in Γ,x : τ , (x =τ u) are match trees. �ere exists

τ ′′ such that Γ,x : τ , (x =τ u) ` τ ′′ tree and Γ,x : τ , (x =τ u) ` τ ′ ' τ ′′. We can

substitute using x =τ u (by Lemma 5.15), and we obtain Γ, (uτu) ` τ
′ ' τ ′′[x ← u] and

Γ, (u =τ u) ` τ
′′ tree. All uses of the equality can be replace by C-Refl so we can eliminate

it.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:50 Thomas Williams and Didier Rémy

• For rule Let-Mono:

Let-Mono Γ ` τ : Typ
Γ ` a : τ Γ,x : τ , (x =τ a) ` b : τ ′

Γ ` let x = a in b : τ ′

By induction hypothesis, the type of a is equal in Γ to a match tree. �us we can assume

that τ is a match tree. �en, all types in Γ,x : τ , (x =τ a) are match trees. �ere exists τ ′′

such that Γ,x : τ , (x =τ a) ` τ ′′ tree and Γ,x : τ , (x =τ a) ` τ ′ ' τ ′′. We can assume a is

expansive (otherwise we can use the same reasoning as in the last case). �en, the equality

is useless by Lemma 5.20. Moreover, since τ has kind Typ, there is a value v in τ . �en,

Γ ` τ ′′[x ← v] tree and Γ ` τ ′ ' τ ′′[x ← v].

• For rule Match:

Match

Γ ` τ : Sch

(di : ∀(αk)
k (τi j)

j → ζ (αk)
k)i Γ ` a : ζ (τk)

k
(
Γ, (xi j : τi j [αk ← τk]

k) j ,

a =ζ (τk)k di (τi j)
k (xi j)

j ` bi : τ

) i
Γ ` match a with (di (τi j)

k (xi j)
j → bi)

i
: τ

Proceed as for Let in the case where we match on an expansive term a: we can use the

default value for all the bound variables in one branch and get the equality we need.

If a = u is non-expansive, use the induction hypothesis on each branch: there exists

(τi)
i

such that (Γ, (xi j : τi j [αk ← τk]
k) j , (u =ζ (τk)k di (τi j)

k (xi j)
j) ` τ ' τi)

i
and

(Γ, (xi j : τi j [αk ← τk]
k) j , (u =ζ (τk)k di (τi j)

k (xi j)
j) ` τi tree)i . �en, consider τ ′ =

match u with (di (τi j)
k (xi j)

j → τi)
i
. We have Γ ` τ ′ ' match u with (di (τi j)

k (xi j)
j → τ)i

(by applying the previous equality in each branch), and Γ ` match u with (di (τi j)
k (xi j)

j →

τ)i ' τ by C-Split and C-Red-Iota for each case. Moreover, Γ ` τ ′ tree by Tree-Match.

�

From this lemma, we can deduce that there exists a typing derivation where the type of all

variables bound in let is a match tree. �e pa�ern matching in the types can then be eliminated

by li�ing the pa�ern-matching outside of the let, as in 7−→t on Figure 24. �is transformation is

well-typed, and the terms are equal (the equality can be proved by case-spli�ing on u). Moreover,

it strictly decreases the number of match . . . with . . . in the types of let-bindings. �us we can

apply it until we obtain a term with a derivation where all bindings are of kind Typ.

In the new derivation, no variable in context has a match type. We can transform the derivation

such that all conversions are between ML types.

Lemma 7.2. Suppose Γ is a context where all variables have a ML type. Suppose Γ ` a : τ , where τ
is a ML type and no variables are introduced with a non-ML type in the main type derivation. �en,

there exists a derivation of Γ ` a : τ where all conversions of the main type derivation are between ML
types.

Proof. We proceed by induction, pushing the conversions in the term until they meet a syntactic

construction that is not a match or a let. If we encounter a conversion, we combine it by transitivity

with the conversion we are currently pushing. �

We know (by soundness) that all equalities between ML types are either trivial (i.e. between two

identical types) or are used in a branch of the program that will never be run (otherwise, it would

provoke an error). In order to translate the program to ML, we must eliminate these branches

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:51

let (x : match u with (di τ (xi j)
j → τi)

i) = a in b 7−→t

match u with (di τ (xi j)
j → let (x : τi) = a in b)i

match dj τj (vi)
i with (dj τj (x ji)

i → aj)
j 7−→ aj [xi j ← vi]

i

let x = u in b 7−→ b[x ← u](
match (match u with (dk σ (xk j)

j → ak)
k)

with (di τ (xi j)
j → bi)

i

)
7−→(

match u with (dk σ (xk j)
j →

(match ak with (di τ (xi j)
j → bi)

i)k

)
Fig. 24. Match and let lifting

from the program. �ere are two possible approaches: we could extend ML with an equivalent of

assert false and insert it in the unreachable branches, but the fact that the program executes

without error would not be guaranteed by the type system anymore, and could be broken by

subsequent manual modi�cation to the code. �e other approach is to transform the program to

eliminate the unreachable branches altogether. �is sometimes requires introducing extra pa�ern

matchings and duplicating code. �e downside to this approach is that in some cases the term

could grow exponentially. �is blowup can be limited by only doing the expansions that are strictly

necessary.

�e transformations of Figure 24 all preserve types and equality. All let bindings and pa�ern

matchings that can be reduced by −→ι are reduced. When a pa�ern matching matches on the result

of another pa�ern matching, the inner pa�ern matching is li�ed around the formerly outer pa�ern

matching. �ese transformations preserve the types and equality. �ese transformations terminate.

A�er applying them, all pa�ern matching is done either on a variable, or on an expansive term.

We �rst show that, in inhabited environments, all conversions between ML types are trivial.

De�nition 7.3 (Inhabited typing environment). A typing environment Γ is inhabited if there exists

an environment γ mapping type variables to ground types and term variables to terms such that

` γ : Γ, that is, ` γ (x) : γ (τ) for every binding x : τ in Γ.

Lemma 7.4 (ML conversions are trivial). If Γ ` τ1 ' τ2 in eML where Γ is inhabited and τ1 and

τ2 are ML types, then τ1 = τ2.

Proof. We only need to prove that, for ML types, if E[τ1]γ = E[τ2]γ , then τ1 = τ2. �is is easy

by induction. For universal quanti�cation, instantiate with a unique type. �

Lemma 7.5 (ML conversions in context are trivial). Consider an inhabited environment Γ0,

and assume Γ0 ` C[Γ ` a : τ] : τ ′. Suppose that Γ does not contain any equality. �en, if Γ ` τ1 ' τ2

and τ1,τ2 are ML types, τ1 = τ2.

Proof. We only have to show how to construct an appropriate environment γ . We proceed by

induction on the context, examining the introductions in the environment.

• If we introduce a variable x of type τ , and τ has kind Typ, it is either a function type or a

datatype, thus is inhabited: for datatypes, we use the hypothesis made at the start that all

datatypes are inhabited, and fix (x : τ1 → τ2) y. x y is a function of type τ1 → τ2.

Inhabitation of all datatypes is necessary here because we are doing a semantic proof. If

we were doing a syntactic proof, we would have to change our hypothesis from inhabitability

of Γ to something similar to Γ `'.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:52 Thomas Williams and Didier Rémy

• If we introduce a variable x of type scheme σ of kind σ that is not of kind Typ, the

introducing form is necessarily a polymorphic let. Let us call γ the model until now (of Γ).

�en, we bind x to a non-expansive term u, and Γ ` u : γ (σ). �us, γ [x ← u] is a model of

Γ.

• If we introduce a type variable α , we can instantiate it with a fresh type ζα . �en, τ1 = τ2 if

and only if τ1[α ← ζα] = τ2[α ← ζα]. �

�en, we transform an eML term into an equivalent ML term (i.e. where all conversions have

been removed), by removing all absurd branches, typing it without equalities, and removing the

conversions since they must be trivial.

Lemma 7.6 (Conversion elimination). Consider an inhabited environment Γ. Assume Γ ` a : τ in
eML and every pa�ern matching in a is on a variable or an expansive term and all variables introduced

in the environment during the main type derivation have a type in Sch. �en, there exists a′ such that

∅ ` a ' a′ and ∅ ` a′ : τ in ML.

Proof. We generalize to an environment Γ: suppose Γ ` a : τ and suppose we have a substitution

γ of term variables with non-expansive terms without match or let (i.e. values with variables).

Moreover, suppose that all substitutions in γ are equalities provable in Γ, and γ (Γ) only has trivial

equalities (i.e. provable by re�exivity) or useless equalities (i.e. involving an expansive term).

Removing these equalities, we obtain Γ′. �en, there exists a′ such that Γ′ ` a′ : τ in ML (the type

τ is in ML, and, in particular, does not reference term variables from Γ), and Γ′ ` γ (a) ' a′. We will

also need to suppose that there is a context such that ∅ ` C[Γ′ ` a : τ] : τe .

We prove this result by induction on the typing rules. We will examine the two interesting cases:

the conversion rule and the pa�ern matching rule.

• For Conv:

Conv

Γ ` τ ' τ ′ Γ ` a : τ

Γ ` a : τ

By hypothesis, τ ′ is a ML type. �en, Γ′ ` γ (τ) ' γ (τ ′). �en, use Lemma 7.4 in the context

C: τ = τ ′ and the conversion can be eliminated. �en, apply the induction hypothesis in

the same context C with the substitution γ .

• For Match:

Match

Γ ` τ : Sch (di : ∀(αk)
k (τi j)

j → ζ (αk)
k)i

Γ ` a : ζ (τk)
k

(
Γ, (xi j : τi j [αk ← τk]

k) j , (a =ζ (τk)k di (τi j)
k (xi j)

j) ` bi : τ
) i

Γ ` match a with (di (τi j)
k (xi j)

j → bi)
i

: τ

If a is expansive, the equality introduced is useless, and we can continue typing in the new

context. Consider the case where a is non-expansive. �en, a is necessarily a variable x .

Consider γ (x).
– If γ (x) = y, apply the induction hypothesis in each branch, with γ ′ = γ [y ←
di (τi j)

k (xi j)
j
], adding match y with . . . to the context.

– If γ (x) = di (τik)
k (ui j)

j
, we can substitute and reduce the pa�ern matching. �en,

apply the induction hypothesis on the branch bi , with γ [xi j ← ui j]
j
.

– �e other cases are excluded by typing in the (equality-free) environment Γ′.

We can conclude: in the empty environment, no equalities involving variables are provable, thus

γ is the identity and Γ′ = Γ = ∅. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:53

�us we prove that elimination is possible. �e transformations we apply preserve the equality

judgment of eML, thus the eML term and the ML term obtained a�er the transformation are

equivalent for the logical relation:

Theorem 7.7 (Match elimination). If Γ ` a : τ in eML where Γ is inhabited, all program variables

in Γ have an ML type and τ is an ML type, then there exists an ML term a′ such that Γ ` a ' a′ and
Γ ` a′ : τ . Moreover, we have Γ′ ` a′ : τ in ML, where Γ′ is obtained by removing all equalities from Γ.

�e restriction to inhabited typing environment is not a signi�cant problem in practice, as we

expect the initial environment to be inhabited.

Proof. Apply the transformations 7−→t and 7−→ described in this section. Transform the deriva-

tion so that all conversions are between ML types with Lemma 7.2. Eliminate the conversions using

Lemma 7.6. �

8 Encoding ornaments

We now consider how ornaments are described and represented inside the system. �is section

bridges the gap between mML, a language for meta-programming that doesn’t have any notion of

ornament, and the interface presented to the user for ornamentation. We de�ne both the datatype

ornaments and the higher-order functional ornaments that can be built from them.

As a running example, we reuse the ornament natlist α from natural numbers to lists:

type ornament natlist α : nat→ list α with Z→ Nil | S w → Cons (,w) when w : natlist α

�e ornament natlist α de�nes, for all types α , a relation between values of its base type nat, which

we write (natlist α)−, and its li�ed type listα , wri�en (natlist α)+: the �rst clause says that Z is is

related to Nil; the second clause says that ifw− is related tow+, then S w− is related to Cons (v,w+)
for any valuev . As a notation shortcut, the variablesw− andw+ are identi�ed in the de�nition above.

A higher-order ornament natlist α → natlist α relates two functions f− of type nat→ nat and

f+ of type list τ → list τ when for related inputsv− andv+, the outputs f− v− and f+ v+ are related.

We formalize this idea by de�ning a family of ornament types corresponding to the ornamentation

de�nitions given by the user and giving them an interpretation in the logical relation. �en, we say

that one term is a li�ing of another if they are related at the desired ornament type.

�e syntax of ornament types, given on Figure 25, mirrors the syntax of types. An ornament

type, wri�enω, may be an ornament variable φ, a datatype ornament χ ω, a higher-order ornament

ω1 → ω2, or an identity ornament ζ (ω)i , which is automatically de�ned for any datatype of the

same name (ωi indicates how the i-th type argument of the datatype is ornamented). An ornament

type ω is interpreted as a relation between terms of type ω− and ω+. �e projection operation,

de�ned on Figure 25, depends on the projections of the datatype ornaments: they are given by the

global judgment χ α : τ ⇒ τ .We also de�ne a well-formedness judgment (αi)
i ` ω for ornaments

given an environment of type variables. For example, the ornament list (natlist nat) describes

the relation between lists whose elements have been ornamented using the ornament natlist nat.
�us, its projections are (list (natlist nat))− equal to list nat and (list (natlist nat))+ equal to

list (list nat).
�e projection is de�ned and well-kinded for any well-formed ornament type:

Lemma 8.1 (Projection is a type). If α ` ω holds, then we have α ` (ω)ϵ : Typ.

Proof. By induction on the derivation of α ` ω. �

We de�ne in the next section how to interpret the base ornaments χ , and focus here on the

interpretation of higher-order ornaments ω1 → ω2 and identity ornaments ζ (ωi)
i
.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:54 Thomas Williams and Didier Rémy

χ ::= natlist | . . .
ω ::= φ | χ (ω)i | ζ (ω)i | ω → ω

(αi)
i ` αi

(αi)
i ` ω1 (αi)

i ` ω2

(αi)
i ` ω1 → ω2

ζ : (Typ) j → Typ ((αi)
i ` ωj)

j

(αi)
i ` ζ (ωj)

j

χ (α j)
j

: . . . ⇒ . . .

((αi)
i ` ωj)

j

(αi)
i ` χ (ωj)

j

αϵ = α
(ω1 → ω2)

ϵ = ωϵ
1
→ ωϵ

2

(ζ (ωi)
i)ϵ = ζ (ωϵi)

i

(χ (αi)
i

: τ ⇒ σ)

(χ (ωi)
i)− = τ [αi ← ω−i]

i

(χ (ωi)
i)+ = σ[αi ← ω+i]

i

Fig. 25. Ornament types

�e interpretation we want for higher-order ornaments is as functions sending arguments related

by ornamentation to results related by ornamentation. But this is exactly what the interpretation of

the arrow type τ1 → τ2 gives us, if we replace the types τ1 and τ2 by ornament types ω1 → ω2. �us,

we do not have to de�ne a new interpretation for higher-order ornament, it is already included in the

logical relation. For this reason, we use the function arrow and the ornament arrow interchangeably

(when talking about the logical relation).

We have the same phenomenon for the identity ornament: constructors are related at the

identity ornament if their arguments are related. Once more, we can simply take the interpretation

of a datatype ζ (τi)
i

and, by replacing the type parameters (τi)
i

by ornament parameters (ωi)
i
,

reinterpret it as an interpretation of the identity ornament. We show that this choice is coherent

by presenting a syntactic version of the identity ornament and showing it is well-behaved with

respect to its interpretation.

Finally, ornament variables must be interpreted by ge�ing the corresponding relation in the

relational environment. �is is exactly the interpretation of a type variable.

�us, the common subset between types and ornament speci�cations can be identi�ed, because

the interpretations are the same. �is property plays a key role in the instantiation: from a relation

at a type, we deduce, by proving the correct instantiation, a relation at an ornament.

8.1 Defining datatype ornaments

A datatype ζ (αi)
i

is de�ned by a family of constructors:

(dk : ∀(αi : Typ)i (τk j) j → ζ (αi)
i)k

where the type ζ may occur recursively (possibly with some other types). We de�ne the skeleton

by abstracting out the concrete types from the constructors and replacing them by type parameters:

the skeleton of ζ , wri�en
ˆζ , is parametrized by types (αk j)

k j
and has constructors:

(ˆd` : ∀(αk j : Typ)k j (α`j) j → ˆζ (αk j)
k j)`

Let us writeAζ (τi)
i

for (τk j [αi ← τi]
i)k j , i.e. the function that expands arguments of the datatype

into arguments of its skeleton. �e types ζ (τi)
i

and
ˆζ (Aζ (τi)

i) are isomorphic by construction.

Similarly to nat skel in the overview, the skeleton allows us to incrementally ornament any subpart

of a datatype before ornamenting the whole datatype (or, in the case of natlist , the recursive part).

Ornament de�nitions associate a pa�ern in one datatype to a pa�ern in another datatype.

We allow deep pa�ern matching: the pa�erns are not limited to matching on only one level of

constructors, but can be nested. Additionally, we allow wildcard pa�erns that match anything,

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:55

alternative pa�erns P | Q that match terms that match either P or Q , and the null pa�ern ∅ that

matches nothing. We write deep pa�ern matching the same as shallow pa�ern matching, with the

understanding that it is implicitly desugared to shallow pa�ern matching.

In general, an ornament de�nition is a mutually recursive group of de�nitions, each of the form:

type ornament χ (α j)
j

: ζ (τk)
k ⇒ σ with (Pi ⇒ Qi when (xi` : ωi`)

`)i

with χ the name of the datatype ornament, ζ (τk)
k

the base type, and σ the li�ed type. �e base

and ornamented types must be such that ζ is a type constructor of arity k , ((α j : Typ) j ` τk : Typ)k

and (α j : Typ) j ` σ : Typ. �en, we can add χ (α j)
j

: ζ (τk)
k ⇒ σ to the set of available ornaments.

�e ornaments of a recursive de�nition can be used in the body of this de�nition.

For each clause i of the ornament, the pa�erns Pi and Qi must each bind the same variables

(xi`)
`
, and the (ωi`)

`
must be well-formed ornament types. In the user-facing syntax, we do

not require an ornament signature for every variable: an identity ornament is inferred for the

missing signatures. �e pa�erns (Pi)
i

must be well-typed and form a partition of ζ (τk)
k

, assuming

(xi j : ω−i j)
j
. Moreover, they must consist only of variables and data constructors (thus they do not

contain constructs that erase information). �e pa�erns (Qi)
i

must form a well-typed partition of

σ assuming (xi j : ω+i j)
j
.

To be able to convert the ornament de�nitions to encoding and decoding functions, we introduce

the skeleton pa�erns (P̂i)
i

obtained from (Pi)
i

by replacing the head constructor d (of ζ) by
ˆd . If

a pa�ern Pi does not have a head constructor, the ornament de�nition is invalid. Assuming the

pa�ern variables have types (xi` : βi`)
`
, the family of pa�erns (P̂ i)

i
must form an exhaustive

partition of some instance
ˆζ (τ̂m)m of the skeleton.

We de�ne the meaning of a user-provided ornament by adding its interpretation to the logical

relation on mML. �e interpretation is the union of the relations de�ned by each clause of the

ornament. For each clause, the values of the variables must be related at the appropriate type. Since

the pa�ern on the le� is also an expression, the value on the le� is uniquely de�ned. �e pa�ern

on the right can still represent a set of di�erent values (none, one, or many, depending on whether

the empty pa�ern, an or-pa�ern or a wildcard is used). We de�ne a function

 associating to a

pa�ern this set of values.

(: σ)

 = Term
P | Q

 =

P

 ∪

Q

d (τk)

k (Pi)
i
 = d (τk)

k (Pi

)

i

�en, the interpretation is:

Vp[χ (ωj)
j
]γ =

⋃
i

(Pi [xi` ← v`−]

`,v+)
����
v+ ∈

Qi [xi` ← v`+]
`

∀`, (v`−,v`+) ∈ Vp[ωi`[α j ← ωj]

j
]γ

For example, on natlist , we get the following de�nition (omi�ing the typing conditions):

Vk [natlistτ]γ = {(Z,Nil)} ∪
{
(S(v−), Cons(,v+) | (v−,v+) ∈ Vk [natlistτ]γ

}

8.2 Encoding ornaments in mML

We now describe the encoding of datatype ornaments in mML. We leave the type variables (α j)
j

free, so that they can be later instantiated. We write τ̂+ for the type
ˆζ (τ̂m[βi` ← (ωi`)

+
]
i`)m of the

skeleton where the recursive parts and the type parameters have already been li�ed. �e ornament

is encoded as a quadruple (σ ,δ , proj, cstr) where σ : Typ is the li�ed type; δ is the extension, a

type-level function describing the information that needs to be added; and proj and cstr are the

projection and construction functions introduced in §3. More precisely, the projection function

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:56 Thomas Williams and Didier Rémy

proj from the li�ed type to the skeleton has type Π(x : σ). τ̂+ and, conversely, the construction

function cstr has type Π(x : τ̂+).Π(y : δ] x).σ , where the argument y is the additional information

necessary to build a value of the li�ed type. �e type of y is given by the extension type function δ
of kind τ̂+ → Typ, which takes the skeleton and gives the type of the missing information. �is

dependence allows us to add di�erent pieces of information for di�erent shapes of the skeleton,

e.g. in the case of natlist α , we need no additional information when the skeleton is Ẑ, but a value

of type α when the skeleton starts with Ŝ, as explained at the end of §3.1. �e encoding works

incrementally: all functions manipulate the type τ̂+, with all subterms already ornamented.

�e projection projχ (ωj) j
from the li�ed type to the skeleton is given by reading the clauses of

the ornament de�nition from right to le�:

projχ (ωj) j
: σ → τ̂+

4

= λ] (x : σχ (ωj) j).match x with (Qi → P̂ i)
i

�e extension δχ (ωj) j is determined by computing, for each clause Pi → Qi , the type of the infor-

mation missing to reconstruct a value. �ere are many possible representations of this information.

�e representation we use is given by the function JQiK mapping a pa�ern to a type, de�ned below
6
.

�ere is no missing information in the case of variables, since they correspond to variables on the

le�-hand side. In the case of constructors, we expect the missing information corresponding to

each subpa�ern, given as a tuple. For wildcards, we expect a value of the type matched by the

wildcard. Finally, for an alternative pa�ern, we require to choose between the two sides of the

alternative and give the corresponding information, representing this as a sum type τ1 + τ2.

J(: τ)K = τ
JxK = unit

JP | QK = JPK + JQK
Jd (P1, .. Pn)K = JP1K × .. JPnK

�en, the extension δχ (ωj) j matches on the (Pi)
i

to determine which clause of the ornament

de�nition can handle the given skeleton, and returns the corresponding extension type:

δχ (ωj) j : Π(x : σ). τ̂+
4

= λ] (x : τ̂+).matchx with (P̂ i→JQiK)i

�e code reconstructing the ornamented value is given by the function Li�(Qi ,y) de�ned below,

assuming that the variables ofQi are bound and thaty of type JQiK contains the missing information:

Li�(,y) = y
Li�(x ,y) = x

Li�(P | Q,y) = match y with inl y1 → Li�(P ,y1) | inr y2 → Li�(Q,y2)
Li�(d (Pi)i ,y) = match y with (yi)

i → d (Li�(Pi ,yi))i

�e construction function cstrχ (ωj) j then examines the skeleton to determine which clause of the

ornament to apply, and calls the corresponding reconstruction code (writing just δ for δχ (ωj) j):

cstrχ (ωj) j : Π(x : τ̂+). Π(y : δ] x). σ
4

= λ] (x : τ̂+). λ
] (y : δ] x).match x with (P̂ i → Li�(Qi ,y))

i

In the case of natlist , we recover the de�nitions given in §3.3, with a slightly more complex (but

isomorphic) encoding of the extra information:

σnatlist τ = list τ
δnatlist τ = λ] (x : n̂at(list τ)).match x with Ẑ→ unit | Ŝ x → τ × unit

projnatlist τ = λ] (x : list τ).match x with Nil→ Ẑ | Cons (y,) → Ŝ y
cstrnatlist τ = λ] (x : n̂at(list τ)). λ] (y : δnatlist τ] x).

match y with Ẑ→ (match y with () → Nil)
| Ŝ x ′ → (match y with (y ′, ()) → Cons (y ′,x ′))

6
Formally, we translate pa�ern typing derivations instead of pa�erns

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:57

�e identity ornament corresponding to a datatype ζ de�ned as (di : ∀(α j : Typ) j (τik)k →
ζ (α j)

j)i is automatically generated and is described by the following code (since we do not add

any information, the extension is isomorphic to unit):

type ornament ζ (α j)
j

: ζ (α j)
j → ζ (α j)

j with (di (xk)
k → di (xk)

k when (xk : τik)
k)i

8.3 Correctness of the encoding

We must ensure that the terms de�ned in the previous section do correspond to the ornament

as interpreted by the logical relation, as this is used to prove the correctness of the li�ing. More

precisely, we rely on the fact that the functions describing the ornamentation from the base type

τ− to the ornamented type σχ (ωj) j are related to the functions de�ning the identity ornament

of τ−. Let us consider the relation on skeletons with ornament speci�cation ω̂ = ˆζ (ω̂m)m =
ˆζ (τm[βi` ← ωi`]

i`)m . It gives the relation between a skeleton of the base type and a skeleton

where the necessary subparts have been ornamented. �en, the projection function maps related

values to skeletons related by ω̂, and the construction function maps related skeletons and any pair

of patches to related values.

�e ornament on the skeleton is also important for li�ing: it describes how we must li� the �elds

of a constructor of the base type. In the case of natlist α , then ω̂ is equal to n̂at (natlist α): the �eld

in Ŝ must have already been ornamented with natlist α before we apply the construction function.

We de�ne a global environment K holding the processed ornament de�nitions, wri�en χ (α j)
j 7→

(δ , proj, cstr) � ˆζ (ωk)
k

: ζ (τi)
i ⇒ σ . We require that all ornaments in K are valid:

De�nition 8.2 (Valid ornament de�nition). We say that χ (α j)
j 7→ (δ , proj, cstr) � ˆζ (ωk)

k
:

ζ (τi)
i ⇒ σ is a valid ornament de�nition for χ if

• (α j)
j ` ζ (τi)

i
: Typ and (α j)

j ` σ : Typ;

• ˆζ has arity k ;

• (ω−k)
k = Aζ (τi)

i
, which implies that the le� projection of the skeleton is isomorphic to the

base type;

• the types are correct:

– (α j)
j ` σ : Typ;

– (α j)
j ` δ :

ˆζ ((ωk)
+)k → Typ;

– (α j)
j ` proj : Π(x : σ). ˆζ ((ωk)

+)k ;

– (α j)
j ` cstr : Π(x :

ˆζ ((ωk)
+)k). Π(y : δ] x). σ

• for all γ ∈ Gk [(α j : Typ) j],V[χ (ωj)
j
]γ is a relation between ζ (γ1 (τi))

i
and γ2 (σ) and:

–
(
γ1 (projζ (τi)i),γ2 (proj)

)
∈ V[Π(x : χ (α j)

j). ˆζ (ωk)
k

]γ ;

–
(
γ1 (cstrζ (τi)i),γ2 (cstr)

)
∈ V[Π(x :

ˆζ (ωk)
k)). Π(y : δ] x). χ (α j)

j
]γ [δ←λ . Top]

Theorem 8.3. �e ornaments de�ned using the procedure described in this section are valid.

Proof. �e relation is well-de�ned by induction on the index and the structure of the le�-hand

side term.

For the second and third points, case-split on the structure of the arguments until the terms

reduce to values, and compare them using the relation. �

Together, these properties allow us to take a term that uses the encoding of a yet-unspeci�ed

ornament φ and relate the terms obtained by instantiating with the identity on the one hand and

with another ornament on the other hand, using the ornament’s relation. We use this technique to

prove the correctness of the elaboration.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:58 Thomas Williams and Didier Rémy

Γ ::= G, α , S,R,∆

G ::= ∅ | G,x〈α , S,R〉 : ω = a ; A

∆ ::= ∅ | ∆,x : ω | ∆, (a =τ a)
]

s ::= ∅ | φ 7→ φ

S ::= ∅ | S,φ 7→ (δ , proj, cstr) � ˆζ ω : ζ τ ⇒ α

R ::= ∅ | R,y :
] Γ → δφ A | R, (x[ω, s] ; y : ω)

Fig. 26. Environments

We also prove that the logical interpretation of the identity ornament is the interpretation of the

base type. Let us note (temporarily) idζ the identity ornament de�ned from the datatype ζ .

Lemma 8.4 (Identity ornament). For all γ ,Vk [idζ (ωi)
i
]γ = Vk [ζ (ωi)

i
]γ .

Proof. Suppose the constructors of ζ are:

(dk : ∀(αi : Typ)i (τk j) j → ζ (αi)
i)k

Expanding the logical relation given by the de�nition of the identity ornament on ζ , we get:

Vp[χ (ωi)
i
]γ =

⋃
k

{
(dk (vk j−)

j ,dk (vk j+)
j) ��� ∀j, (vk j−,vk j+) ∈ Vp[τk j [αi ← ωi]

i
]γ

}

which is exactly the de�nition ofVp[ζ (ωi)
i
]γ .

�

9 Ornamenting terms

We now consider the problem of ornamenting terms. �e ornamentation is done in two main steps:

�rst the base term is elaborated to a generic term, which is then specialized using speci�c ornaments

to generate ML code. �e li�ed code cannot be polymorphic in ornaments. To avoid the problem

of considering parametric ornaments (ornaments depending on a type, but not in a computation-

relevant way), we restrict ourselves to an input language with only top-level polymorphism. We

also require that pa�ern matching be shallow, and the arguments of constructors be variables. �e

la�er restriction can be met by compiling down deep pa�ern matching and explicitly binding the

arguments of constructors to variables before passing these variables to constructors.

For the restriction to toplevel polymorphism, we need to make a distinction between (general-

izable) toplevel bindings and monomorphic local bindings. �e environment Γ can then be split

into G, (αi : Typ)i ,∆ where G is an environment of polymorphic variable bindings, (αi : Typ)i the

list of type variables parametrizing the current binding, and ∆ a local environment binding only

monomorphic variables. Additionally, we require that polymorphic variables are immediately in-

stantiated when used in a term. �is does not restrict the expressivity of the language: polymorphic

local bindings can be duplicated (see §10.2 for a discussion of this point).

To save notation, we just write α instead of α : Typ in typing contexts or polymorphic types,

assuming that type variables have the Typ kind by default.

We now explain the ornamentation of a whole program, which is a sequence of toplevel de�nitions.

For simplicity, we assume that type de�nitions and ornament de�nitions come �rst and used to

build the global environment K herea�er treated as a constant, followed by expression de�nitions,

and last, li�ing de�nitions. �erefore, we may perform all elaborations �rst, followed by all

specialization as requested by li�ing de�nitions.

9.1 Elaborating to a generic program

Each toplevel de�nition “let x = Λα . a” is elaborated in order of appearance, using the main

elaboration judgment of the form Γ ` a ; A : ω (described on Figure 29). �e elaboration

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:59

αϵS = α
(ω1 → ω2)

ϵ
S = (ω1)

ϵ
S → (ω2)

ϵ
S

(φ 7→ � : τ ⇒ σ) ∈ S

φ−S = τ φ+S = σ

(R,x :
] σ)+S = R+S ,x : σ

(R,x[,] ; y : ω)+S = R+S ,y : ω+S

(∆,x : ω)ϵS = ∆ϵS ,x : ωϵS
(∆, (a =τ b)

])−S = ∆−S
(∆, (a =τ b)

])+S = ∆+S , (a =τ b)

(G,α , S,R,∆)− = G−,α ,∆−S
(G,α , S,R,∆)+ = α , S+,R+S ,∆

+
S

(G,x〈α , S, 〉 : ω = ;)− = G−,x : ∀α ω−S

Fig. 27. Environment projections

G-Empty

` ∅

G-Def ` G G,α ` S G,α , S ` ω orn

(G,α)− ` a : ω−S G,α , S ` R (G,α , S,R)+ ` A : ω+S

` G,x〈α , S,R〉 : ω = a ; A

Wf-S

∀(φ 7→ � ˆζ (ωk)
k

: ζ (τj)
j ⇒) ∈ S, (α ` τj : Typ) j ∧ (G,α , S ` ωk orn)k ∧ ((ωk)

−
S)

k = Aζ (τj)
j

G,α ` S

Wf-R-Empty

G,α , S ` ∅

Wf-R-Patch

G,α , S ` R (φ 7→ (δ , . . .) � ω̂ : ⇒) ∈ S (G,α , S,R)+,∆ ` A : ω̂+S

G,α , S ` R,y :
] ∆→ δ] A

Wf-R-Inst

G,α , S ` R (x〈(βj)
j , S ′,R〉 : ω) ∈ G (G,α , S ` ωj orn) j G,α , S ` s : S ′[βj ← ωj]

j

G,α , S ` R, (x[(ωj)
j , s] ; y : ω[(βj ← ωj)

j , s])

Wf-inst

∀(φ 7→ � ω̂ : τ ⇒) ∈ S ′, (s (φ) 7→ � s (ω̂) : τ ⇒) ∈ S

G,α , S ` s : S ′

Wf-Orn-Arrow

G,α , S ` ω1 orn G,α , S ` ω2 orn

G,α , S ` ω1 → ω2 orn

Wf-Orn-TVar

α ∈ α

G,α , S ` α orn

Wf-Orn-Var

φ ∈ S

G,α , S ` φ orn

Fig. 28. Well-formedness for elaboration

environment Γ is actually of the formG,α , S,R,∆, as described on Figure 26. �e local environment

∆ is initially empty, as shown in Rule ELab-Decl (Figure 30) and used to bind variables appearing

in a to ornament types, as well as equalities (a =τ a)
]

that may be needed to type the ornamented

side. We use capital le�er A for elaborated terms to help distinguish them from base terms; ω is

the ornament relating a and A. S and R are explained below. �e result of the elaboration of the

de�nition is then folded into the global environment G as a sequence of declarations of the form

x〈α , S,R〉 : ω = a ; A (rule Elab-Decl on Figure 30). �e contexts S and R are new and used to

describe abstract ornaments and patches, respectively.

�e generic term A is usually more polymorphic than a, since we abstract over ornaments where

we originally had a �xed type. It is thus parametrized by a number of ornaments, described by the

ornament speci�cation environment S which is a set of mutually recursive bindings, each of the

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:60 Thomas Williams and Didier Rémy

E-VarLocal

x : ω ∈ Γ

Γ ` x ; x : ω

E-VarGlobal

(x〈α , S ′,R〉 : ω) ∈ Γ Γ, α , S ` s : S ′[α ← ω]

(ω)−S = τ (x[ω , s] ; y : ω[α ← ω][s]) ∈ Γ

Γ ` x τ ; y : ω[α ← ω][s]

E-Let

Γ ` a ; A : ω0 Γ,x : ω0 ` b ; B : ω

Γ ` let x = a in b ; let x = A in B : ω

E-App

Γ ` a ; A : ω1 → ω2 Γ ` b ; B : ω1

Γ ` a b ; A B : ω2

E-Fix

Γ,x : ω1 → ω2,y : ω1 ` a ; A : ω2 τ1 → τ2 = (ω1 → ω2)
−
Γ σ1 → σ2 = (ω1 → ω2)

+
Γ

Γ ` fix (x : τ1→τ2) y. a ; fix (x : σ1→σ2) y. A : ω1→ω2

E-Con

(φ 7→ (δ , cstr, proj) � ˆζ (ωi)
i

: ζ (τ`)
` ⇒) ∈ Γ ˆd : ∀(αi)

i (ωj)
j → ˆζ (αi)

i

((x j : ωj [αi ← ωi]
i) ∈ Γ) j Γ = , , , ,∆ (p :

] ∆+S→ δ] ˆd ((ωi)
+
S)

i (x j)
j) ∈ Γ

Γ ` d (τ`)
` (x j)

j ; let y = p] ∆+S in cstr] ˆd ((ωi)
+
S)

i (x j)
j]y : φ

E-Match

(φ 7→ (δ , cstr, proj) � ˆζ (ωi)
i

: ζ (τ`)
` ⇒) ∈ Γ (ˆdk : ∀(αi)

i (τk j)
j → ˆζ (αi)

i)k

x : φ ∈ Γ (Γ, (yk j : τk j [(αi ← ωi)
i
]) j , proj] x = ˆζ ((ωi)+S)

i dk ((ωi)
+
S)

i (yk j)
j ` ak ; Ak : ω)k

Γ ` match x with (dk (τ`)
` (yk j)

j → ak)
k ; match proj] x with (ˆdk ((ωi)

+
S)

i (yk j)
j → Ak)

k
: ω

Fig. 29. Elaboration to a generalized term

Elab-Decl

G,α , S,R ` a ; A : ω

G ` let x = Λα . a ⇒ G, (x〈α , S,R〉 : ω = a ; A)

Fig. 30. Elaborating a declaration

form φ 7→ (δ , proj, cstr) � ˆζ (ωk)
k

: ζ (τi)
i ⇒ β . �is binds an ornament variable φ that can only

be instantiated by a valid ornament (see De�nition 8.2) of base type ζ (τi)
i

with skeleton
ˆζ (ωk)

k
; it

also binds the target type β and the ornament type extension, projection, and construction functions

to the variables δ , proj, and cstr, respecting the types of valid ornaments.

An ornament type ω is well-formed in an ornament speci�cation S with free type variables α ,

wri�en G,α , S ` ω orn, if it contains only function arrows, type variables from α , and ornament

variables bound in S (see rules Wf-Orn-Arrow, Wf-Orn-TVar, and Wf-Orn-Var, on Figure 26).

A generic term also abstracts over patches and the li�ings used to li� references to previously

elaborated bindings. Since these bindings do not in�uence the �nal ornament type and are not

mutually recursive, they are stored in a separate patch environment R. Together, S and R specify

all the parts that have to be user-provided at specialization time (see §9.2).

When encountering a variable x corresponding to a global de�nition (Rule E-VarGlobal on

Figure 29), we look up the signature of the elaboration of this de�nition (x〈α , S ′,R〉 : ω) ∈ G.

We choose an instantiation ω of the type parameters α by ornament types, an instantiation s ′ of

the ornament variables in S ′ with ornament variables of S , and request a value y corresponding

to an instantiation of the function with the chosen type and ornament parameters (we do not

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:61

instantiate the values in the R′, as they do not contribute to the li�ing speci�cation). We record this

instantiation in the environment R in the form (x[ω , s] ; y : ω[α ← ω][s]ω[α ← ω][s]) ∈ Γ.

�e environment R also contains patches, i.e. mML terms of the appropriate type, wri�en in R
as y :

] σ . Well-formedness rules require that the type σ corresponds to meta-functions of multiple

arguments returning a value of type δ]A where δ is the extension function of some ornament in S .

�e elaboration judgments Γ ` a ; A : ω also contains the superposition of two typing

judgments for the base term a and li�ed term A, as stated in Lemma 9.1. We use helper le� and

right projections to extract environments and types related to the base and li�ed terms, respectively.

�ese are de�ned on Figure 27. Most rules are unsurprising, once noticed that the projections of an

ornament ω require the ornament speci�cation S in which they were de�ned in order to project

ornament variables. For convenience, we may also use the superset Γ instead of S in the projection.

�e projection of a local environment ∆ is the projection of its ornament types. �e equalities are

kept on the right-hand side and dropped on the le�-hand side. �e right-hand side projection of

ornament speci�cations is the ordered concatenation of two environments:

S+ = {β | (φ 7→ � : ⇒ β) ∈ S } ,{
δ : ω̂+S → Typ, proj : Π(x : β). ω̂+S , cstr : Π(x : ω̂+S). Π(y : δ] x). β
| (φ 7→ (δ , proj, cstr) � ω̂ : ⇒ β) ∈ S

}
We use set notation for each environment as the internal order does not ma�er, but the respective

order of the two does: the former binds the target types β of ornaments, while the la�er binds

functions de�ning these ornaments. �e ordering ma�ers because, while S is recursively de�ned,

the environment S+ is not. In the second part, we �a�en the bindings δ , proj, cstr whose types

depend on the sequence of variables introduced �rst and make the typing constraints carried by S
explicit.

Given an ornament environment S , we can get the right projection R+S of a patch environment R:

it binds the patches and li�ings requires by the elaborated term. Finally, the global environment of

elaborated de�nitions G projects on the le� to a polymorphic environment G+ and a substitution

from global de�nitions to their non-elaborated values. We can chain these projections together to

obtain a projection for Γ. On the le�-hand side, we ignore S and R because they are not needed in

the base term, while on the right-hand side we ignore G because references to global de�nitions

have been replaced with variables corresponding to li�ings in R.

�e well-formedness rules for all these constructions are given on Figure 28.

�e main elaboration judgment Γ ` a ; A : ω, described on Figure 29, follows the structure of

the original term. When used for type inference, we need to expand Γ asG,α , S,R,∆ to see the �ow

of information: G, α and ∆ are inputs while S and R are output and added on demand. �e term a
is an input while A and ω are outputs. Applications, abstractions, let-bindings, and local variables

are translated to themselves. We have already explained the elaboration of global variables

Pa�ern matching and construction of datatypes are the key rules. Reading Rule E-Match intu-

itively, x is typed �rst, which determines the datatype ornament φ and the type of the projection

proj determined by the subset S of Γ. �e type ω is given by elaborating the branches. In Rule

E-Con, the type of
ˆζ (ωi)

i
is �rst determined by the types of α j and the type of the skeleton

ˆd taken

from K . �en, an abstract ornament φ is introduced in the S subset of Γ and a patch variable is

introduced in the R subset of Γ. �e well-typedness comes again form the type constraints in S .

Some ornament bindings in S may in fact be forced to be equal.

As announced earlier, the elaboration judgments ensure well-typedness of the projections and

the de�nition elaboration judgment preserves the well-typedness of G:

Lemma 9.1. If Γ ` a ; A : ω holds then both Γ− ` a : ω−Γ and Γ+ ` A : ω+Γ hold.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:62 Thomas Williams and Didier Rémy

Proof. By induction on the derivation. �

Lemma 9.2. If ` G and G ` t ⇒ G ′ hold, then ` G ′ holds.

Proof. Expand the de�nitions, apply G-Def and use Lemma 9.1. �

9.2 Specialization of the generic program

Specialization comes last, using the result G of the elaboration and processing the sequence of

user-given li�ing declarations in order of appearance. We essentially describe the instantiation,

since meta-reduction and simpli�cation steps, described in section � and 7, can be done a�erwards.

A li�ing declaration of the form “let y β = li�ing x (ωj)
j with s, r” de�nes y, polymorphic in

the types β , as a li�ing of the base term a bound by x whose type parameters are instantiated by

ornament types (ωj)
j
. �e user gives two substitutions s and r : s maps ornament variables (of some

ornament speci�cation S) to ornaments; r maps term variables (of some patch speci�cation r) to

terms.

We use a judgment β ` s : S to state that the substitution s conforms to an ornament speci�ca-

tion S . �is means that for every binding (φ 7→ � ω̂ ′ : ⇒) in S , s maps φ to some ornament

type χ (ωi)
i

where χ is a concrete ornament such that (χ (βi)
i 7→ � ω̂ ′′ : ⇒) is in O, the (ωi)

i

are well-formed ((α ` ωi)
i

holds), and s (ω̂ ′) is ω̂ ′′[βi ← ωi]
i
. When β ` s : S holds, we may take

the right-projection s+S of s that gives the code of the ornamentation functions, such that β ` s+ : S+.

�at is for any φ ← χ (ωi)
i

in s corresponding to some (φ 7→ (δ , proj, cstr) � : ⇒ β) in S , we

put the bindings β ← σχ (ωi)i ,δ ← δχ (ωi)i , proj ← projχ (ωi)i , cstr ← cstrχ (ωi)i in s+S .

Assume we have a li�ing environment I composed of bindings of the form ∀α (x[ω, s] ; y α :

ω = A) obtained from the previous li�ings. �e right projection of a binding y : ∀α ω+ = A gives

the de�nition of the li�ed term. We write I+ for the projection of I (Figure �) which describes the

de�nitions in scope in the li�ed term.

We also use a judgment I ; β ; s ` r : R to check that the substitution r is appropriate: this requires

that the terms in r are typed according to the speci�cation R, namely I+, β ` r : s (R+S), using the

projection R+S de�ned on Figure 27. For any li�ing (x[ω, s] ; y : ω) in R, we require that r (y) = z τ
for some z, τ and check that the li�ing requirement matches the li�ing signature of z present in I .

To proceed with the instantiation, we �rst �nd the binding (x〈α , S,R〉 : ω = a ; A) in G of the

variable x . We then construct a substitution (α j ← ωj)
j
, say θ , and check that s and r have types

as prescribed by Sθ and Rθ , that is, β ` s : Sθ and I ; β ; s ` r : Rθ . �en, the instantiated term is

A[s+S , r ,θ
+

], which we can meta-reduce and simplify into an ML term, say B. Finally, we build the

li�ing speci�cation ∀β (x[(ωj)
j , s] ; y β : ω[s+S ,θ] = B) which is added to the environment I for

subsequent li�ings.

Lemma 9.3. Suppose β ` s : S . �en, β ` s+S : S+. Moreover, suppose I ; β ; s ` r : R. �en,

(I , β)+ ` r : s (R+S).

Proof. For the �rst result, by unfolding the de�nitions. For the second result, by induction on

the derivation. �

Lemma 9.4. Suppose G ` I and G; I ` t ⇒ I ′. �en, G ` I ′.

Proof. Unfold the rule Lifting, then substitute (well-typed) instantiation in the typing judgment

of generic term (well-typed by well-formedness of G). Apply Lift-Cons. �

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:63

I ::= ∅ | I ,∀α (x[ω, s] ; y α : ω = A)

∅+ = ∅ (I ,∀α (x[(ωi)
i , s] ; y α : ω = A))+ = I+,y : ∀α ω+ = A

LiftEnv-Empty

G ` ∅

LiftEnv-Cons

G ` I
(x〈(βj)

j , S, 〉 : ω ′) ∈ G (α ` ωj)
j α ` s : S I+,α ` A : ω+ ω = s (ω ′[(βj ← ωj)

j
])

G ` I ,∀α (x[(ωj)
j , s] ; y α : ω = A)

Fig. 31. Lifting environment

∅+S = ∅

(φ 7→ (δ , proj, cstr) � : ⇒ β) ∈ S

(s,φ ← χ (ωi)
i)+S = s

+
S [β ← σχ (ωi)i ,δ ← δχ (ωi)i , proj ← projχ (ωi)i , cstr ← cstrχ (ωi)i]

Wf-s

∀(φ 7→ � ω̂ : ⇒) ∈ S, ∃(χ (βi)
i 7→ � ω̂ ′ : ⇒), (α ` ωi)

i , s (φ) = χ (ωi)
i ∧ s (ω̂) = ω̂ ′[βi ← ωi]

i

α ` s : S

Wf-r-Empty

I ;α ; s ` ∅ : ∅

Wf-r-Patch

I ;α ; s ` r : R I+,α ` A : σ [(s)+, (r)+]

I ;α ; s ` r ,y ← A : R,y :
] σ

Wf-r-Lifting

I ;α ; s ` r : R ∀(βi)
i (x[(ω ′j)

j , s ′] ; z (βi)
i

: ω ′) ∈ I ((ωi)
+ = σi)

i

(s (ω ′′j) = ω
′
j [βi ← ωi]

i) j (s (s ′′) = s ′[βi ← ωi]
i) j s (ω ′′) = ω ′[βi ← ωi]

i

I ;α ; s ` r ,y ← z (σi)
i

: R, (x[(ω ′′j)
j , s ′′] ; y : ω ′′)

Lifting

(x〈(α j)
j , S,R〉 : ω = a ; A) ∈ G θ = (α j ← ωj)

j β ` s : Sθ I ; β ; s ` r : Rθ

G; I ` let y β = li�ing x (ωj)
j with s, r ⇒ I ,∀β (x[(ωj)

j , s] ; y β : ωθsimplify(A[s+S , r ,θ
+

]))

Fig. 32. Projection and checkingof ornament environment, lifting

9.3 Correctness of the ornamentation

We use the logical relation from §6 to prove that the li�ed term is related to the base term by

ornamentation. We �rst focus on the elaboration: we introduce an identity instantiation and prove

that, for all elaborated term, the identity instantiation gives back the original term.

De�nition 9.5. Given environments S and R, the identity instantiation idS,R is de�ned as the

composition of s+ and r where:

• s are identity ornaments: for all (φ 7→ (δ , proj, cstr) � ˆζ (ωi)
i

: ζ (τ`)
` ⇒ β) in S , the sub-

stitution s+ maps β , δ , proj, and cstr to ζ (τ`)
`
, δζ (τ`)` , projζ (τ`)` , cstrζ (τ`)` , respectively.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:64 Thomas Williams and Didier Rémy

• patches are trivial, i.e. for all y :
] ∆→ δ]A in R, the substitution r maps y to λ]∆. ().

• for all (x[ω , s] ; y : ω ′) in R, the substitution r maps y to x (ω)−S .

Lemma 9.6. If ` G,α , S,R, then idS,R exists and (G,α)− ` idS,R : (S,R)+.

Proof. By induction on the well-formedness judgment of S and R. We also prove that, for any

ornament in scope, the extension δ is λ . unit. �us, the patches are well-typed. For the li�ings,

notice that each ornament is the identity ornament: thus, we ask for a function of the same type as

the original function. �

We say that an elaboration (x〈α , S,R〉 : ω = a ; A) in G is appropriate if the identity instan-

tiation of the generic term gives back the original term: (G,α)−, idS,R (∆−S) ` a ' idS,R (A). An

environment G is appropriate if it contains only appropriate de�nitions.

Theorem 9.7. Suppose G,α , S,R,∆ ` a ; A : ω. �en (x〈α , S,R〉 : ω = a ; A) is appropriate. As
a consequence, elaborating a declaration preserves the property that the environment is appropriate.

Proof. By induction on the derivation, substituting and meta-reducing the de�nitions of the

identity ornament. It is then necessary to split on the values to simplify the construction and

immediate destruction of the skeleton in the match case. �

We now prove that the li�ings we generate are indeed related to the base term by the ornamen-

tation relation: we say that a li�ing ∀β (x[(ωj)
j , s] ; y β : ω = A) in G is appropriate if the base

term a (typed in G−) and the li�ed term A (typed in I+) are related at ω for all choices of the type

variables. Formally, we use the logical relation (§6): for all γ ∈ G[β], we want(
(G− ◦ γ1) (a), (I

+ ◦ γ2) (A)
)
∈ V[ω]γ

A li�ing environment is appropriate if it contains only appropriate li�ings. �e property we need

to prove is that, in a appropriate G, the li�ing environment I stays appropriate when processing a

new li�ing. It su�ces to show that the generated li�ing is appropriate.

Consider γ ∈ G[β]. We prove the correctness of the ornamentation by constructing a relational

instantiation γ ′ ∈ G[(β , S,R)+] as follows. For β ∈ β , take γ ′(β) = γ (β). For ornaments (φ 7→
(δ , proj, cstr) � : τ ⇒ α) ∈ S , take γ ′(α) = V[s (φ)]γ , γ ′(δ) = λ . Top, γ ′(proj) = (projτ , projs (φ))

and γ ′(cstr) = (cstrτ , cstrs (φ)) as in De�nition 8.2. For patches y :
] ∆ → δ]A, take γ ′(y) =

(λ∆. (), r (y)). For li�ings y of x τ , take γ ′(y) = ((G− ◦ γ1) (x τ), (I
+ ◦ γ2) (r (y))).

Lemma 9.8. Consider γ ∈ G[α], and suppose G, S,R, I are well-formed. �en, γ ′ ∈ G[(α , S,R)+],

γ ′
1
= G− ◦ γ1 ◦ idS,R , and γ ′2 = I+ ◦ γ2 ◦ s

+
S ◦ r .

Proof. For ornaments, use the validity of ornaments in the environment. For li�ings, use

well-formedness of I . For patches, use the fact that the relation on δ is constant equal to Top, and

the unit patch terminates. �

�en, we can instantiate the generic term with γ ′. On the le�-hand side we obtain a term

equivalent to the base term, and on the right-hand side a term equivalent to the li�ed term (because

simpli�cation preserves equivalence). Both terms are related by the relationV[γ]s (ω) . �us we

deduce correctness of the li�ing process:

Theorem 9.9 (Correctness of lifting). Suppose I is appropriate, and consider a li�ing request s .
If G; I ` s ⇒ I ′, then I ′ is appropriate.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:65

Proof. Let us consider the rule Lifting. First, (s+S ◦ r) (A) is well-typed in an equality-free

environment, and thus simpli�es to an ML term, preserving equality (and thus the logical relation).

Consider γ ∈ Gk [β]. We have to prove:

((G− ◦ γ1) (a), (I
+ ◦ γ2 ◦ s

+
S ◦ r) (A)) ∈ V[s (ω)]γ

Consider γ ′ de�ned as above. We can rewrite a to idS,R (A) by the identity instantiation property

of G. �us, (G− ◦ γ1) (a) = γ
′
1
(a). By de�nition, (I+ ◦ γ2 ◦ s

+
S ◦ r) (A) = γ

′
2
(a). Suppose S gives the

type variables αi as li�ed types of the ornament variables φi . �en,

V[s (ω)]γ = V[ω[φi ← s (φi)]
i
]γ

= V[ω]γ [φi←V[s (φi)]γ]
i

= V[ω+S]γ [αi←V[s (φi)]γ]
i

= V[ω+S]γ ′

�us, we have to prove (γ ′
1
(A),γ ′

2
(A)) ∈ V[ω+S]ρ . �is is true by the fundamental lemma, because

γ ′ ∈ Gk [(β , S,R)+] and (β , S,R)+ ` A : ω+S . �

9.4 Termination via the inverse relation

In order to prove that, when the patches terminate, the li�ed term does not terminate less that the

base term, we need to use the relation the other way, with the base term on the right and the li�ed

type on the le�.

�e relation is de�ned similarly. �e only di�erence is that the Top relation, in the �rst case,

relates any term on the base side (i.e. the le�) to a non-terminating term on the li�ed side (i.e. the

right), while the reversed Top relates any terminating term on the li�ed side (i.e. this time, the le�)

to any term on the base side (i.e. the right). �us, the di�erence occurs at instantiation: we need to

prove that the patches terminate to inject them in the relation.

10 Discussion

10.1 Implementation and design issues

Our prototype tool for refactoring ML programs using ornaments closely follows the structure

outlined in this paper: programs are �rst elaborated into a generic term, stored in an elaboration

environment and then instantiated and simpli�ed in a separate phase. From our experience, this

principled approach is more modular and robust than an a�empt to go directly from base terms to

ornamented terms. Of course, our prototype also performs inference during elaboration, while we

have only presented elaboration as a checking relation. Inference is a rather orthogonal issue and

does not raise any di�culty.

�e prototype is a proof of concept that only accepts programs in a tiny toy language. Porting

the implementation to a real language, such as OCaml, would allow to demonstrate the bene�ts of

ornamentation on real, large cases. We believe that instances of pure refactoring would already be

very useful to the programmer, even though it is just a small subset of the possibilities.

As presented, elaboration abstracts over all possible ornamentation points, which requires to

specify many identity ornaments and corresponding trivial patches, while many datatypes may

never be ornamented. For example, refactoring a library may need a speci�c ornament for one

type and the identity ornament for all others. We already allow wildcard on occurrences to apply

the identity ornaments by default. We could also use global rules, to avoid repeating local rules.

We could also avoid generating the ornamentation points in the generic li�ing that are known in

advance to be always instantiated to the identity ornament. �is information could be user-speci�ed,

or be inferred by scanning all ornament de�nitions prior to elaboration.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:66 Thomas Williams and Didier Rémy

�e li�ing process as described only operates on ML terms restricted to shallow pa�ern matching

and where constructors are only applied to variables. To meet these restrictions we preprocess

the term, converting deep pa�ern matching to shallow pa�ern matching, and li�ing the arguments

of constructors into separate let bindings. �is does not preserve the structure of the original

program and creates un-natural looking terms as output. To recover a term closer to the original

term, we mark the bindings we introduce and substitute them back a�erwards. When applying this

transformation, we keep the evaluation order of the arguments even if they are permuted. �us

our implementation should preserve e�ects and their ordering.

We use a similar strategy for deep pa�ern matching. During compilation to shallow pa�ern

matching, we annotate the generated matches with tags that are maintained during the elaboration

and, whenever possible, we merge back pa�ern matchings with identical tags a�er elaboration.

�is seems to work well, and a primitive treatment of deep pa�ern matching does not seem

necessary andould be more involved, so we currently do not feel the need for such an extension.

Pa�ern matching clauses with wildcards may be expanded to multiple clauses with di�erent head

constructors. For the moment we only factor them back in obvious cases, but we could use tags to

try to merge all clauses in the li�ed code that originate from the same clause in the base code.

�ese transformation phases introduce auxiliary variables. Some of these bindings will eventually

be expanded, but some will remain in the li�ed program. Before printing, we select names derived

from the names used in the original program. �is seems to be enough to generate readable terms.

10.2 Polymorphic let bindings

Currently, in a pre-elaboration pass, all local polymorphic let-bindings are duplicated into a sequence

of monomorphic let for each usage point. �is does not reduce the expressivity of the system

—assuming that they are su�ciently rare (see [6]) to avoid exponential behavior. �is transformation

requires the user to instantiate what appears to be the same code multiple times. On the other

hand, it is useful because it allows li�ing a local de�nition di�erently for di�erent usage points.

�e duplicated local de�nitions could be tagged and shared back a�er ornamentation if their

instantiations are identical. Another approach would be to allow the user to provide several

ornamentations at the de�nition point, and then choose one ornamentation at each usage point.

From a theoretical point of view, this is equivalent to λ-li�ing and extruding the de�nition to the

toplevel: we can then use our mechanism for li�ing references to global de�nition and fold the

de�nition back in the term before printing it out. It would also be possible to allow a local de�nition

to be ornamented with polymorphic ornaments, i.e. ornaments polymorphic on a type parameter.

�is would not solve the problem of using di�erent ornaments for di�erent usage points, but would

allow polymorphic recursion—which is not allowed in our current presentation.

10.3 Lifting

For convenience, we do not require that all parameters be instantiated when li�ing a term: we infer

some ornaments and li�ings and automatically �ll-in patches that return unit. We also provide a

way to specify a default ornament for a type. �ese simple strategies seem to work well for small

examples, but it remains to see if they also scale to larger examples with numerous ornamentation

points. Our view is that inferring patches is an orthogonal issue that can be le� as a post-processing

pass, with several options that can be studied independently but also combined. One possibility is

to use code inference techniques such as implicit parameters [2, 5, 16, 18], which could return three

kinds of answers: a unique solution, a default solution, i.e. le�ing the user know that the solution

is perhaps not unique, or failure.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:67

More exploration is certainly needed on user interface issues. Ornaments can be used in di�erent

scenarios. For refactoring, ornaments are just used to modify the base code into the li�ed code,

a�er which the base code may be ignored—or just kept for archival purposes. In other scenarios,

both the base code and the li�ed code coexist in the same program. �en, the base code may be

updated and changes may have to be propagated to the li�ed code. For such cases, we may need

constructs for describing patches that will be more robust to changes in the base code. Currently,

the user interface to describe li�ing and patches is in batch mode, but since we are able to output

the result of a partially speci�ed li�ing, it is easy to imagine building some interactive tools on top

of this interface. We could also consider preprocessing source programs prior to ornamentation.

Indeed, since ornamentation is syntactic, η-expansion or unfolding of recursive de�nitions could

provide more opportunities for ornamentation.

In our presented, we implicitly assume that all the code is available to the ornamentation tool.

Ornamentation schemes can be derived for the whole program, ornamented at once. In realistic

scenarios, programs are wri�en in a modular way. We could generalize and then instantiate whole

modules, and store the resulting environments in an ornamentationnterface �le describing the

relation between a base module its li�ing. Modular ornamentation could be applied to libraries:

when releasing a new interface-incompatible version of a library, a maintainer could distribute

an ornamentation speci�cation allowing clients of the library to automatically migrate their code,

leaving holes only at the points requiring user input.

10.4 Semantic issues

Our approach to ornamentation is not semantically complete: we are only able to generate li�ings

that follow the syntactic structure of the original program, instead of merely following its observable

behavior. Most reasonable ornamentations seem to follow this pa�ern. Syntactic li�ing seems to

be rather predictable and intuitive and lead to quite natural results. Syntactic li�ing also helps

with automation by reducing the search space. Still, it would be interesting to �nd a less syntactic

description of which functions can be reached by this method.

�e correctness result we give for li�ing only gives weak guarantees with respect to termination:

since the logical relation relates a non-terminating term on the right-hand side to any term on the

le�-hand side, a diverging term is an ornamentation of any term. Using the inverse relation, can

prove a stronger property: if the patches always terminate, the li�ing terminates exactly when

the base term terminates.However, we would like an even more precise result: if a li�ing does not

terminate while the base term terminates, it can only be because of looping inside the code given

by a patch.

We have described ornaments as an extension of ML, equipped a call-by-value semantics, but

only to have a �xed se�ing: our proposal should apply seamlessly to core Haskell. Our presentation

of ornamentation ignores e�ects, as well as the runtime complexity of the resulting program. A

desirable result would be that an ornamented program produces the same e�ects as the original

program, save for the e�ects performed in patches. Similarly, the complexity of the ornamented

program should be proportional to the complexity of the original one, save for the time spent in

patches.

10.5 Beyond ML

Programming with generalized abstract datatypes (GADT) requires writing multiple de�nitions

of the same type holding di�erent invariants. GADT de�nitions that only add constraints could

be considered ornaments of regular types, which was actually one of the main motivations for

introducing ornaments in the �rst place [4]. It would then be useful to automatically derive,

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:68 Thomas Williams and Didier Rémy

whenever possible, copies of the functions on the original type that preserve the new invariants.

Extending our results to the case of GADTs is certainly useful but still challenging future work.

Besides issues with type inference, GADTs also make the analysis of dead branches more di�cult.

A possible approach with our current implementation is to generate the function, ignoring the

constraints, and hoping it typechecks, but a more e�ective strategy will probably be necessary.

Although dependently typed, the meta-language mML is in fact quite restrictive. It must ful�ll

two con�icting goals: be su�ciently expressive to make the generic li�ing well-typed, but also

restrictive enough so that elaborated programs can be reduced and simpli�ed back to ML. Hence,

many extensions of ML will require changing the language eML as well, and it is not certain that

the balance will be preserved, i.e. that li�ed program will remain typable in the source language.

�e languages eML and mML have only been used as intermediate languages and are not exposed

to the programmer. We wonder whether they would have other useful applications either for

other program transformations or providing the user with some meta-programming capabilities.

For example, eML is equipped to keep track of term equalities during pa�ern matching and could

perhaps have applications in other se�ings. Similarly, mML provides a form of meta-programming

with good meta-theoretical properties and one might consider exposing it to the user, for example

to let them write generic patches that could be instantiated as needed at many program points.

11 Related works

Ornaments have been recently introduced by [3, 4] in the context of dependently typed languages,

where they can be encoded instead of treated as primitive. �e only other work to consider

applying ornaments to an ML-like language we are aware of is [19]. Using encodings, Ko and

Gibbons introduced ways to compose ornaments, notably parallel composition [9] that combines

the added information of two ornamentations relational algebraic ornaments [10] that allow the

usage of ornamentation along with relation program derivation. �ey also describe a di�erent way

to handle higher-order ornaments without using logical relations [11].

Type-�eory in Color [1] is another way to understand the link between a base type and a richer

type. Some parts of a datatype can be tainted with a color modality: this allows tracing which parts

of the result depend on the tainted values and which are independent. Terms operating on a colored

type can then be erased to terms operating on the uncolored version, which would correspond

to the base term. �is is internalized in the type theory: in particular, equalities involving the

erasure hold automatically. �is is the inverse direction from ornaments: once the operations on

the ornamented datatype are de�ned, the base functions are automatically derived, as well as a

coherence property between the two implementations. Moreover, the range of transformations

supported by type theory in color is more limited: it only allows �eld erasure, but not, for example,

to rearrange a products of sums as a sum of products

Programming with GADTs may require de�ning one base structure and several structures

with some additional invariants, along with new functions for each invariant. Ghostbuster [12]

proposes a gradual approach to porting functions to GADTs with richer invariants, by allowing as

a temporary measure to write a function against the base structure and dynamically checking that

it respects the invariant of the richer structure, until the appropriate function is wri�en.

In [13], the authors also observe that one o�en needs many variants of a given data structures

(typically an abstract syntax tree), and corresponding functions for each variant. �ey propose a

programming idiom to solve this problem: they create an extensible version of the type, and use type

families to determine from an extension name what information must be added to each constructor.

In this approach, the type of the additional information only depends on the constructor, while our

type-level pa�ern matching allows depending on the information stored in the already-present

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Principled approach to Ornamentation in ML 1:69

�elds. �is approach uses only existing features of GHC, avoiding a separate pre-processing step

and allowing one to write generic functions that operate on all decorations of a tree. On the

other hand, the programmer must pay the runtime cost of the encoding even when using only

the undecorated tree. �e encoding of extensible trees scales naturally to GADTs. Interestingly,

this idiom and ornaments are largely orthogonal features with some common use case (factoring

operations working on several variants of the same datatype) and might hopefully bene�t from

one another.

Ornaments are building on datatype de�nitions, which are a central feature of ML. Polytypic

programming is a successful concept also centered on the idea of datatypes, but orthogonal to

ornaments. Instead of li�ing operations from one datatype to another with a similar structure,

it tries to have a universal de�nition for an operation that applies to all datatypes at once, the

behavior being solely determined by logical (sum or product) structure of the datatype.

Ornamentation is a form of code refactoring on which there is a lot of literature, but based on

quite di�erent techniques and rarely supported by a formal treatment. It has however not been

much explored in the context of ML-like languages.

Views, �rst proposed by Wadler [17] and later reformulated by Okasaki [14] have some resem-

blance with isomorphic ornaments. �ey allow several interchangeable representations for the

same data, using isomorphism to switch between views at runtime whenever convenient. �e

example of location ornaments, which allows to program on the bare view while the data leaves in

the ornamented view, may seem related to views, but this is a misleading intuition. In our case, the

switch between views is at editing time and nothing happens at runtime where only the ornamented

core with location is executed. In fact, this runtime change has a runtime cost, which is probably

one of the reasons why the appealing concept of views never really took o�. Lenses [7] also focus

on switching representations at runtime.

�e ability to switch between views may also be thought of as the existence of inverse coercions

between views. Coercions may be considered as the degenerate of views in the non-isomorphic

case. But coercions are not more related to ornaments than views—for similar reasons.

Conclusion

We have designed and formalized an extension of ML with ornaments. We have used logical

relations as a central tool to give a meaning to ornaments, to closely relate the ornamented and

original programs, and to guide the li�ing process. We believe that this constitutes a solid, but

necessary basis for using ornaments in programming. �is is also a new use of logical relations

applied to type-based program refactoring.

Ornaments seem to have several interesting applications in an ML se�ing. Still, we have so far

only explored them on small examples and more experiment is needed to understand how they

behave on large scale programs. We hope that our proof-of-concept prototype could be turned into

a useful, robust tool for refactoring ML programs. Many design issues are still open to move from a

core language to a full-�edged programming language. More investigation is also needed to extend

our approach to work with GADTs.

A question that remains unclear is what should be the status of ornaments: should they become a

�rst-class construct of programming languages, remain a meta-language feature used to preprocess

programs into the core language, or a mere part of an integrated development environment?

Our principled approach with a posteriori abstraction of the source term revealed very bene�cial

for ornaments and we imagine that it could also be used for other forms of program transformations

beyond ornaments that remain to be explored.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:70 Thomas Williams and Didier Rémy

References
[1] J.-P. Bernardy and M. Guilhem. Type-theory in color. In International Conference on Functional Programming, pages

61–72, 2013. doi: 10.1145/2500365.2500577.

[2] P. Chambard and G. Henry. Experiments in generic programming: runtime type representation and implicit values.

Presentation at the OCaml Users and Developers meeting, Copenhagen, Denmark, sep 2012. URL h�p://oud.ocaml.

org/2012/slides/oud2012-paper4-slides.pdf.

[3] P. Dagand and C. McBride. A categorical treatment of ornaments. In 28th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 530–539. IEEE Computer Society, 2013.

ISBN 978-1-4799-0413-6. doi: 10.1109/LICS.2013.60. URL h�p://dx.doi.org/10.1109/LICS.2013.60.

[4] P. Dagand and C. McBride. Transporting functions across ornaments. J. Funct. Program., 24(2-3):316–383, 2014. doi:

10.1017/S0956796814000069. URL h�p://dx.doi.org/10.1017/S0956796814000069.

[5] D. Devriese and F. Piessens. On the bright side of type classes: Instance arguments in agda. In Proceedings of

the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11, pages 143–155, 2011. doi:

10.1145/2034773.2034796.

[6] T. S. Dimitrios Vytiniotis, Simon Peyton Jones. Let should not be generalised. In Proceedings of the 5th ACM SIGPLAN

Workshop on Types in Language Design and Implementation. Association for Computing Machinery, Inc., January 2010.

URL h�ps://www.microso�.com/en-us/research/publication/let-should-not-be-generalised/.

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmi�. Combinators for bidirectional tree transforma-

tions: A linguistic approach to the view-update problem. ACM Transactions on Programming Languages and Systems,

29(3):17, May 2007. doi: h�p://portal.acm.org/citation.cfm?doid=1232420.1232424.

[8] R. Hinze. Numerical representations as Higher-Order nested datatypes. Technical report, 1998.

[9] H.-S. Ko and J. Gibbons. Modularising inductive families. Progress in Informatics, 10, 2013. doi: doi:10.2201/NiiPi.2013.

10.5.

[10] H.-S. Ko and J. Gibbons. Relational algebraic ornaments. In Proceedings of the 2013 ACM SIGPLAN Workshop on

Dependently-typed Programming, DTP ’13, pages 37–48, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2384-0. doi:

10.1145/2502409.2502413. URL h�p://doi.acm.org/10.1145/2502409.2502413.

[11] H.-S. Ko and J. Gibbons. Programming with ornaments. Journal of Functional Programming, 27, 2016. doi: 10.1017/

S0956796816000307.

[12] T. L. McDonell, T. A. K. Zakian, M. Cimini, and R. R. Newton. Ghostbuster: A tool for simplifying and converting

gadts. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,

pages 338–350, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951914. URL

h�p://doi.acm.org/10.1145/2951913.2951914.

[13] S. Najd and S. Peyton-Jones. Trees that grow. JUCS, 2016. URL h�ps://www.microso�.com/en-us/research/wp-content/

uploads/2016/11/trees-that-grow-2.pdf.

[14] C. Okasaki. Views for standard ml. In In SIGPLAN Workshop on ML, pages 14–23, 1998.

[15] C. Okasaki. Purely functional data structures. Cambridge University Press, 1998. ISBN 978-0521663502.

[16] Scala. Implicit parameters. Scala documentation. URL h�p://docs.scala-lang.org/tutorials/tour/implicit-parameters.

[17] P. Wadler. Views: A way for pa�ern matching to cohabit with data abstraction, 1986.

[18] L. White, F. Bour, and J. Yallop. Modular implicits. In Proceedings ML Family/OCaml Users and Developers workshops,

ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014., pages 22–63, 2014. doi: 10.4204/EPTCS.198.2. URL

h�p://dx.doi.org/10.4204/EPTCS.198.2.

[19] T. Williams, P. Dagand, and D. Rémy. Ornaments in practice. In J. P. Magalhães and T. Rompf, editors, Proceedings of the

10th ACM SIGPLAN workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31, 2014, pages 15–24.

ACM, 2014. ISBN 978-1-4503-3042-8. doi: 10.1145/2633628.2633631. URL h�p://doi.acm.org/10.1145/2633628.2633631.

, Vol. 1, No. 1, Article 1. Publication date: January �?.

http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1017/S0956796814000069
https://www.microsoft.com/en-us/research/publication/let-should-not-be-generalised/
http://doi.acm.org/10.1145/2502409.2502413
http://doi.acm.org/10.1145/2951913.2951914
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
http://docs.scala-lang.org/tutorials/tour/implicit-parameters
http://dx.doi.org/10.4204/EPTCS.198.2
http://doi.acm.org/10.1145/2633628.2633631

	Abstract
	1 Introduction
	2 Examples of ornaments
	2.1 Code refactoring
	2.2 Code refinement
	2.3 Global compilation optimizations
	2.4 Hiding administrative data
	2.5 Higher-order and recursive types
	2.6 Partiality

	3 Overview of the lifting process
	3.1 Encoding ornaments
	3.2 Eliminating the encoding
	3.3 Inferring a generic lifting
	3.4 Lifting and ornament specifications

	4 Meta ML
	4.1 ML
	4.2 Adding term equalities
	4.3 Adding meta-abstractions

	5 The metatheory of mML
	5.1 A temporary definition of equality
	5.2 Strong normalization for -2.5mu
	5.3 Contexts, substitution and weakening
	5.4 Analysis of conversions and subject reduction
	5.5 Soundness for -2.5mu
	5.6 Reducing mML to eML
	5.7 Soundness, via a logical relation for -2.5mu

	6 A step-indexed logical relation on mML
	6.1 A deterministic reduction
	6.2 Counting steps
	6.3 Semantic types and the interpretation of kinds
	6.4 The logical relation
	6.5 Closure by biorthogonality

	7 Simplification from eML to ML
	8 Encoding ornaments
	8.1 Defining datatype ornaments
	8.2 Encoding ornaments in mML
	8.3 Correctness of the encoding

	9 Ornamenting terms
	9.1 Elaborating to a generic program
	9.2 Specialization of the generic program
	9.3 Correctness of the ornamentation
	9.4 Termination via the inverse relation

	10 Discussion
	10.1 Implementation and design issues
	10.2 Polymorphic let bindings
	10.3 Lifting
	10.4 Semantic issues
	10.5 Beyond ML

	11 Related works
	References

