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Chapter 9

Overloading

9.1 An overview

Overloading occurs when several definitions of an identifier may be visible simultaneously
at the same occurrence in a program. An interpretation of the program (and a fortiori
a run of the program) must choose the definition that applies at this occurrence. This
is called overloading resolution. Overloading resolution may use quite different strategies
and techniques. All sorts of identifiers may be subject to overloading: variables, labels,
constructors, types, etc.

Overloading must be distinguished from shadowing of identifiers by normal scoping rules,
where in this case, a definition is just temporarily inaccessible by another one, but only the
last definition is visible.

9.1.1 Why use overloading?

There are several reasons to use overloading.

Overloading may just be a naming convenience that allows reusing the same identifier for
similar but different operations. This avoids name mangling such as suffixing similar names
by type information: printing functions, e.g. print int, print string, etc.; numerical operations,
e.g. (+), .+ etc.); or numerical constants e.g. 0, 0., etc. In this respect, it may help with
modularity. In the absence of overloading, the naming discipline (including name mangling
conventions) must be known globally to avoid name clashes, which breaks compositionality.
Isolated identifiers with no particular naming convention may still interfere between different
developments and cannot be used together unless fully qualified. This problem does not dis-
appear with overloading but it may be minimized—as long as overloading is not ambiguous.
Hence, in some sense, overloading allows to think more abstractly, in terms of operations
rather than of particular implementations. For instance, calling to string conversion lets the
system check whether one definition is available according to the type of the argument.
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Overloaded definitions may also be used to provided type dependent functions. That is,
a function may be defined for all types τ[α] but with an implementation depending on the
type of α by provided several overloaded definitions for different types τ[τi]. For instance, a
marshaling function of type ∀α.α→ string may execute different code for each base type α.

Overloaded definitions may be ad hoc, i.e. completely unrelated for each type—or just
share a same type schema. For example 0 could mean either the integer zero or the empty
list; and “×” could mean either the integer product or string concatenation.

Conversely, overloaded definitions may depend solely on the type structure (i.e. on
whether the argument is a sum, a product, etc.) so that definitions can be derived me-
chanically for all types from their definitions on base types. Such overloaded functions are
called polytypic functions. Typical examples are marshaling functions, or the generation
of random values for arbitrary types as used in the Quickcheck tool for Haskell. etc. Still,
polytypic definition often need to be specialize at some particular types. For example, one
may use a polytypical definition of printing, so that printing is available at all types, but
define specialized versions of printing at some particular types.

9.1.2 Different forms of overloading

There are many variants of overloading. They can be classified by how overloading is intro-
duced and resolved.

The first elements of classification are the restrictions on overloading definitions. Can
arbitrary definitions be overloaded? For instance, can numerical values be overloaded? Are
all overloaded definitions of the same symbol instances of a common type scheme? Are
these type schemes arbitrary? Are overloaded definitions primitive (pre-existing), automatic
(generated mechanically from other definitions), or user-defined? Can overloaded definitions
overlap? Can overloaded definitions have a local scope?

However, the main element of classification remains the resolution strategy—which may
indirectly constraint the way overloading is introduced. We distinguish between static and
dynamic resolutions strategies.

Static resolution of overloading has a very simple semantics since the meaning of the
program can be determined statically by deciding for each overloaded symbol which actual
definition of the symbol should be used. Hence, it replaces each occurrence of an overloaded
symbol by an actual implementation at the appropriate type. Therefore static overload-
ing does not increase expressiveness per say, since the user could have chosen the appro-
priate implementation in the first place. Still, static overloading may significantly reduce
verbosity—and increase modularity and abstraction, as explained above.

Conversely, dynamic resolution increrases expressiveness, as the choice of the implemen-
tation may now depend on the dynamic of the program execution. However, it is also much
more involved, since the semantics of the language usually need extra machinary to support
the dynamic resolution. For example, the resolution of some occurrence of a polymorphic

http://en.wikipedia.org/wiki/QuickCheck
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function may depend on the type of its arguments, so that different calls of the function
at different types can make different choices. The resolution is driven by information made
available at runtime: it could at worse require full type information. In some restrictions,
partial type information may be sufficient, and sometimes some type-related information can
be used instead of types themselves, such as tags, dictionaries, etc. These can be attached
to values (as tags in object oriented languages), or passed as extra arguments at runtime (as
dictionaries in Haskell).

9.1.3 Static overloading

The language SML has a very limited form of overloading where overloaded definitions are
primitive: they include an exhaustive list of overloaded definitions for numerical operators,
plus automatically generated overloaded definitions for all record accessors. The resolution is
static and commits to a default type if overloading cannot be unambiguously resolved at out-
ermost let-definitions. For example, fun twice x = x + x is specialized to type int → int → int

at the SML toplevel.

In the language Java, overloading is not primitive but automatically generated by sub-
typing: when a class extends another one and a method is redefined, the older definition
is still visible, but at another type, hence the method is overloaded. This overloading is
then statically resolved by choosing the most specific definition. There is always a best
choice—according to static knowledge. This static resolution of overloading in Java comes
in complement to the dynamic dispatch of method calls. This is often a source of confusion
for programmers who often expect a dynamic resolution of overloading and as a result mis-
understand the semantics of their programs. For instance, an argument may have a runtime
type that is a subtype of the best known compile-time type, and perhaps a more specific
definition could have been used if overloading were resolved dynamically.

However convenient, static resolution of overloading is quite limited. Moreover, it does
not fit very well with first-class functions and polymorphism. Indeed, with static overloading,
λx.x + x is rejected when + is overloaded, as it cannot be resolved. The function must be
manually specialized at some type for which + is defined. This argues in favor of some form
of dynamic overloading that allows to delay resolution of overloaded symbols at least until
polymorphic functions have been sufficiently specialized.

9.1.4 Dynamic resolution with a type passing semantics

The most ambitious approach to dynamic overloading is to pass types at runtime and dis-
patch on the runtime type, using a general typecase construct.

Runtime type dispatch is the most general approach as it does not impose much restric-
tion on the introduction of overloaded definitions It uses an explicitly-typed calculus (e.g.
System F)—with a type passing semantics—extended with a typecase construct. However,



186 CHAPTER 9. OVERLOADING

the runtime cost of typecase may be high, unless type patterns are significantly restricted.
Moreover, one pays even when overloading is not used, since types are always passed around,
even when overloading is not used, unless the compiler uses aggressive program analyzes to
detect these situations and optimize type computations away. Monomorphization may also
be used to allow more static resolution in such cases. Ensuring exhaustiveness of type
matching is often a difficult task in this context.

The ML& calculus by Castagna (1997) offers a general overloading mechanism based
on type dispatch. It is an extension of System F with intersection types, subtyping, and
type matching. An expressive type system keeps track of exhaustiveness; type matching
functions are first-class and can be extended or overridden. The language allows overlapping
definitions with a best match resolution strategy.

9.1.5 Dynamic overloading with a type erasing semantics

To avoid the expensive cost of typecase, one may restrict the overloaded definitions, so that
full type information is not needed and only an approximation of types, such as tags, may
be used for overloading resolution. This is one possible approach to object-orientation in
the method as overloading functions paradigm where object classes are used to dynamically
select the appropriate method. This is also an approach used in some scheme dialects known
as generics.

In fact, one may get more freedom by detaching tags from values and passing tags—
or almost equivalently passing the actually implementations grouped into dictionaries—as
extra runtime arguments. A side advantage of this approach is that the semantics can be
described without changing the runtime environment, i.e. the representation of values, as
an elaboration process that introduces abstractions and applications for implementations
of overloaded symbols. Schematically, one transforms unresolved overloaded symbols into
extra abstractions and passes actual implementations (or abstractions of implementations)
around as extra arguments. Hopefully, overloaded symbols can be resolved when their types
are sufficiently specialized and before they are actually needed.

For example, a program context let f = λx.x + x in [] can be elaborated into let f =

λ(+). λx. x + x in []. If f 1.0 is placed in the hole of this original program context, it can
then be elaborated to f (+.) 1.0, which can be placed in the hole of the elaborated program
context. Elaboration can be performed after typechecking by translating the typing deriva-
tion. After elaboration, types are no longer needed and can be erased. Monomorphization
or other simplifications may reduce the number of abstractions and applications introduced
by overloading resolution.

This technique has been widely explored—under different facets—in the context of ML:
Type classes, introduced very early by Wadler and Blott (1989) are still the most popular and
widely used framework. Other contemporary solutions have been proposed by Rouaix (1990)
and Kaes (1992). Simplifications of type classes have also been proposed by Odersky et al.
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(1995) but did not take over, because of their restrictions. Recent works on type classes is
still going on Morris and Jones (2010).

In the rest of this chapter we introduce a tiny language called Mini Haskell that models
the essence of Haskell type classes; at the end we also discuss implicit arguments as a less
structured but simpler way of introducing dynamic overloading in a programming language.

9.2 Mini Haskell

Mini Haskell—or MH for short—is a simplification of Haskell to avoid most of the difficulties of
type classes but keeping their essence: it is restricted to single parameter type classes and no
overlapping instance definitions; it is close in expressiveness and simplicity to A second look
at overloading by Odersky et al. but closer to Haskell in style—it can be easily generalized
by lifting restrictions without changing the framework.

The language MH is explicitly typed. In this section, we first present some examples in
MH, and then describe the language and its elaboration into System F. We introduce an
implicitly-typed version of MH and its elaboration in the next section.

9.2.1 Examples in MH

An equality class and several instances many be defined in Mini Haskell as follows:

class Eq (X) { equal : X → X → Bool }
inst Eq (Int) { equal = primEqInt }
inst Eq (Char) { equal = primEqChar }
inst Λ(X) Eq (X) ⇒ Eq (List (X))
{ equal = λ(l1 : List X) λ(l2 : List X) match l1, l2 with

| [],[] → true | [], | ,[] → false

| h1 ::t1 , h2 ::t2 → equal X h1 h2 && equal (List X) t1 t2 }

This code declares a class (dictionary) of type Eq(X) that contains definitions for equal : X → X → Bool

and creates two concrete instances (dictionaries) of type Eq(Int) and Eq(Char), and a function
that, given a dictionary for Eq(X), builds a dictionary for type List(X). This code can be
elaborated by explicitly building dictionaries as records of functions:

type Eq (X) = { equal : X → X → Bool }
let equal X (EqX : Eq X) : X → X → Bool = EqX.equal

let EqInt : Eq Int = { equal = ( primEqInt : Int → Int → Bool ) }
let EqChar : Eq Char = { equal = primEqChar }

let EqList X (EqX : Eq X) : Eq (List X) =
{ equal = λ(l1 : List X) λ(l2 : List X) match l1, l2 with

| [],[] → true | [], | [], → false

| h1 ::t1 , h2 ::t2 →



188 CHAPTER 9. OVERLOADING

equal X EqX h1 h2 && equal (List X) (EqList X EqX) t1 t2 }

Classes may themselves depend on other classes (called superclasses), which realizes a form
of class inheritance.

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

The class definition declares a new class (dictionary) Ord (X) that contains a method Ord(X)

that depends on a dictionary Eq(X) and contains a method lt : X → X → Bool. The instance
definition builds a dictionary Ord(Int) from the existing dictionary Eq Int and the primitive
(<) for lt. The two declarations are elaborated into:

type Ord (X) = { Eq : Eq (X); lt : X → X → Bool }
let EqOrd X (OrdX : Ord X) : Eq X = OrdX.Eq
let lt X (OrdX : Ord X) : X → X → Bool = OrdX.lt
let OrdInt : Ord Int = { Eq = EqInt; lt = (<) }

So far, we have just defined type classes and some instances. We may write a function
that uses these overloaded definitions. When overloading cannot be resolved statically, the
function will be abstracted other one or several additional arguments, called dictionnar-
ies, that will carry the appropriate definitions for the unresolved overloaded symbols. For
example, consider the following definition in Mini Haskell:

let rec search : ∀(X) Ord X ⇒ X → List X → Bool =
Λ(X) λ(x : X) λ(l : List X)
match l with [] → false | h::t → equal x h || (lt h x && search X x t)

This code is elaborated into:

let rec search X (OrdX : Ord X) (x : X) (l : List X) : Bool =
match l with [] → false

| h:: t → equal X (EqOrd X OrdX) x h || (lt X OrdX h x && search X OrdX x t)

Using the overloading function, as in search Int 1 [1; 2; 3] will then elaborate into the code
search Int OrdInt 1 [1; 2; 3] where a dictionary OrdInt of the appropriate type has been built
and passed as an additional argument. Here, the target language is the explicitly-typed
System F, which has a type erasing semantics, hence the type argument Int may be dropped
while the dictionary argument OrdInt is retained: the code that is actually executed is thus
search OrdInt 1 [1; 2; 3] (where type information has been stripped off OrdInt itself).

9.2.2 The definition of Mini Haskell

Class declarations and instance definitions are restricted to the toplevel. Their scope is the
whole program. In practice, a program p is a sequence of class declarations and instance and
function definitions given in any order and ending with an expression. For simplification,
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p ∶∶= H1 . . .Hp h1 . . . hq M

H ∶∶= class P⃗ ⇒ K α {ρ}
ρ ∶∶= u1 ∶ τ1, . . . un ∶ τn

h ∶∶= inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}
r ∶∶= u1 =M1, . . . un =Mn

P ∶∶= K α

P⃗ ∶∶= P1, . . . Pn

Q ∶∶= K τ

Q⃗ ∶∶= Q1, . . . Qn

σ ∶∶= ∀α⃗. Q⃗⇒ T

T ∶∶= τ ∣ Q

Figure 9.1: Syntax of MH expressions and types

we assume that instance definitions do not depend on function definitions, which may then
come last as part of the expression in a recursive let-binding.

Instance definitions are interpreted recursively and their definition order does not matter.
We may assume, w.l.o.g., that instance definitions come after all class declarations. The order
of class declaration matters, since they may only refer to other class constructors that have
been previously defined.

For sake of simplification, we restrict to single parameter classes. The syntax of MH
programs is defined in Figure 9.1. Letter p ranges over source programs. A program p is
a sequence H1 . . .Hp h1 . . . hq M , of class declaration H1 . . .Hp, followed by a sequence of
instance definitions h1 . . . hq, and ending with an expression M .

A class declarationH is of the form class P⃗ ⇒ K α {ρ}. It defines a new class (constructor)
K, parametrized by α. Every class (constructor) K must be defined by one and only one
class declaration. So we may say that H is the declaration of K and write HK.

Letter u ranges over overloaded symbols, also called methods. The row ρ of the form
u1 ∶ τ1, . . . un ∶ τn declares overloaded symbols ui of class K. An overloaded symbol cannot be
declared twice in a program; it cannot be repeated twice in the same class (hence the map
i↦ ui is injective) and cannot be declared in two different classes. The row ρ (and thus each
of its field type τi) must not contain any other free variable than α.

The class depends on a sequence of subclasses P⃗ of the form K1 α, . . .Kn α, which is called
a typing context. Each clause Ki α can be read as an assumption “given an instance of class
Kı at type α” and P⃗ as the conjunction of these assumptions. We say that classes Ki’s are
superclasses of K which we write Ki ≺ K. They must have been previously defined. This
ensures that the relation ≺ is acyclic. We require that all Ki’s are independent, i.e. there
does not exists i and j such that Kj ≺ Ki.

An instance definition h is of the form inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r}. It defines an instance of
a class K at type G β⃗ where G is a datatype constructor, i.e. not a class constructor. A class
constructor K may appear in T but not in τ . An instance definition defines the methods of
a class at the required type: r is a record of methods u1 =M1, . . . un =Mn.
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An instance definition is also parametrized by a typing context P⃗ of the formK1 α1, . . .Kk αk

where variables αi’s are included in β⃗. This typing context is not related to the typing con-
text of its class declaration HK, but to the set of classes that the implementations of the
methods depend on.

Restrictions The restriction to types of the form K′ α′ in typing contexts and class dec-
larations, and to types of the form K′ (G′ α⃗′) in instances are for simplicity. Generalization
are possible and discussed later (§9.4).

9.2.3 Semantics of Mini Haskell

The semantics of Mini Haskell is given by elaborating source programs into System F extended
with record types and recursive definitions. Record types are provided as data types. They
are used to represent dictionaries. Record labels are used to encode overloaded identifiers
u. We may use overloaded symbols as variables as well: this amounts to reserving a subset
of variables xu indexed by overloaded symbols and writing u as a shortcut for xu. We use
letter N instead of M for elaborated terms, to distinguish them from source terms. For
convenience, we write ⇒ in System F as an alias for →, which we use when the argument is
a (record representing a) dictionary. Type schemes in the target language take the form σ

described on Figure 9.1. Notice that types T are stratified: they are either dictionary types
K τ or a regular type τ that does not contain dictionary types.

Class declaration The elaboration of a class declaration HK of the form class K1 α, . . . Kn

α ⇒ K α {ρ} consists of several parts. It first declares a record type that will be used as a
dictionary to carry both the methods and the dictionaries of its immediate superclasses. A
class need not contain subdictionaries recursively, since if Kj ≺ Ki, then a dictionary for Ki

already contains a sub-dictionary for Kj , to which K has access via Ki so it does need not
have one itself. The row ρ of the class definition only lists the class methods. Hence, we
extend it with fields for sub-dictionaries and define the record type:

K α ≈ {ρK} where ρK is uK

K1
∶ K1 α, . . . u

K

Kn
∶ Kn α,ρ.

This record type declaration is collected to appear in the program prelude.

Then, for each u ∶ Tu in ρK, we define the program context:

Ru
△
== let u ∶ σu = Nu in [] where σu

△
== ∀α.K α⇒ Tu and Nu

△
== Λα.λz ∶K α. (z.u)

Let the composition R1 ○R2 of two contexts be the context R1[R2] obtained by placing R2

in the hole of R1. The elaboration JHKK of a single class declaration HK is the composition:

JHKK
△
== Ru1

○ . . .Run
where K α ≈ {u1 ∶ T1, . . . un ∶ Tn}
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that defines accessors for each field of the class dictionary. We also define the typing envi-
ronment ΓHK

as an abbreviation for u1 ∶ σu1
, . . . un ∶ σun

.

The elaboration JH1 . . .HpK of all class definitions is the composition JH1K○ . . . JHpK of the
elaboration of each. We also define ΓH1...Hn

as the concatenation ΓH1
, . . .ΓHn

of individual
typing environments.

Instance definition In an instance declaration h of the form inst ∀β⃗. P⃗ ⇒ K (G β⃗) {r},
The typing context P⃗ describes the dictionaries that must be available on type parameters
β⃗ for constructing the dictionary K (G β⃗), but that cannot yet be built because they depend
on some unknown type β in β⃗.

As mentioned above P⃗ is not related to the typing context of the class declaration HK.
To see this, assume that class K′ is an immediate superclass of K, so that the creation of the
dictionary K α requires the existence of a dictionary K′ α; then, an instance declaration K G
(where G is nullary) need not be parametrized over a dictionary of type K′ G, as either such
a dictionary can already be built, hence the instance definition does not require it, or it will
never be possible to build one, as instance definitions are recursively defined so all of them
are already visible—and the program must be rejected.

We restrict typing context K1 α1, . . .Kk αk to canonical ones defined as satisfying the two
following conditions: (1) αi is some βj in β⃗; and (2) if Ki and Kj are related, i.e. Ki ≺ Kj

or Kj ≺ Ki or Ki = Kj . then αi and αj are different. The latter condition avoids having two
dictionaries Ki β and Kj β when, e.g., Ki ≺ Kj since the former is contained in the latter.

The elaboration of an instance declaration h is a triple (zh,Nh, σh) where zh is an identifier
to refer to the elaborated body Nh of type

σh
△
== ∀β1 . . . βp.K1 α1⇒ . . .Kk αk ⇒ K (G β⃗)

(Variables α1, . . . αk are among β1, . . . βp and may contain repetitions, as explained above.)

The expression Nh builds a dictionary of type K (G β⃗), given k dictionaries (where k may
be zero) of respective types K1 β1, . . .Kk βk and is defined as:

Nh △
== Λβ1. . . .Λβp. λ(z1 ∶K1 α1). . . . λ(zk ∶Kk αk).

{uK

K′
1

= q1, . . . u
K

K′
n

= qn, u1 = N
h
1
, . . . um = Nh

m}

The types of fields are as prescribed by the class definition K, but specialized at type G β⃗.
That is, qi is a dictionary expression of type K′i (G β⃗) whose exact definition is postponed
until the elaboration of dictionaries in §9.2.6. The term Nh

i is the elaboration of Mi where
u1 =M1, . . . um =Mm is r; it is described in the next section (§9.2.4). For clarity, we write z

instead of x when a variable binds a dictionary or a function building a dictionary. Notice
that the expressions qi and Nh

i sees the type variables β1, . . . βp and the dictionary parameters
z1 ∶ K1 α1, . . . zk ∶ Kk αk.
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The elaboration of all instance definitions is the program context:

Jh⃗K
△
== let rec (z⃗h ∶ σ⃗h) = N⃗h in []

that recursively binds all instance definitions in the hole.

Program Finally, the elaboration of a complete program H⃗ h⃗ M is

JH⃗ h⃗ MK
△
== (JH⃗K ○ Jh⃗K)[M] = let u⃗ ∶ σ⃗u = N⃗u in let rec (z⃗h ∶ σ⃗h) = N⃗h in N

Hence, the expression N , which is the elaboration ofM , and all expressions Nh are typed (and
elaborated) in the environment ΓH⃗h⃗ equal to ΓH⃗ , Γh⃗: the environment ΓH⃗ declares functions
to access components of dictionaries (both sub-dictionaries and definitions of overloaded
symbols) while the environment Γh⃗, declares functions to build dictionaries.

9.2.4 Elaboration of expressions

The elaboration of expressions is defined by a judgment Γ ⊢M ↝N ∶ σ where Γ is a System F
typing context, M is the source expression, N is the elaborated expression and σ its type
in Γ. In particular, Γ ⊢M ↝N ∶ σ implies Γ ⊢ N ∶ σ in System F.

We write q for dictionary terms, which are the following subset of System-F terms:

q ∶∶= u ∣ z ∣ q τ ∣ q q

Variables u and z are just particular cases of variables x. Variable u is used for methods
(and access to subdictionaries), while variable z is used for dictionary parameters and for
class instances, i.e. dictionaries or functions building dictionaries.

The rules for elaboration of expressions are described in Figure 9.2. Most of them just
wrap the elaboration of their sub-expressions. In rule Let, we require σ to be canonical, i.e.
of the form ∀α⃗. P⃗ ⇒ T where P⃗ is itself empty or canonical (see page 191). Rules App and Abs

do not apply to overloaded expressions of type σ but only to simple expressions of type τ .
The interesting rules are the elaboration of overloaded expressions, and in particular of

missing abstractions (Rule OAbs) and applications (Rule OApp) of dictionaries. Rule OAbs

pushes dictionary abstractions in the context Γ as prescribed by the expected type. On the
opposite, Rule OApp searches for an appropriate dictionary-building function and applies it
to the required sub-directionary.

The premise Γ ⊢ q ∶ Q of rule OApp also triggers the elaboration of dictionaries. This
judgment is just the typability in System F—but restricted to dictionary expressions. That
is, it searches for a well-typed dictionary expression. The restriction to dictionary expres-
sions ensures that under reasonable conditions the search is decidable—and coherent. The
elaboration of dictionaries reads the typing rules of System F restricted to dictionaries as an
algorithm, where Γ and Q are given and q is inferred. This is described in detail in §9.2.6.

By construction, elaboration produces well-typed expressions: that is ΓH⃗h⃗ ⊢ M ↝ N ∶ τ
implies that is ΓH⃗h⃗ ⊢ N ∶ τ .
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Var

x ∶ σ ∈ Γ

Γ ⊢ x ↝ x ∶ σ

Inst

Γ ⊢M ↝N ∶ ∀α.σ

Γ ⊢M τ ↝ N τ ∶ [α ↦ τ]σ

Gen

Γ, α ⊢M ↝N ∶ σ

Γ ⊢ Λα.M ↝ Λα.N ∶ ∀α.σ

Let

Γ ⊢M1 ↝N1 ∶ σ Γ, x ∶ σ ⊢M2 ↝N2 ∶ τ

Γ ⊢ let x ∶ σ =M1 inM2 ↝ let x ∶ σ = N1 in N2 ∶ τ

Abs

Γ, x ∶ τ ′ ⊢M ↝N ∶ τ

Γ ⊢ λx ∶τ ′.M ↝ λx ∶τ ′.N ∶ τ ′ → τ

App

Γ ⊢M1 ↝N1 ∶ τ2 → τ1 Γ ⊢M2 ↝ N2 ∶ τ2

Γ ⊢M1 M2 ↝N1 N2 ∶ τ1

OAbs

Γ, x ∶ Q ⊢M ↝N ∶ σ x #M

Γ ⊢M ↝ λx ∶Q.N ∶ Q⇒ σ

OApp

Γ ⊢M ↝N ∶ Q⇒ σ Γ ⊢ q ∶ Q

Γ ⊢M ↝N q ∶ σ

Figure 9.2: Elaboration of expressions

9.2.5 Summary of the elaboration

An instance declaration h of the form:

inst ∀β⃗. K1 α1, . . .Kk αk ⇒ K τ⃗ {u1 =M1, . . . l;um =Mm}

is translated into

λ(z1 ∶K1 α1) . . . . λ(zp ∶Kk αk).{uK

K′
1

= q1, . . . u
K

K′
n

= qn, u1 = N1, . . . um = Nm}

where uK

K′
i

∶ τi are the superclasses fields, Γh is β⃗,K1 α1, . . .Kk αk, and the following elaboration

judgments ΓH⃗h⃗,Γ
h
⊢ qi ∶ τi and ΓH⃗h⃗,Γ

h
⊢ Mi ↝ Ni ∶ τi hold. Finally, given the program p

equal to H⃗ h⃗ M , we elaborate M as N such that ΓH⃗h⃗ ⊢M ↝N ∶ ∀ᾱ. τ .

Notice that ∀ᾱ. τ is an unconstrained type scheme. Otherwise, N could elaborate into
an abstraction over dictionaries, which could turn a computation into a function that is not
reduced: this would not preserve the intended semantics.

More generally, we must be careful to preserve the intended semantics of source pro-
grams. For this reason, in a call-by-value setting, we must not elaborate applications into
abstractions, since this could delay and perhaps duplicate the order of evaluations. We just
pick the obvious solution, that is to restrict rule Let so that either σ is of the form ∀ᾱ. τ or
M1 is a value or a variable.

In a language with a call-by-name semantics, an application is not evaluated until it
is needed. Hence adding an abstraction in front of an application should not change the
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evaluation order M1 M2. We must in fact compare:

let x1 = λy. let x2 = V1 V2 inM2 in [x1 ↦ x1 q]M1 (1)
let x1 = let x2 = λy.V1 V2 in [x2 ↦ x2 q]M2 inM1 (2)

The order of evaluation of V1 V2 is preserved. However, the Haskell language is call-by-need
and not call-by-name! Hence, applications are delayed as in call-by-name but shared and
only reduced once. The application V1 V2 will be reduced once in (1), but as many times as
there are occurrences of x2 in M2 in (2).

The final result will still be the same in both cases if the language has no side effects,
but the intended semantics may be changed regarding the complexity.

Coherence The elaboration may fail for several reasons: The input expression may not
obey one of the restrictions we have requested; a typing error may occur during elaboration
of an expression; or or some dictionary cannot be build. If elaboration fails, the program p

is rejected, of course.
When the elaboration of p succeeds, it should return a term JpK that is well-typed in

F and that defines the semantics of p. However, although terms are explicitly-typed, their
elaboration may not be unique! Indeed, they might be several ways to build dictionaries of
some given type, as we shall see below (§9.2.6).

We may distinguish two situations: in the worst case, a source program may elaborate
to several completely unrelated programs; in the better case, all possible elaborations may
in fact be equivalent programs: we say that the elaboration is coherent and the programs
has a deterministic semantics given by any of its elaboration.

Opening a parenthesis, what does it mean for programs be equivalent? There are several
notions of program equivalence:

• If programs have a denotational semantics, the equivalence of programs should be the
equality of their denotations.

• As a subcase, two programs having a common reduct should definitely be equivalent.
However, this will in general not be complete: values may contain functions that are
not identical, but perhaps reduce to the same value whenever applied to equivalent
arguments.

• This leads to the notion of observational equivalence. Two expressions are observation-
ally equivalent (at some observable type, such as integers) if their are indistinguishable
whenever they are put in arbitrary (well-typed) contexts of the observable type.

End of parenthesis.
For instance, two different elaborations algorithms that consistently change the repre-

sentation of dictionaries (e.g. by ordering records in reverse order), may be equivalent if we
cannot observe the representation of dictionaries.
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D-OVar

x ∶ σ ∈ Γ

Γ ⊢ x ∶ σ

D-Inst

Γ ⊢ q ∶ ∀α.σ

Γ ⊢ q τ ∶ [α↦ τ]σ

D-App

Γ ⊢ q1 ∶ Q1 ⇒ Q2 Γ ⊢ q2 ∶ Q1

Γ ⊢ q1 q2 ∶ Q2

Figure 9.3: Typing rules for dictionaries

D-OVar-Inst

z ∶ ∀β⃗. P1⇒ . . . Pn⇒ K (G β⃗) ∈ Γ ∀i ∈ 1..n, Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi

Γ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)

D-Proj

u ∶ ∀α.K′ α⇒ K α ∈ Γ Γ ⊢ q ∶ K′ τ

Γ ⊢ u τ q ∶ K τ

D-Var

z ∶ K α ∈ Γ

Γ ⊢ z ∶ K α

Figure 9.4: Algorithmic typing rules for dictionaries

Returning to the coherence problem, the only source of non-determinism in Mini Haskell
is the elaboration of dictionaries. Hence, to ensure coherence, it suffices that two dictionary
values of the same type are always equal. This does not mean that there is a unique way
of building dictionaries, but that all ways are equivalent as they eventually return the same
dictionary.

9.2.6 Elaboration of dictionaries

The elaboration of dictionaries is based on typing rules of System F—but restricted to a sub-
set of the language. The relevant typing rules are given in Figure 9.3. However, elaboration
significantly differs from type inference since the judgment Γ ⊢ q ∶ Q is used for inferring q

rather than τ . The judgment can be read as: in type environment Γ, a dictionary of type
Q can be constructed by the dictionary expression q. As for type inference, elaboration of
dictionaries is simplified by finding an appropriate syntax-directed presentation of the typ-
ing rules—but directed by the structure of the type of the expected dictionary instead of
expressions.

Elaboration is also driven by the bindings available in the typing environment. These
may be dictionary constructors zh, given by instance definitions; dictionary accessors uK,
given by class declarations; dictionary arguments z, given by the local typing context. This
suggests the presentation of the typing rules in Figure 9.4.
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Dictionary values Let us first consider the elaboration of dictionary values. They are
typed in the environment ΓH⃗h⃗, which does not contain free type variables. Hence, rule D-Var

does not apply. Moreover, dictionaries stored in other dictionaries had to be built in the
first place, hence rule D-Proj should never be needed. That is, dictionary values can be built
with only instances of D-OVar-Inst of the form:

D-OVar-Inst

z ∶ ∀β⃗. P1 ⇒ . . . Pn⇒ K (G β⃗) ∈ Γh⃗ Γh⃗ ⊢ qi ∶ [β⃗ ↦ τ⃗ ]Pi

Γh⃗ ⊢ z τ⃗ q⃗ ∶ K (G τ⃗)

where the premises Γ ⊢ qi ∶ [β⃗ ↦ τ⃗]Pi are themselves recursively built in the same way. This
rule can be read as a recursive definition, where Γ is constant, Q is the input type of the
dictionary, and q is the output dictionary. This reading is deterministic if there is no choice
in finding z ∶ ∀β⃗. P1 ⇒ . . . Pn ⇒ K (G β⃗) in Γ. The binding z can only be a binding zh

introduced as the elaboration of some class instance h at type Γβ⃗. Hence, it suffices that
instance definitions never overlap for zh to be uniquely determined; if recursively each qi
is unique, then z τ⃗ q⃗ also is. Under this hypothesis, the elaboration is always unique and
therefore coherent.

Definition 12 (Overlapping instances) Two instances inst ∀β⃗1. P⃗ ⇒ K (G1 β⃗1) {r1}
and inst ∀β⃗2. P⃗ ⇒ K (G2 β⃗2) {r2} of a class K overlap if the type schemes ∀β⃗1.K (G1 τ⃗1) and
∀β⃗2.K (G2 τ⃗2) have a common instance, i.e. in the current setting, if G1 and G2 are equal.

Overlapping instances are an inherent source of incoherence, as it means that for some type Q
(in the common instance), a dictionary of type Q may (possibly) be built using two different
implementations.

Dictionary expressions Dictionary expressions may compute on dictionaries: they may
extract sub-dictionaries or build new dictionaries from other dictionaries received as argu-
ment. Indeed, in overloaded code, the exact type is not fully known at compile type, hence
dictionaries must be passed as arguments, from which superclass dictionaries may be ex-
tracted (actually must be extracted, as we forbade to pass a class and one of its super class
dictionaries simultaneously).

Dictionaries are typically typed in the typing environment ΓH⃗h⃗,Γ
h where Γh binds the

local typing context, i.e. assumptions z ∶ K′ β about dictionaries received as arguments.
Hence, rules D-Proj and D-Var may now apply, i.e. the elaboration of expressions uses the
three rules of 9.4. This can still be read as a backtracking proof search algorithm. The proof
search always terminates, since premises always have strictly smaller Q than the conclusion
when using the lexicographic ordering of the height of τ and then the reverse order of class
inheritance: when no rule applies, the search fails; when rule D-Var applies, the search ends
with a successful derivation; when rule D-Proj applies, the premise is called with a smaller
problem since the height is unchanged and K′ τ⃗ with K′ ≺ K; when D-Ovar-Inst applies, the
premises are called at type Ki τj where τj is subtype of τ⃗ , hence of a strictly smaller height.
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Non determinism However, non-overlapping of class instances is no more sufficient to
prevent non determinism. For instance, the introductory example of §9.2.1 defines two
instances EqInt and OrdInt where the later contains an instance of the former. Hence, a
dictionary of type EqInt may be obtained, either directly as EqInt, or indirectly as Eq OrdInt,
by projecting the Eq sub-dictionary of class Ord Int. In fact, the latter choice could then be
reduced at compile time and be equivalent to the first one.

One could force more determinism by fixing a strategy for elaboration. Restrict the use
of rule D-Proj to cases where Q is P–when D-OVar-Inst does not apply. However, since the two
elaborations paths are equivalent, the extra flexibility is harmless and may perhaps be useful
freedom for the compiler.

Example of elaboration In our introductory example, the typing environment ΓH⃗h⃗ is
(we remind both the informal and formal names of variables):

equal
△
== u

equal
∶ ∀α.Eq α⇒ α → α → bool,

EqInt
△
== zInt

Eq
∶ Eq int

EqList
△
== zListEq ∶ ∀α.Eq α⇒ Eq (list α)

EqOrd
△
== uOrd

Eq ∶ ∀α.Ord α⇒ Eq α

lt
△
== u

lt
∶ ∀α.Ord α⇒ α → α → bool

When elaborating the body of the search function, we have to infer a dictionary for EqOrd X OrdX

in the local context X, OrdX : Ord X. Using formal notations, dictionaries are typed in the
environment Γ equal to Γ0, α, z ∶ Ord α. and EqOrd is uOrd

Eq . We have the following derivation:

D-Proj

D-OVar-Inst

Γ ⊢ z ∶ uOrd
Eq ∶ Ord α → Eq α

D-Var

Γ ⊢ z ∶ Ord α

Γ ⊢ uOrd
Eq α z ∶ Eq α

9.3 Implicitly-typed terms

Our presentation of Mini Haskell is explicitly typed. Since we remain within an ML-like
type system where type schemes are not first-class, we may leave some type information
implicit. But how much? Class declarations define both the structure of dictionaries—a
record type definition and its accessors—and the type scheme of overloaded symbols. Since,
we inferring type schemes is out of the scope of ML-like type inference, class declarations
must remain explicit. Instance definitions are turned into recursive polymorphic definitions,
which in ML require type scheme annotations. So they instance definitions also remain
explicit. Fortunately, all remaining core language expressions, i.e. the body of instance
definitions and the final program expression can be left implicit.

For instance, the example program in the introduction can be rewritten more concisely.
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class Eq (X) { equal : X → X → Bool }
inst Eq (Int) { equal = primEqInt }
inst Eq (Char) { equal = primEqChar }
inst Λ(X) Eq (X) ⇒ Eq (List (X))
{ Eq = λ(l1) λ(l2) match l1, l2 with

| [],[] → true | [], | [], → false

| h1 ::t1 , h2 ::t2 → Eq h1 h2 && Eq t1 t2 }

class Eq (X) ⇒ Ord (X) { lt : X → X → Bool }
inst Ord (Int) { lt = (<) }

let rec search x l = match l with [] → false | h::t → equal x h || search x t

let b = search Int 1 [1; 2; 3];;

The missing type information can rebuilt by type inference.

Type inference To perform type inference in Mini Haskell, the idea is to see dictionary
types K τ , which can only appear in type schemes and not in types, as a type constraint
to mean “there exists a dictionary of type K α”. That is, we may read the type scheme
∀α⃗. P⃗ ⇒ τ as the constraint type scheme ∀α⃗[P⃗ ]. τ where P⃗ is seen as a type predicate, say
a dictionary predicate. Therefore, we extend constraints with dictionary predicates:

C ∶∶= . . . ∣ K τ

On ground types, a constraint K t is satisfied if one can build a dictionary of type K t in
the initial environment ΓH⃗h⃗ (that contains all class and instance declarations)—formally,
if there exists a dictionary expression q such that ΓH⃗h⃗ ⊢ q ∶ K t. Then satisfiability of
class-membership constraints is (with its unfolded version on the right):

Instance

K φτ

φ ⊢ K τ

Instance

ΓH⃗h⃗ ⊢ ρ ∶ K φτ

φ ⊢ K τ

We use entailment to reason with class-membership constraints. For every class declaration
class K1 α, . . . Kn α⇒ K α {ρ}, we have:

K α ⊩ K1 α ∧ . . . Kn α (K1)

This rule allows to decompose any set of simple constraints into a canonical one.

Proof: Assume φ ⊢ K α, i.e. by Rule Instance Γ
H⃗h⃗
⊢ q ∶ K (φα) for some dictionary q. From

the class declaration in Γ
H⃗h⃗

, we know that K α is a record type definition that contains
fields uK

Ki
of type Ki αi. Hence, the dictionary value q contains field values of types Ki (φα).

Therefore, we have φ ⊢ Ki α for all i in 1..n, which implies φ ⊢ K1 α ∧ . . . Kn α.
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For every instance definition inst ∀β⃗. K1 β1, . . . Kp βp⇒ K (G β⃗) {r}, we have

K (G β⃗) ≡ K1 β1 ∧ . . . Kp βp (K2)

This rule allows to decompose any class constraint into a conjunction of simple constraints
(i.e. of the form K α).

Proof: Let h be the above instance definition. We prove both directions separately:

Case ê: Assume φ ⊢ Ki βi for i in {1, . . . p}. By Rule Instance, for each i, there exists a
dictionary qi such that Γ

H⃗h⃗
⊢ qi ∶ Ki (φβi). Hence, Γ

H⃗h⃗
⊢ xh β⃗ q1 . . . qp ∶ K (G (φβ⃗)), i.e. by

Rule Instance φ ⊢ K (G β⃗).

Case ⊩: Assume, φ ⊢ K (G β⃗). i.e. there exists a dictionary q such that Γ
H⃗h⃗
⊢ q ∶ K (G (φβ⃗)).

By inversion of typing (and non-overlapping of instance declarations), the only way to build
such a dictionary is by an application of zh. Hence, q must be of the form xh β⃗ q1 . . . qp
with Γ

H⃗h⃗
⊢ qi ∶ Ki (φβi). By Rule Instance, this means φ ⊢ Ki βi for every i, which implies

φ ⊢ K1 β1 ∧ . . . Kp βp.

Notice that the equivalence (K2) still holds in an open-world assumption where new instance
clauses may be added later, because another future instance definition cannot overlap with
existing ones.

If class instances may overlap, the ⊩ direction does not hold anymore; the rewriting rule:

K (G β⃗)Ð→ K1 β1 ∧ . . . Kp βp

remains sound (the inverse entailment holds, and thus type inference still infer sound typ-
ings), but it is incomplete (type inference could miss some typings).

We also use the following equivalence: for every class K and type constructor G for which
there is no instance of K:

K (G β⃗) ≡ false (K3)

This rule allows to report failure as soon as a constraint of the form K (G τ⃗) for which there
is not instance of K for G appears.

Proof: The ê direction is a tautology, so it suffices to prove the ⊩ direction. By contradiction.
Assume φ ⊢ K (G β⃗). This implies the existence of a dictionary q such that Γ

H⃗h⃗
⊢ q ∶ K (G

(φβ⃗)). Then, there must be some xh in Γ whose type scheme is of the form ∀β⃗. P⃗ ⇒ K (G β⃗),
i.e. there must be an instance of class K for G.

Notice that the equivalence is only an inverse entailment in an open world assumption: when
there is not instance of K at type G, the rewriting rule K (G β⃗)Ð→ false remains sound, but
it is incomplete.
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We are now fully equipped for type inference. Constraint generation is unchanged: see
Figure 8.6. A constraint type scheme can then always be decomposed into one of the form
∀ᾱ[P1 ∧ P2]. τ where ftv(P1) ∈ ᾱ and ftv(P2)# ᾱ. The constraints P2 can then be extruded
to the enclosing context if any, so that we are just left with P1, and thus a well-formed type
scheme ∀α⃗. P⃗ ⇒ τ with a typing context P⃗ .

To check well-typedness of a program H⃗ h⃗ a, we must check that: each expression ah and
the expression a are well-typed, in the environment used to elaborate them. This amounts
to checking:

• ΓH⃗h⃗,Γ
h
⊢ ah ∶ τh where τh is given. That is, that def ΓH⃗h⃗,Γ

h in Lah M ⪯ τh ≡ true holds;

• ΓH⃗h⃗ ⊢ a ∶ τ for some τ . That is, that def ΓH⃗h⃗ in ∃α. La M ⪯ α ≡ true holds.

However, typechecking is not sufficient: type reconstruction should also return an explicitly-
typed term M than can in turn be elaborated into some term N of System F, i.e. such that
Γ ⊢ a↝M ∶ τ .

Type reconstruction Type reconstruction can be performed as described in §8.3.4 by
keeping persistent constraints during resolution. As in ML, there may be several ways to re-
construct programs, which we may solve by requesting explicitly-typed terms to be canonical
and principal.

Coherence When the source language is implicitly-typed, the elaboration from the source
language into System F code is the composition of type reconstruction with elaboration of
explicitly typed terms.

Hence, even though the elaboration is coherent for explicitly-typed terms, this may not
be true for implicitly-typed terms. There are two potential problems:

• The language has principal constrained type schemes, but the elaboration requests
unconstrained type schemes.

• Ambiguities could be hidden (and missed) by non principal type reconstructions.

Toplevel unresolved constraints The restrictions we put on class declarations and in-
stance definitions ensure that the type system has principal constrained schemes (and prin-
cipal typing reconstructions).

However, this does not imply that there are principal unconstrained type schemes. For
example, assume that the principal constrained type scheme is ∀α[K α]. α → α and the
typing environment contains two instances of K G1 and K G2 of class K. Constraint-free
instances of this type scheme are G1→ G1 and G2→ G2 but ∀α.α → α is certainly not one.
Not only neither choice is principal, but worse, the two choices would elaborate in expressions
with different (and non-equivalent) semantics. Elaboration should fail in such cases.
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This problem may appear while typechecking the final expression a in ΓH⃗h⃗ that request
an unconstrained type scheme ∀α. τ It may also occur when typechecking the body of an
instance definition h, which requests an explicit type scheme ∀β⃗[Q⃗]. τ in ΓH⃗h⃗ or, equivalently,

a type τ in ΓH⃗h⃗, β⃗, Q⃗. Consider, for example:

class Num (X) { 0 : X, (+) : X → X → X }
inst Num Int { 0 = Int.(0), (+) = Int.(+} }
inst Num Float { 0 = Float.(0), (+) = Float.(+} }
let zero = 0 + 0;

The type of zero or zero + zero is ∀α[Num α]. α while several class instances are possible
for Num X . The semantics of the program is thus undetermined. Another example is:

class Readable (X) { read : descr → X }
inst Readable (Int) { read = read int }
inst Readable (Char) { read = read char }
let v = read (open in())

The type of v is ∀α[Readable α].unit → α—and several classes are possible for Readable α.
This program is also rejected.

Inaccessible constraint variables In the previous examples, the incoherence arise from
the obligation to infer unconstrained toplevel type schemes. A similar problem may occur
with isolated constraints in a type scheme. For instance, assume that let x = a1 in a2
elaborates to let x ∶ ∀α[K α]. int → int = N1 in N2. All applications of x in N2 will lead to
an unresolved constraint K α for some fresh α since neither the argument nor the context of
this application can determine the value of the type parameter α. Still, a dictionary of type
K τ must be given before N1 can be executed.

Although x may not be used in N2, in which case, all elaborations of the expression may
be coherent, we may still raise an error, since an unusable local definition is certainly useless,
hence probably a programmer’s mistake. The error may then be raised immediately, at the
definition site, instead of at every use of x.

The open-world view When there is a single instance K G for a class K that appears in
an unresolved or isolated constraint K α, the problem formally disappears, as all possible
type reconstructions are coherent.

However, we may still not accept this situation, for modularity reasons, as an extension
of the program with another non-overlapping correct instance declaration would make the
program become ambiguous.

Formally, this amounts to saying that the program must be coherent in its current form,
but also in all possible extensions with well-typed class definitions. This is taking an open-
world view.
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On the importance of principal type reconstruction A source of incoherence is
when some class constraint remains undetermined. Some (usually arbitrary) less general
elaboration could cover the problem—but the source program would remain incoherent.
Hence, in order to detect programs with ambiguous semantics, it is essential that type
reconstruction is principal. A program can still be specialized but only after it has been
proved coherent. This freedom may actually be very useful for optimizations. Consider for
example, the program

let twice = λ(x) x + x in twice (twice 1)

whose principal type reconstruction is:

let twice : ∀(X) [ Num X ] X → X = Λ(X) [Num X] λ(x) x + x in

twice Int (twice Int) 1

This program is coherent. It’s natural elaboration is

let twice X NumX = λ(x : X) x (plus NumX) x in

twice Int NumInt (twice Int NumInt 1)

However, it can also be elaborated to

let twice = λ(x : Int) x (plus NumInt) x in twice (twice 1)

avoiding the generalization of twice; moreover, the overloaded application plus NumInt can
now be statically reduced, leading to:

let twice = λ(x : Int) x Int.(+) x in twice (twice 1)

Overloading by return types All previous ambiguous examples are overloaded by their
return types: For instance, in 0 : X, the value 0 has an overloaded type that is not constraint
by the argument; in read : descr → X, the return type is under specified, independently of
the type of the argument.

To avoid such cases, Odersky et al. has suggested to prevent overloading by return types
by requesting that overloaded symbols of a class K α have types of the form α → τ . The
above examples would then be rejected by this definition.

In fact, disallowing overloading by return types—in addition to our previous restrictions—
suffices to ensure that all well-typed programs are coherent. Moreover, untyped programs can
then be given a direct semantics (which of course coincides with the semantics obtained by
elaboration). Many interesting examples of overloading actually fits in this restricted subset.
However, overloading by returns types is also found useful in several cases and Haskell allows
it, using default rules to resolve ambiguities. This is still an arguable design choice in the
Haskell community.
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9.4 Variations

Changing the representation of dictionaries An overloaded method call u of a class K
is elaborated into an application u q of u to a dictionary expression q of class K. The function
u and the representation of the dictionary are both defined in the elaboration of the class K
and need not be known at the call site. This leaves some flexibility in the representation of
dictionaries. For example, we have used records to represent dictionaries, but tuples would
have been sufficient.

Going one step further, dictionaries need not contain the methods themselves but enough
information from which the methods may be recovered. For example, dictionaries may be
replaced by a derivation tree that proves the existence of the dictionary. This derivation
tree may be concisely represented and passed around instead of the dictionary itself and be
used and interpreted at at the call site to dispatch to the appropriate implementation of the
method. Such an approach has been followed by Furuse (2003b).

This change of representation can also elegantly be explained as a type preserving com-
pilation of dictionaries called concretization and described in Pottier and Gauthier (2006).
It is somehow similar to defunctionalization and also requires that the target language is
equipped with GADT (Guarded Abstract Data Types).

Multi-parameter type classes To allow multi-parameter type classes, we may extend
the syntax of class definitions as follows:

class P⃗ ⇒ K α⃗ {ρ}

where free variables of P⃗ must be bound in α⃗. The current framework can easily be extended
to handle multi-parameter type classes. For example, Collections may be represented by a
type C whose elements are of type E and defined as follows:

class Collection C E { find : C → E → Option(E), add : C → E → C }
inst Collection (List X) X { find = List.find, add = λ(c)λ(e) e::c }
inst Collection (Set X) X { ... }

However, the class Collection does not provide the intended intuition that collections are
homogeneous. Indeed, we may define:

let add2 c x y = add (add c x) y
add2 : ∀(C, E, E’) Collection C E, Collection C E’ ⇒ C → E → E’ → C

This is accepted assuming that collections are heterogeneous. Although, this is unlikely the
case, no contradiction can be assumed. However, if collections are indeed homogeneous,
no instance of heterogeneous collections will ever be provided and the above code is overly
general. As a result, uses of collections have unresolved often parameters, which would be
resolved, if we had a way to tell the system that collections are homogeneous.

The solution is to add a clause to say that the parameter C determines the parameter E:
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class Collection C E | C → E { ... }

Then, because C determines E, the two instances E and E′ must be equal in C. Type
dependencies also reduce overlapping between class declarations, since fewer instances of a
class make sense. Hence they also allow example that would have to be rejected if type
dependencies could not be expressed.

Associated types Associated types are an alternative to functional dependencies. They
allow a class to declare its own type functions. Correspondingly, instance definitions must
provide a definition for all associated types—in addition to values for overloaded symbols.

For example, the Collection class becomes a single parameter class with an associated
type definition:

class Collection E {
type C : ∗

find : C → E → Option E

add : C → E → C

}
inst Collection Eq X ⇒ Collection X {type C = List E, ... }
inst Collection Eq X ⇒ Collection X {type C = Set E, ... }

Associated types increase the expressiveness of type classes.

Overlapping instances In practice, overlapping instances may be desired! This seems
in contradiction with the fact that overlapping instances are a source of incoherence. For
example, one could provide a generic implementation of sets provided an ordering relation on
elements, but also provide a more efficient version for bit sets. When overlapping instances
are allowed, further rules are needed to disambiguate the overloading resolution and preserve
coherence. For instance, priority rules may be used. An interesting resolution strategy is to
give priority to the most specific match.

However, the semantics depend on some particular resolution strategy and becomes more
fragile. See Jones et al. (1997) for a discussion. See also Morris and Jones (2010) for a recent
new proposal. For example, the definitions:

inst Eq(X) { equal = (=) }
inst Eq(Int) { equal = primEqInt }

could elaborate into the creation of both a generic dictionary and a specialized one.

let Eq X : Eq X= { equal = (=) }
let EqInt : Eq Int = { equal = primEqInt }

Then, EqInt or Eq Int are two dictionaries of type Eq Int but with different implementations.
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Restriction that are harder to lift We have made several restrictions to the definition
of type classes. Some can be lifted at the price of some tolerable complication. Relaxing
other restrictions, even if it could make sense in theory, would raise serious difficulties in
practice.

For example, allowing constrained type schemes of the form K τ instead of the restricted
form K α would affect many aspects of the language and it would becomes much more difficult
to control the termination of constrained resolution and of the elaboration of dictionaries.

Allowing class instances of the form inst ∀β⃗. P⃗ ⇒ K τ {ρ} where τ is G τ⃗ and not just
G β⃗, it would become difficult to check non-overlapping of class instances.

Alternative to type classes

Implicit values

Implicit values are a mecanism that allows to build values from types. The implies a way
to populate an environement of definitions that can be used to build implicit values and a
mecanism to introduce place holders where values should be build from their types.

Implicits values have been used in the language Scala for implicit conversions Sca (but
they can do more). An extension of OCaml with implicit values is beeing prototyped.
Implicit values have also been proposed as an alternative to Haskell type classes Oliveira et al.
(2012) and more recently formalized in COCHIS, a calculus of implicits Schrijvers et al.
(2017).

Module-based type classes

Modular type classes Dreyer et al. (2007) mimic type classes at the level of modules, but
with explicit module abstractions and module applications.

Modular implicits ? extends this idea by allowing implicit module arguments. Module
arguments are thus inferred, but module abstractions remain explicits, which interestingly,
allows for local scoping of overloading. They also extend the module langage to increase
expressiveness.

Conclusions

Methods as overloading functions One approach to object-orientation is to see meth-
ods as overloaded functions. Then, objects carry class tags that can be used at runtime to find
the best matching definition. This approach has been studied in detail by Millstein and Chambers
(1999). See also Bonniot (2002, 2005).
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Summary Static overloading is not a solution for polymorphic languages. Dynamics over-
loading must be used instead. The implementation of type classes in the Haskell language
has proved quite effective: it is a practical, general, and powerful solution to dynamic over-
loading. Moreover, it works relatively well in combination with ML-like type inference.

However, besides the simplest case of overloading on which every one agrees, some useful
extensions often come with serious drawbacks, and they is not yet an agreement on the best
design compromises. In Haskell, the design decisions have often been in favor of expressive-
ness, but then loosing some of the properties and the canonicity of the minimalistic initial
design.

Dynamic overloading is a typical and very elegant use of elaboration. The programmer
could in principle write the elaborated program manually, explicitly building and passing
dictionaries around, but this would be cumbersome, tricky, error prone, and it would sig-
nificantly obfuscate the code. Instead, the elaboration mechanism does this automatically,
without arbitrary choices (in the minimal design) and with only local transformations that
preserve the structure of the source program.

Further reading For an all-in-one explanation of Haskell-like overloading, see The essence
of Haskell by Odersky et al. See also the Jones’s monograph Qualified types: theory and
practice. For a calculus of overloading see the ML& calculus proposed by Castagna (1997).

Recently, type classes have also been added to Coq Sozeau and Oury (2008). Interest-
ingly, the elaboration of proof terms need not be coherent which makes it a simpler situation
for overloading.
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