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Chapter 7

Logical Relations

7.1 Introduction

So far, most proofs involving terms have proceeded by induction on typing derivations, or
equivalently, on the structure of terms.

Logical relations are relations between well-typed terms defined inductively on the struc-
ture of types. They allow proofs between terms by induction on the structure of types.

Logical relations may be n-ary. However, we mostly use unary and binary logical relations.
Unary logical relations are typed-indexed predicates on terms or, equivalently, type-indexed
sets of terms. They are typically used to give the semantics of types as sets of terms, and as
a particular case, prove type soundness or termination of reduction. Binary logical relations
are type-indexed relations, or type-indexed sets of pairs of terms. They are typically used
to prove equivalence of programs and non-interference properties.

Logical relations are a common proof method for programming languages.

7.1.1 Parametricity

Parametricity is a consequence of polymorphism: polymorphic functions cannot examine
the argument of polymorphic types, and therefore must treat them parametrically. This
often implies that polymorphic functions have actually relatively few inhabitants—up to βη

convertibility. Thus, a polymorphic type can reveal a lot of information about the terms
that inhabit it.

Finding inhabitants of polymorphic functions

For example, what can do a term of type ∀α.α → int ? The function cannot examine its
argument. Therefore, it must always return the same integer, that is, it must be a constant
function. For example, it could be λx.n, λx. (λy. y) n, λx. (λy.n) x, etc. What do they all
have in common? They are all βη-equivalent to a term of the form λx.n

129
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What can do a term of type ∀α.α → α? Well it receives an argument V of type α and
must return a value of type α—but cannot examine α. Thus, it must eventually return v,
i.e. it behaves as λx.x—again up to βη equivalence.

A term type of type ∀αβ.α→ β → α is not very different, it additionally receives a value
of type w of type β, but there is no way v and w can interact. So that function must also
return v, i.e. it behaves as λx.λy. x.

Now, a term of type ∀α.α → α → α receives two arguments v and w of type α and must
return a value of type α. Again, the arguments cannot interact, as we do not have any
operation available of type α. Hence it must return either v or w. That is, it behaves either
as λx.λy. x or as λx.λy. y—up to βη conversion.

Theorems for free

The type of a polymorphic function may also reveal a “free theorem” about its behavior!

For example, what properties may we learn from a function whoami of type ∀α. list α →
list α?

• the length of the result depends only on the length of the argument;

• all elements of the results are elements of the argument.

• the choice (i, j) of pairs such that i-th element of the result is the j-th element of the
argument does not depend on the element itself;

• the function is preserved by a transformation of its argument that preserves the shape
of the argument:

∀f, x, whoami (map f x) =map f (whoami x)

What property may we learn for the list sorting function? From it type:

sort ∶ ∀α. (α → α → bool) → list α → list α

we can actually deduce that if f is order-preserving, then sorting commutes with map.
Formally:

(∀x, y, cmp2 (f x) (f y) = cmp1 x y) Ô⇒
∀ℓ, sort cmp2 (map f ℓ) = map f (sort cmp1 ℓ)

Such properties can be used to significantly reduce testing: in particular, if sort is correct on
lists of integers, then it is correct on any list. Note that there are many other inhabitants of
the type of sort, (e.g., a function that sorts in reverse order, or a function that removes or
adds duplicates), but they all satisfy this free theorem.
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A few readings

Parametricity has been widely studied by Reynolds 1983. It has been popularized by
Wadler 1989; 2007, in the ML community, with his Theorems for free paper paper which
contains the example of the list sorting function.

An account based on an operational semantics is offered by Pitts 2000.

The application to testing has been generalized by Bernardy et al. (2010) who show how
testing any given polymorphic function can be restricted to testing it on (possibly infinitely
many) particular values at some particular types.

7.2 Normalization of simply-typed λ-calculus

In general, types also ensure termination of programs—as long as no form of recursion in
types or terms has been added. Even if one wishes to add recursion explicitly later on, it is
an important property of the design that non-termination is originating from the constructs
for recursion only and could not occur without them.

The simply-typed λ-calculus is also lifted at the level of types in richer type systems such
as System F ω where the language of types is itself a simply-typed lambda-calculus and the
decidability of type-equality depends on the termination of the reduction at the type level.

Proving termination of reduction in fragments of the λ-calculus is often a difficult task
because reduction may create new redexes or duplicate existing ones. However, the proof of
termination for the simply-typed λ-calculus is simple enough and interesting to be presented
here. Notice that our presentation of simply-typed λ-calculus is equipped with a call-by-value
semantics, while proofs of termination are usually done with a strong evaluation strategy
where reduction can occur in any context.

We follow the proof schema of Pierce (2002), which is a modern presentation in a call-
by-value setting of an older proof by Hindley and Seldin (1986). The proof method, which
is now a standard one, is due to Tait (1967).

The idea is to first build the set EJτK of terminating closed terms of type τ , and then
show that any term of type τ is actually in EJτK, by induction on terms. Unfortunately,
stated as such, this hypothesis is too weak. The difficulty in such cases is usually to find
a strong enough induction hypothesis. The solution in this case is to require that terms in
EJτ1 → τ2K not only terminate but also terminate when applied to any term in EJτ1K.

We take the call-by-value simply-typed λ-calculus with primitive booleans and condi-
tional. Write B the type of booleans and tt and ff for true and false.

Definition 2 We recursively define VJτK and EJτK, subsets of closed values and closed ex-
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pressions of (ground) type τ by induction on types as follows:

VJBK
△== {tt,ff}

VJτ1 → τ2K
△== {λx ∶τ1.M ∣ ∀V ∈ VJτ1K, (λx ∶τ1.M) V ∈ EJτ2K}

EJτK △== {M ∣ ∃V ∈ VJτK, M ⇓ V }

We write M ⇓ N as a shorthand for M Ð→∗ N . The goal is to show that any closed
expression of type τ is in EJτK.

Remark Although usual with logical relations, well-typedness is actually not required here
and omitted: otherwise, we would have to carry unnecessary type-preservation proof obliga-
tions.

The set EJτK can be seen as a predicate, i.e. a unary relation. It is called a (unary)
logical relation because it is defined inductively on the structure of types.

Immediate properties

• VJτK ⊆ EJτK by definition.

• EJτK is closed by inverse reduction—by definition, i.e. If M ⇓ N and N ∈ EJτK then
M ∈ EJτK.

• EJτK is closed by reduction. By confluence (since the reduction is deterministic), if
M ⇓ N and M ⇓ V , then N ⇓ V .

• For any term in EJτK, the reduction of M terminates—by definition of EJτK.

Normalization Therefore, it just remains to show that any term of type τ is in EJτK:

Lemma 30 If ∅ ⊢M ∶ τ , then M ∈ EJτK.

The proof is by induction on (the typing derivation of) M . However, the case for abstraction
requires some similar statement, but for open terms. We need to strengthen the lemma, i.e.
also give a semantics to open terms, which can be given by abstracting over the semantics
of their free variables, interpreting free term variables of type τ as closed values in VJτK.

We define a semantic judgment for open terms Γ ⊧ M ∶ τ so that Γ ⊢ M ∶ τ implies
Γ ⊧M ∶ τ and ∅ ⊧M ∶ τ means M ∈ EJτK.

We interpret environments Γ as closing substitutions γ, i.e. mappings from term variables
to closed values : We write γ ∈ GJΓK to mean dom(γ) = dom(Γ) and γ(x) ∈ VJτK for all
x ∶ τ ∈ Γ. Then, we define

Γ ⊧M ∶ τ
def

⇐⇒ ∀γ ∈ GJΓK, γ(M) ∈ EJτK
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Theorem 15 (fundamental lemma) If Γ ⊢M ∶ τ then Γ ⊧M ∶ τ .

Corollary 31 (termination of well-typed terms) If ∅ ⊢M ∶ τ then M ∈ EJτK.
That is, closed well-typed terms of type τ evaluates to values of type τ .

Proof: By induction on the typing derivation

Routine cases

Case Γ ⊢ tt ∶ B or Γ ⊢ ff ∶ B: by definition, tt,ff ∈ VJBK and VJBK ⊆ EJBK.

Case Γ ⊢ x ∶ τ : γ ∈ GJΓK, thus γ(x) ∈ VJτK ⊆ EJτK

Case Γ ⊢M1 M2 ∶ τ :

By inversion, Γ ⊢M1 ∶ τ2 → τ and Γ ⊢M2 ∶ τ2.

Let γ ∈ GJΓK. We have γ(M1 M2) = (γM1) (γM2). By IH, we have Γ ⊧ M1 ∶ τ2 → τ and
Γ ⊧M2 ∶ τ2. Thus γM1 ∈ EJτ2 → τK (1) and γM2 ∈ EJτ2K (2). By (2), there exists V ∈ VJτ2K
such that γM2 ⇓ V . Thus (γM1) (γM2) ⇓ (γM1) V ∈ EJτK by (1). Then, (γM1) (γM2), i.e.
γ(M1 M2) is in EJτK by closure by inverse reduction.

Case Γ ⊢ if M then M1 elseM2 ∶ τ : By cases on the evaluation of γM for γ in GJΓK.

The interesting case

Case Γ ⊢ λx ∶τ1.M ∶ τ1 → τ :

Assume γ ∈ GJΓK. We must show that γ(λx ∶ τ1.M) ∈ EJτ1 → τK (1) That is, λx ∶ τ1. γM ∈

VJτ1 → τK (we may assume x ∉ dom(γ) w.l.o.g.) Let V ∈ VJτ1K, it suffices to show (λx ∶
τ1. γM) V ∈ EJτK (2). We have (λx ∶τ1. γM) V ⇓ (γM)[x ↦ V ] = γ′M where γ′ is γ[x ↦ V ] ∈
GJΓ, x ∶ τ1K (3). Since Γ, x ∶ τ1 ⊢M ∶ τ , we have Γ, x ∶ τ1 ⊧M ∶ τ by IH. Therefore by (3), we
have γ′M ∈ EJτK. Since EJτK is closed by inverse reduction, this proves (2) which finishes the
proof of (1).

Variations We have shown both termination and type soundness, simultaneously. If we
had a fix point, termination would not hold, but type soundness would still hold. The proof
could then be modified by choosing:

EJτK = {M ∶ τ ∣ ∀N,M ⇓ N Ô⇒ (N ∈ VJτK ∨ ∃N ′,N Ð→ N ′)}

Exercise 41 Show type soundness with this semantics.
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7.3 Observational equivalence in simply-typed λ-calculus

The rest of these course notes are largely inspired by course notes Practical foundations
for programming languages by Harper (2012) and the Introduction to Logical Relations by
Skorstengaard (2019). You may also read earlier reference papers:

• Types, Abstraction and Parametric Polymorphism Reynolds (1983)

• Parametric Polymorphism and Operational Equivalence Pitts (2000).

• Theorems for free! Wadler (1989).

We assume a call-by-value operational semantics (instead of call-by-name in Harper (2012)).

Program equivalence Observational equivalence is answering the question: when are two
programs M and N are equivalent?

We should at least include the case where one program reduces to the other, or even,
more generally, when both programs reduce to the same value. But is this sufficient? Unfor-
tunately not: what if M and N are functions—hence values: Aren’t λx. (x+x) and λx.2∗x
also equivalent? Yes, they are. Indeed, two functions are observationally equivalent if when
applied to equivalent arguments, they lead to observationally equivalent results. Still, are we
general enough? How can we tell?

We can only observe the behavior of full programs, i.e. closed terms of some computational
type, such as Booleans B (the only one in our setting). We thus define:

Definition 3 (Behavioral equivalence) Two closed programs M and N of the same base type
are behaviorally equivalent and we write M ≃ N iff there exists V such that M ⇓ V and
N ⇓ V .

To compare programs at other types, we place them in arbitrary closing contexts. Since we
often manipulate pairs of well-typed programs, we write Γ ⊢M,N ∶ τ as an abbreviation for
Γ ⊢M ∶ τ ∧ Γ ⊢N ∶ τ .

Definition 4 (observational equivalence) Assume Γ ⊢M,N ∶ τ . We say that M and N are
observationally equivalent and we write Γ ⊢ M ≅ N ∶ τ if there are behaviorally equivalent
when placed in any closing context at some base type. That is,

Γ ⊢M ≅ N ∶ τ △== ∀C ∶ (Γ▷ τ) ↝ (∅▷ B), C[M] ≃ C[N]
Definition 5 (Typing of context)

C ∶ (Γ▷ τ)↝ (∆▷ σ) def

⇐⇒ (∀M, Γ ⊢M ∶ τ Ô⇒ ∆ ⊢ C[M] ∶ σ)
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There is an equivalent definition given by a set of typing rules. This is needed to prove some
properties by induction on the typing derivations.

We write M ≅τ N as an abbreviation for ∅ ⊢M ≅ N ∶ τ

Lemma 32 Observational equivalence is the coarsest consistent congruence, where:

• a relation ≡ is consistent if ∅ ⊢M ≡ N ∶ B implies M ≃ N .

• a relation ≡ is a congruence if it is an equivalence and is closed by context, i.e.

Γ ⊢M ≡ N ∶ τ ∧ C ∶ (Γ▷ τ)↝ (∆▷ σ) Ô⇒ ∆ ⊢ C[M] ≡ C[N] ∶ σ

Proof:

Consistent : by definition, using the empty context.

Congruence: by compositionality of contexts.

Coarsest : Assume ≡ is a consistent congruence. Assume Γ ⊢M ≡ N ∶ τ holds and show that
Γ ⊢M ≅ N ∶ τ holds (1).
Let C ∶ (Γ▷ τ)↝ (∅▷B) (2). We must show that C[M] ≃ C[N].
This follows by consistency applied to Γ ⊢ C[M] ≡ C[N] ∶ B which follows by congruence from
(1) and (2).

Problem with Observational Equivalence Observational equivalence is too difficult to
test: Because of quantification over all contexts (too many for testing). but many contexts
will do the same experiment.

The solution is to take advantage of types to reduce the number of experiments by defining
and testing the equivalence on base types and propagating the definition mechanically at
other types.

Logical relations provide the infrastructure for conducting such proofs.

7.4 Logical relations in simply-typed λ-calculus

7.4.1 Logical equivalence for closed terms

Unary logical relations interpret types by predicates on (i.e. sets of) closed values of that
type. Binary relations interpret types by binary relations on closed values of that type, i.e.
sets of pairs of related values of that type.

That is, VJτK is a subset of Val(τ) × Val(τ) and EJτK, the closure of VJτK by inverse
reduction is a subset of Expressionsτ × Exp(τ).
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Definition 6 (Logical equivalence for closed terms) We recursively define two relations VJτK
and EJτK between values of type τ and expressions of type τ by

VJBK
△== {(tt, tt), (ff ,ff)}

VJτ → σK
△== {(V1, V2) ∣ V1, V2 ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, (V1 W1, V2 W2) ∈ EJσK}
EJτK △== {(M1,M2) ∣M1,M2 ∶ τ ∧

∃(V1, V2) ∈ VJτK, M1 ⇓ V1 ∧M2 ⇓ V2}
Notice the (highlighted) mutual recursion between VJ⋅K and EJ⋅K. In the following we will
leave the typing constraint in gray implicit, i.e. we will treat them as global conditions
for sets VJ⋅K and EJ⋅K. We also write M1 ∼τ M2 for (M1,M2) ∈ EJτK and V1 ≈τ V2 for(V1, V2) ∈ VJτK.
Non-termination In a language with non-termination, we change the definition of EJτK
to

EJτK △
== {(M1,M2) ∣M1,M2 ∶ τ ∧

(∀V1, M1 ⇓ V1 Ô⇒ ∃V2, M2 ⇓ V2 ∧ (V1, V2) ∈ VJτK)
∧ (∀V2, M2 ⇓ V2 Ô⇒ ∃V1, M1 ⇓ V1 ∧ (V1, V2) ∈ VJτK)}

Remark In VJσ → σK, all values are functions. Hence, we could have equivalently defined:

VJτ → σK
△== {((λx ∶τ.M1), (λx ∶τ.M2)) ∣ (λx ∶τ.M1), (λx ∶τ.M2) ⊢ τ → σ ∧

∀(W1,W2) ∈ VJτK, ((λx ∶τ.M1)W1, (λx ∶τ.M2)W2) ∈ EJσK}
This formulation is more explicit, but less concise.

Properties of logical equivalence for closed terms

Closure by reduction By definition, since reduction is deterministic: Assume M1 ⇓ N1

and M2 ⇓ N2 and (M1,M2) ∈ EJτK, i.e. there exists (V1, V2) ∈ VJτK (1) such that Mi ⇓ Vi.
Since reduction is deterministic, we must have Mi ⇓ Ni ⇓ Vi. This, together with (1), implies(N1,M2) ∈ EJτK.
Closure by inverse reduction Immediate, by construction of EJτK.

Corollaries

• If (M1,M2) ∈ EJτ → σK and (N1,N2) ∈ EJτK, then (M1 N1,M2 N2) ∈ EJσK.
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• To prove (M1,M2) ∈ EJτ → σK, it suffices to show (M1 V1,M2 V2) ∈ EJσK for all(V1, V2) ∈ VJτK.
Consistency (∼B) ⊆ (≃).

Immediate, by definition of EJBK and VJBK ⊆ (≃).
Lemma 33 (Symmetry and transitivity) Logical equivalence is symmetric and transi-
tive (at any given type).

Notice that reflexivity is not at all obvious ! This will be the fundamental lemma of logical
relations.

Proof: We show it simultaneously for ∼τ and ≈τ by induction on type τ . For ∼τ , the proof is
immediate by transitivity and symmetry of ≈τ . For ≈τ , it goes as follows:

Case τ is B: the result is immediate by symmetry and transitivity of behavioral equivalence.

Case τ is τ → σ:

By IH, symmetry and transitivity hold at types τ and σ.

For symmetry, assume V1 ≈τ→σ V2 (1), we must show V2 ≈τ→σ V1. Assume W1 ≈τ W2. We
must show V2 M1 ∼σ V1 W2 (2). We have W2 ≈τ W1 by symmetry at type τ . By (1), we have
V2 W2 ∼σ V1 W1 and (2) follows by symmetry of ∼ at type σ.

For transitivity, assume V1 ≈τ→σ V2 (3) and V2 ≈τ→σ V3 (4). To show V1 ≈τ→σ V3, we assume
W1 ∼τ W3 and show V1 W1 ∼σ V3 W3 (5). By (3), we have V1 W1 ∼τ2 V2 W3 (6). By symmetry
and transitivity of ≈τ , we get W3 ≈τ W3 (7). By (4), we have V2 W3 ∼σ V3 W3 (8). Then (2)
follows by transitivity of ∼σ applied to (6) and (8).

Remark: that (7) is not using reflexivity, which has not been proved yet: this equality follows
from the fact that W3 is already known to be in relation with W1.

7.4.2 Logical equivalence for open terms

When Γ ⊢M1,M2 ∶ τ , we wish to define a judgment Γ ⊢M1 ∼ M2 ∶ τ to mean that the open
terms M1 and M2 are equivalent at type τ .

The solution is to interpret program variables of dom(Γ) by pairs of related values, and
typing contexts Γ by sets of bisubstitutions γ mapping variable type assignments to pairs of
related values at the given type:

GJ∅K
△
== {∅}

GJΓ, x ∶ τK △
== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓK ∧ (V1, V2) ∈ VJτK}

Given a bisubstitution γ, we write γi for the substitution that maps x to Vi whenever γ maps
x to (V1, V2).
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Definition 7 (Logical equivalence for open terms)

Γ ⊢M1 ∼ M2 ∶ τ
def

⇐⇒ { Γ ⊢M1,M2 ∶ τ

∀γ ∈ GJΓK, (γ1M1, γ2M2) ∈ EJτK
We also write ⊢M1 ∼M2 ∶ τ or M1 ∼τ M2 for ∅ ⊢M1 ∼ M2 ∶ τ .

Lemma 34 Open logical equivalence is symmetric and transitive.

Proof: The Proof is immediate by the definition and the symmetry and transitivity of closed
logical equivalence.)

Theorem 16 (Reflexivity) If Γ ⊢M ∶ τ , then Γ ⊢M ∼M ∶ τ .

The is also called the fundamental lemma of logical relations. The proof is by induction on
the typing derivation, using compatibility lemmas.

Compatibility lemmas

C-True

Γ ⊢ tt ∼ tt ∶ bool
C-False

Γ ⊢ ff ∼ ff ∶ bool

C-If

Γ ⊢M1 ∼M2 ∶ B Γ ⊢ N1 ∼ N2 ∶ τ Γ ⊢ N ′1 ∼ N ′2 ∶ τ
Γ ⊢ if M1 then N1 else N

′
1 ∼ if M2 then N2 else N

′
2 ∶ τ

C-Var

x ∶ τ ∈ Γ

Γ ⊢ x ∼ x ∶ τ

C-Abs

Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ

Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ

C-App

Γ ⊢M1 ∼ M2 ∶ τ → σ Γ ⊢N1 ∼ N2 ∶ τ

Γ ⊢M1 N1 ∼ M2 N2 ∶ σ

Proof: Each case can be shown independently.

Rule C-Abs: Assume Γ, x ∶ τ ⊢M1 ∼ M2 ∶ σ (1). We show Γ ⊢ λx ∶τ.M1 ∼ λx ∶τ.M2 ∶ τ → σ.
Let γ be in GJΓK. We show (γ1(λx ∶ τ.M1), γ2(λx ∶ τ.M2)) ∈ VJτ → σK. Let (V1, V2) be in
VJτK. It suffices to show that (γ1(λx ∶τ.M1) V1, γ2(λx ∶τ.M2) V2) ∈ EJσK (2).

Let γ′ be γ,x ↦ (V1, V2). We have γ′ in GJΓ, x ∶ τK. Thus, from (1), we have (γ′
1
M1, γ

′
2
M2)

in EJσK, which proves (2), since EJσK is closed by inverse reduction and γi(λx ∶τ.Mi) Vi = λx ∶
τ. γi(Mi) Vi ⇓ γiMi[x ↦ Vi] = γ

′
iMi.

Rule C-App and C-If: By induction hypothesis and the fact that substitution distributes over
application.

We must show Γ ⊢ M1 N1 ∼ M2 M2 ∶ σ (3). Let γ be in GJΓK. From the premises Γ ⊢
M1 ∼ M2 ∶ τ → σ and Γ ⊢ N1 ∼ N2 ∶ τ , we have (γ1M1, γ2M2) in EJτ → σK and (γ1N1, γ2N2)
in EJτK. Therefore (γ1M1 γ1N1, γ2M2 γ2N2), i.e. (γ1(M1 N1), γ2(M2 N2)) ∈ EJσK in EJσK,
which proves (3).
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Rule C-If: Similar to the case of application.
We show Γ ⊢ if M1 then N1 else N

′
1
∼ if M2 then N2 else N

′
2
∶ τ . Assume γ in GJγK. We show

(γ1(if M1 then N1 else N
′
1), γ2(if M2 then N2 else N

′
2)) in EJτK (1).

From the premise Γ ⊢ M1 ∼ M2 ∶ B, we have (γ1M1, γ2M2) ∈ EJBK. Therefore M1 ⇓ V and
M2 ⇓ V where V is either tt or ff.

Case V is tt:. Then, (if γiMi then γiNi else γiN
′
i) ⇓ γiNi, i.e. γi(if Mi then Ni else N

′
i) ⇓ γiNi.

From the premise Γ ⊢ N1 ∼ N2 ∶ τ , we have (γ1N1, γ2N2) in EJτK and (1) follows by closure
by inverse reduction.

Case V is ff: similar.

Rule C-True, C-False, and C-Var: are immediate.

Proof: (of reflexivity)

By induction on the proof of Γ ⊢M ∶ τ . All cases are easy. We must show Γ ⊢M ∼M ∶ τ :

Case M is tt or ff: Immediate by Rule C-True or Rule C-False

Case M is x: Immediate by Rule C-Var.

Case M is M ′ N : By inversion of the typing rule App, induction hypothesis, and Rule C-App.

Case M is λx ∶ τ.N : By inversion of the typing rule Abs, induction hypothesis, and Rule
C-Abs.

Properties of logical relations

Corollary 35 (equivalence) Open logical relation is an equivalence relation

Lemma 36 Logical equivalence is a congruence.
If Γ ⊢M ∼M ′ ∶ τ and C ∶ (Γ▷ τ)↝ (∆▷ σ), then ∆ ⊢ C[M] ∼ C[M ′] ∶ σ.

Proof: By induction on the proof of C ∶ (Γ▷ τ)↝ (∆▷ σ).

The proof is similar to the proof of reflexivity—but we need a syntactic definition of context
typing derivations (which we have omitted) to be able to reason by induction on the context
typing derivations.

Theorem 17 (Soundness of logical equivalence) Logical equivalence implies observa-
tional equivalence. If Γ ⊢M ∼M ′ ∶ τ then Γ ⊢M ≅ M ′ ∶ τ .
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Proof: Logical equivalence is a consistent congruence, hence included in observational equiv-
alence which is the coarsest such relation.

Theorem 18 (Completeness of logical equivalence) Observational equivalence of closed
terms implies logical equivalence. That is (≅τ) ⊆ (∼τ).

Proof: Proof by induction on τ .

Case B: In the empty context, by consistency, ≅B is a subrelation of ≃B which coincides
with ∼B.

Case τ → σ: By congruence of observational equivalence.

By hypothesis, we have M1 ≅τ→σ M2 (1). To show M1 ∼τ→σ M2, we assume V1 ≈τ V2 (2) and
then, it suffices to show M1 V1 ∼σ M2 V2 (3).

By soundness applied to (2), we have V1 ≅τ V2 from (4). By congruence with (1), we have
M1 V1 ≅σ M2 V2, which implies (3) by IH at type σ.

Exercise 42 (Application) Let not be λx ∶ B. if x then ff else tt and M and M ′ be the
expressions λx ∶B. λy ∶ τ. λz ∶ τ. if not x then y else z and λx ∶B. λy ∶ τ. λz ∶ τ. if x then z else y.
Show that M ≅B→τ→τ→τ M ′.

Solution: It suffices to show M V0 V1 V2 ∼τ M ′ V ′
0
V ′
1
V ′
2
whenever V0 ≈B V ′

0
(1) and V1 ≈τ

V ′
1
(2) and V2 ≈τ V ′2 (3). By inverse reduction, it suffices to show: if not V0 then V1 else V2 ∼τ

if V ′
0
then V ′

2
else V ′

1
(4). It follows from (1) that we have only two cases:

Case V0 = V ′0 = tt: Then not V0 ⇓ ff and thus M ⇓ V2 while M ′ ⇓ V2. Then (4) follows
from (3) and closure by inverse reduction.

Case V0 = V ′0 = ff: is symmetric.

7.5 Logical relations in F

We now extend observational and logical equivalence to System F.

τ ∶∶= . . . ∣ α ∣ ∀α. τ M ∶∶= . . . ∣ Λα.M ∣M τ

We write typing contexts ∆;Γ where ∆ binds type variables and Γ binds program variables.
Typing of contexts becomes C ∶ (∆;Γ▷ τ)↝ (∆′; Γ′▷ τ ′).
Definition 8 (observational equivalence) We defined ∆;Γ ⊢M ≅ N ∶ τ as

∀C ∶ (∆;Γ▷ τ)↝ (∅;∅▷ B), C[M] ≃ C[N]
We write M ≅τ N for ∅;∅ ⊢M ≅ N ∶ τ (in particular, when τ , M , and N are closed).
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7.5.1 Logical equivalence for closed terms

For closed terms (no free program variables), we now need to give the semantics of polymor-
phic types ∀α. τ . Unfortunately, it cannot be defined in terms of the semantics of instances
τ[α ↦ σ], since the semantics is defined by induction on types.

The work around is to define the semantics of terms with open types in some suitable
environment that interprets type variables by relations (sets of pairs of related values) of
closed types.

This relation will also be used to give the the semantics of type variables. A key point
however, it to interpret type variables by heterogeneous values, relating values of different
types on both sides.

We write ρ for closed types. Let R(ρ1, ρ2) be the set of relations on values of closed
types ρ1 and ρ2, that is, P(Val(ρ1)×Val(ρ2)). We optionally restrict all such relations to be
admissible, and we write R

♯(ρ1, ρ2) the subset of admissible relations, which in our setting
means closed by observational equivalence, i.e.

R ∈ R
♯(ρ1, ρ2) def

⇐⇒
∀(V1, V2) ∈ R, ∀W1,W2, W1 ≅ρ1 V1 ∧ W2 ≅ρ2 V2 Ô⇒ (W1,W2) ∈ R

Admissibility will be required for completeness of logical relations with respect to observa-
tional equivalence. However, it is not required for soundness of logical relations. Choosing
relations that are not admissible is sometimes easier when one only soundness of logical
relations is needed.

Example 2 Both R1

△== {(tt,0), (ff ,1)} and R2

△== {(tt,0)} ∪ {(ff, n) ∣ n ∈ Z⋆} are admissible

relations in R(B, int). By contrast R3

△== {(tt, λx ∶ τ.0), (ff , λx ∶ τ.1)} is in R(B, τ → int) but
it is not admissible. Indeed, taking M0

△== λx ∶ τ. (λz ∶ int. z) 0. we have M0 ≅τ→int λx ∶ τ.0 but(tt,M0) is not in R3.

Interpretation of type environments We interpret type variables α by triples of the
form (ρ1, ρ2,R) where R ∈ R(ρ1, ρ2). We write η for mappings of type variables to such
triples. Given a list of type variables ∆, we define the set DJ∆K of interpretations of ∆ as:

DJ∅K
△== {∅}

DJ∆, αK
△== {η,α↦ (ρ1, ρ2,R) ∣ η ∈ DJ∆K ∧R ∈ R(ρ1, ρ2)}
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Definition 9 (Logical equivalence for closed terms)

VJαKη
△== ηR(α)

VJ∀α. τKη
△== {(V1, V2) ∣ V1 ⊢ η1(∀α. τ) ∧ V2 ⊢ η2(∀α. τ) ∧

∀ρ1, ρ2,R ∈ R(ρ1, ρ2), (V1 ρ1, V2 ρ2) ∈ EJτKη,α↦(ρ1 ,ρ2,R)}
VJBKη

△
== {(tt, tt), (ff ,ff)}

VJτ → σKη
△== {(V1, V2) ∣ V1 ⊢ η1(τ → σ) ∧ V2 ⊢ η2(τ → σ) ∧

∀(W1,W2) ∈ VJτKη, (V1 W1, V2 W2) ∈ EJσKη}
EJτKη

△
== {(M1,M2) ∣M1 ∶ η1τ ∧M2 ∶ η2τ ∧

∃(V1, V2) ∈ VJτKη,M1 ⇓ V1 ∧M2 ⇓ V2}
GJ∅Kη

△== {∅}
GJΓ, x ∶ τKη

△== {γ,x ↦ (V1, V2) ∣ γ ∈ GJΓKη ∧ (V1, V2) ∈ VJτKη}
Notice that there are really just two new cases VJαKη and VJ∀α. τKη, as the other cases are
just adjusting the previous definition to carry around the environment η (which we have here
typeset in highlighted to emphasize the minor difference).

Notice again that ∀α. τ is interpreted by choosing two different types ρ1 and ρ2 and
therefore heterogeneous pairs of types in R(ρ1, ρ2) to interpret α.

Definition 10 (Logical equivalence for open terms) We say ∆;Γ ⊢M ∼ M ′ ∶ τ as

∧{ ∆;Γ ⊢M,M ′ ∶ τ

∀η ∈ DJ∆K, ∀γ ∈ GJΓKη, (η1(γ1M1), η2(γ2M2)) ∈ EJτKη
We also write M1 ∼τ M2 for ⊢ M1 ∼ M2 ∶ τ (i.e. ∅;∅ ⊢ M1 ∼ M2 ∶ τ). In this case, τ is
a closed type and M1 and M2 are closed terms of type τ ; hence, this coincides with the
previous definition (M1,M2) in EJτK∅, which may still be used as a shorthand for EJτK.

Lemma 37 (Compositionality)
Assume ∆ ⊢ σ and ∆, α ⊢ τ and η ∈ DJ∆K. Then, VJτ[α ↦ σ]Kη = VJτKη,α↦(η1σ, η2σ,VJσKη).

Proof: Let us write θ for [α ↦ σ] and ηα for η,α ↦ (η1σ, η2σ,R). We show VJτθKη = VJτKηα .
by induction on τ .

Case τ is α: The right-hand side VJαKηα is by definition ηαR(α), which is R(α), i.e. VJσKη
by hypothesis.

Case τ is σ → σ′: Since (σ → σ′)θ is σθ → σ′θ, the left-hand side is VJσθ → σ′θKη, i.e. by
definition:

{(V1, V2) ∣ ∀(W1,W2) ∈ VJσθKη, (V1 W1, V2 W2) ∈ EJσ
′θKη}
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By induction hypothesis, we may replaced VJσθKη by VJσKηα and EJσ′θKη by EJσ′Kηα which
gives exactly the definition of the right-hand side VJσ → σ′Kηα .

Case τ is B: Both sides are equal to VJBK.

Case τ is ∀β.σ: Assume α /= β. Since θ(∀α.σ) is then ∀α. θσ, the left-hand side is VJ∀α.σθKη
which is, by definition:

{(V1, V2) ∣ ∀ρ1, ρ2,∀S ∈R(ρ1, ρ2), (V1 ρ1, V2 ρ2) ∈ EJσθKη,β↦(ρ1,ρ2,S)}

Since R and S are relations between closed types the substitutions α ↦ (τ1, τ2,R) and
β ↦ (ρ1, ρ2, S) commute. Thus, by induction hypothesis, we may replace EJσθ,βKη by
EJσKηα,β↦(ρ1,ρ2,S), which gives the definition of the right-hand side.

Theorem 19 (Reflexivity, also called the fundamental lemma)
If ∆;Γ ⊢M ∶ τ then ∆;Γ ⊢M ∼M ∶ τ .

Admissibility is not required for the fundamental lemma.

Proof: By induction on the typing derivation of ∆;Γ ⊢M ∶ τ , using compatibility lemmas.

Lemma 38 (Compatibility lemmas) We redefined previous the lemmas to work in a typ-
ing context of the form ∆,Γ instead of Γ. In addition, we have:

C-Tabs

∆, α; Γ ⊢M1 ∼ M2 ∶ τ

∆;Γ ⊢ Λα.M1 ∼ Λα.M2 ∶ ∀α. τ

C-Tapp

∆;Γ ⊢M1 ∼M2 ∶ ∀α. τ ∆ ⊢ σ
∆;Γ ⊢M1 σ ∼M2 σ ∶ τ[α ↦ σ]

Proof: We show each rule independently. In each case, the typing conditions follow
immediately from the mimicking of the typing rules.

Rule C-Tabs: Assume ∆, α; Γ ⊢M1 ∼M2 ∶ τ (1). We show ∆;Γ ⊢ Λα.N ∼ Λα.N ∶ ∀α. τ .

Let η ∈ DJ∆K and γ ∈ GJΓKη. We show (η1(γ1(Λα.M1)), η2(γ2(Λα.M2))) ∈ EJ∀α. τKη , i.e.
((η1(γ1(Λα.M1))) ρ1, (η2(γ2(Λα.M2))) ρ2) ∈ EJτKη,α↦(ρ1,ρ2,R) (2), for any ground types ρ1
and ρ2 and R ∈R(ρ1, ρ2).

We may assume α ∉ dom(γ) w.l.o.g.. Then (ηi(γi(Λα.Mi))) ρi is equal to ηi((Λα.γiMi) ρi)
which reduces to η1(γi(Mi[α ↦ ρi])), i.e. η1(γ

′
i(Mi)) where γ′i is γi, α ↦ ρi.

Since γ′i ∈ DJ∆, αK, we have by (η1(γ
′
1(M1)), η2(γ

′
2(M2))) ∈ EJτKη,α↦(ρ1,ρ2,R) by IH applied

to (1), from which (2) follows by closure under inverse reduction.

Rule C-Tapp: Assume ∆;Γ ⊢M1 ∼M2 ∶ ∀α. τ (1) and ∆ ⊢ σ. We show ∆;Γ ⊢M1 σ ∼M2 σ ∶
τ[α ↦ σ]. Let η ∈ DJ∆K and γ ∈ GJΓKη. We just need to show (η1γ1(M1 σ), η2γ2(M2 σ))
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in EJτ[α ↦ σ]Kη (2). From (1), we have (η1γ1M1, η2γ2M2) in EJ∀α. τKη . By definition, this
implies ((η1γ1M1) (η1σ), (η2γ2M2) (η2σ)), i.e., (η1γ1(M1 σ), η2γ2(M σ)) is in EJτKη′ where
η′ is η,α ↦ (η1σ, η2σ,VJσKη), which exactly proves (2) by compositionality. (Notice, that by
corollary 40 this relation is admissible if we are working under the admissibility assumption.)

Other rules : their proof is quite similar to the same corresponding rule for closed types.

Theorem 20 (Soundness of logical equivalence) Logical equivalence implies implies ob-
servational equivalence. That is, if ∆;Γ ⊢M1 ∼M2 ∶ τ then ∆;Γ ⊢M1 ≅M2 ∶ τ .

Lemma 39 (Respect for observational equivalence) Under the admissibility condition,
If (M1,M2) ∈ EJτK♯η and M1 ≅η1τ N1 and M2 ≅η2τ N2, then (N1,N2) ∈ EJτK♯η.

Proof: By symmetry, we may just show it when N2 is M2, the case when N1 is M1 is
symmetric and the general case follows by two applications of of the lemma that falls in the
two previous cases.

We assume (M1,M2) ∈ EJτK♯η (1) and M1 ≅η1τ N1 (2). We show (N1,M2) ∈ EJτK♯η (3) by
induction on τ .

Case τ is ∀α.σ: Assume R ∈ R(ρ1, ρ2). Let ηα be η,α ↦ (ρ1, ρ2,R). It suffices to show
(M1 ρ1,M2 ρ2) in EJσK♯ηα (4). We have (M1 ρ1,M2 ρ2) in EJσK♯ηα , from (1). By congruence
applied to (2), we have N1ρ1 ≅ηα

1
σ M1 ρ1. Then (4) follows by induction hypothesis at type σ.

Case τ is α: We know that (M1,M2) reduces to a pair (V1, V2) in VJαK♯η, i.e. ηR(α), which
is by assumption is admissible, i.e. closed by observational equivalence (between values).
Therefore, we just need to show that V ≅η1α V1 where V is such that N1 ⇓ V . This follows
from N1 ≅η1α M1 since observational equivalence of closed terms is closed by reduction.

Case τ is B: By definition EJBK♯η does not depend on η and is equal to ≃B, which is included
in ≅B and closed by transitivity.

Case τ is σ′ → σ: Assume V1, V2 is in EJσ′K♯η (5). It suffices to show that (N1 V1,M2 V2)

is in EJσK♯η (6). By (1), we have (M1 V1,M2 V2) in EJσ
′K♯η. By congruence applied to (2),

we have N1V1 ≅η1(σ) M1V1. Then (6) follows by IH, since then EJσK♯η respects observational
equivalence..

Corollary 40 Under the admissibility condition, the relation VJτK♯η is an admissible relation
in R(η1τ, η2τ).
This may be useful to build admissibility relations, when admissibility is required.

Lemma 41 (Closure by observational equivalence) Under the admissibility
condition, if ∆;Γ ⊢ M1 ∼♯ M2 ∶ τ and ∆;Γ ⊢ M1 ≅ N1 ∶ τ and ∆;Γ ⊢ M2 ≅ N2 ∶ τ , then
∆;Γ ⊢ N1 ∼♯ N2 ∶ τ
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This lemma is use in the proof of correctness of logical equivalence.

Proof: By symmetry, we may just show it when N2 is M2, the case when N1 is M1 is
symmetric and the general case follows by two applications of of the lemma that falls in the
two previous cases.

The proof is by induction on τ .

Assume that ∆,Γ ⊢M1 ∼♯ M2 ∶ τ (1) and ∆;Γ ⊢ N1 ≅η1τ M1 (2). Assume η in DJ∆K and γ

in GJΓK♯η. We are to show that (η1γ1N1, η2γ2M2) is in EJτK♯η (3).

Let C be the context (Λ∆.λΓ. []) η1(∆) γ1(Γ) where η1∆ and γ1Γ are sequences of ground
types and of closed values of ground types taken in the appropriate (i.e. reverse) order.
We have C(∆;Γ ▷ τ) ↝ (∅;∅ ▷ η1τ). It then follows from (2) that C[N1] ≅η1τ C[M1],
which implies η1γ1N1 ≅τ η1γ1M1, since observational equivalence of closed terms is closed by
reduction. From (1), we have (η1γ1M1, η2γ2M2) in EJτK♯η. Then, the conclusion (3) follows
by respect for observational equivalence.

Theorem 21 (Completeness of logical equivalence) Under the admissibility condition,
observational equivalence implies logical equivalence.
If ∆;Γ ⊢M1 ≅M2 ∶ τ then ∆;Γ ⊢M1 ∼♯ M2 ∶ τ .

In particular, (≅τ) ⊆ (∼♯τ) for closed types τ .

Proof: Assume ∆;Γ ⊢ M1 ≅ M2 ∶ τ . The conclusion ∆,Γ ⊢ M1 ∼ M2 ∶ τ . follows from the
fundamental lemma, ∆,Γ ⊢M1 ∼M1 ∶ τ and respect for observation equivalence.

Remark Admissibility is required for completeness, but not for soundness. (∼♯ means ∼
when admissibility is required—for all relations.)

As a particular case, for closed terms, we have M1 ∼♯τ M2 iff M1 ≅τ M2.

Lemma 42 (Extensionality)

• M1 ≅τ→σ M2 ⇐⇒ ∀V ∈ Val(τ), M1 V ≅σ M2 V ⇐⇒ ∀N ∈ Exp(τ), M1 N ≅σ M2 N

• M1 ≅∀α. τ M2 ⇐⇒ ∀ρ, M1 ρ ≅τ[α↦ρ] M2 ρ.

Extensionality does not require admissibility—since it does not refer to logical equivalence,
but we need admissibility to conduct the proof, which relies on respect for observational
equivalence.
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Proof: We reason under admissibility (left implicit in notations).q The right most equivalence
for value abstractions results from the closure of EJτK by reduction and anti-reduction.

The forward direction follows in both cases from the congruence of ≅. The backward is as
follows:

Value abstraction: It suffices to show M1 ∼τ→σ M2. That is, assuming V1 ≈τ V2 (1), we show
M1 V1 ∼σ M2 V2 (2). By assumption, we have M1 V1 ≅σ M2 V1 (3). By the fundamental
lemma, we have M2 ∼τ→σ M2. Hence, from (1), read as a logical equivalence, we deduce
M2 V1 ∼σ M2 V2, We conclude (2) by respect for observational equivalence with (3).

Type abstraction: It suffices to show M1 ∼∀α. τ M2. That is, given R ∈ R(ρ1, ρ2), we show
(M1 ρ1,M2 ρ2) ∈ EJτKα↦(ρ1,ρ2,R) (4). By assumption, we have M1 ρ1 ≅τ[α↦ρ1] M2 ρ1 (5).
By the fundamental lemma, we have M2 ∼∀α. τ M2. Hence, we have (M2 ρ1,M2 ρ2) ∈
EJτKα↦(ρ1,ρ2,R) We conclude (4) by respect for observational equivalence with (5).

Identity extension Let θ be a substitution of type variables for ground types. Let R be
the restriction of ≅αθ to Val(αθ) × Val(αθ)) and η ∶ α ↦ (αθ,αθ,R). Then EJτKη is equal to
≅τθ—assuming admissibiliy.

The proof uses respects for observational equivalence.

7.6 Applications

Exercise 43 (Inhabitants of ∀α.α→ α) If M ∶ ∀α.α → α, then M ≅∀α.α→α id where

id
△
== Λα.λx ∶α.x.

Solution: By extensionality, it suffices to show that for any ρ and V ∶ ρ we have M ρ V ≅ρ
id ρ V . In fact, by closure by inverse reduction, it suffices to show M ρ V ≅ρ V (1).

By parametricity, we haveM ∼∀α.α→α M (2). Consider R inR(ρ, ρ) equal to {(V,V )} and
η be [α ↦ (ρ, ρ,R)]. Since R(V,V ), we have (V,V ) ∈ VJαKη by definition. Hence, from (2),
we have (M ρ V,M ρ V ) ∈ EJαKη, which means that the pair of expressions (M ρ V,M ρ V )
reduces to a pair of values in R and, in particular, M ρ V reduces to V , which implies (1).

Exercise 44 (Inhabitants of ∀α.α→ α→ α) If M ∶ ∀α.α → α → α, then either M ≅σ
W1

△
== Λα.λx1 ∶α.λx2 ∶α.x1 or M ≅σ W2

△
== Λα.λx1 ∶α.λx2 ∶α.x2

Solution: By extensionality, it suffices to show that for either i = 1 or i = 2, for any closed
type ρ and V1, V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Wi ρ V1 V2, or just M ρ V1 V2 ≅σ Vi (1) by closure
by inverse reduction, since Wi ρ V1 V2 reduces to Vi

Let ρ and V1, V2 ∶ ρ be fixed. Consider R equal to {(tt, V1), (ff , V2)} in R(B, ρ) and η be
α ↦ (B, ρ,R). We have (tt, V1) ∈ VJαKη since R(tt, V1) and, similarly, (ff, V2) ∈ VJαKη. By
parametricity. we have (M,M) ∈ EJσK. Hence, (M B tt ff,M ρ V1 V2) ∈ EJαKη, which means
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that (M B tt ff,M ρ V1 V2) reduces to a pair of values in R, i.e. either (tt, V1) or (ff, V2),
which implies:

either M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

or M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

In summary, we have shown

∀ρ,V1, V2, ⋁
⎧⎪⎪⎨⎪⎪⎩
M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

However, since M B tt ff is independent of ρ, V1, and V2 and the two branches are incom-
patible as tt /≅ ff, the choice is actually independent of ρ, V1 and V2. Therefore, we also
have:

⋁
⎧⎪⎪⎨⎪⎪⎩
∀ρ,V1, V2, M B tt ff ≅B tt ∧ M ρ V1 V2 ≅ρ V1

∀ρ,V1, V2, M B tt ff ≅B ff ∧ M ρ V1 V2 ≅ρ V2

that is (1).

Remark Notice that the proof could have been conducted by choosing 0 and 1 of type nat,
or even W1 and W2 of type σ, instead of tt and ff of type B.

Exercise 45 (Inhabitants of ∀α. (α→ α)→ α → α) Let nat be ∀α. (α → α)→ α → α.

If M ∶ nat, then M ≅nat Nn for some integer n, where Nn
△== Λα.λf ∶α→ α.λx ∶α. fn x.

(That is, the inhabitants of nat are the Church naturals.)
Solution: By extensionality, it suffices to show that there exists n such for any closed type
ρ and closed values V1 ∶ ρ → ρ and V2 ∶ ρ, we have M ρ V1 V2 ≅ρ Nn ρ V1 V2, or, by closure by
inverse reduction, M ρ V1 V2 ≅ρ V n

1
V2 (1).

Let ρ and V1 ∶ ρ → ρ and V2 ∶ ρ be fixed. Let Z and S be M0 nat and M2 nat. Let R be{(Sk Z, V k
1
V2) ∣ k ∈ IN} in R(nat, ρ) and η be α ↦ (nat, ρ,R).

We have (Z, V2) ∈ VJαKη (2). We also have (S, V1) ∈ VJα → αKη (3), (which is a key to the
proof). Indeed, assume (W1,W2) is in VJαKη, that is, of the form (Sk Z, V k

1
V2). for some k.

Then, (SW1, V1 W2) is equal to (Sk+1 Z, V k+1
1

V2), which belongs to EJαKη.
By parametricity, we have M ∼nat M . Hence, the pair (M nat S Z,M ρ V1 V2) is in

EJαKη. Thus, it must reduce to a pair in VJαKη, i.e. R. Therefore, there exists n such that
M nat S Z ≅nat Sn Z and M ρ V1 V2 ≅ρ V n

1
V2 We have shown,

∀ρ, ∀V1 ∈ Val(ρ→ ρ), ∀V2 ∈ Val(ρ), ∃n ∈ IN, M nat S Z ≅nat Sn Z ∧M ρ V1 V2 ≅ρ V n
1 V2

Since, M nat S Z is independent of n, and all Sn Z are in different observational equivalence
classes (which is easy to prove, e.g. by applying it to the successor function and primitive
integer 0), n is actually independent of V1 and V2. Hence, we have:

∃n ∈ IN, ∀ρ, ∀V1 ∈ Val(ρ → ρ), ∀V2 ∈ Val(ρ), M nat S Z ≅nat Sn Z ∧M ρ V1 V2 ≅ρ V n
1 V2

which implies (1).
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7.7 Extensions

7.7.1 Natural numbers

We have shown that all expressions of type nat behave as natural numbers. Hence, natural
numbers are definable in System F.

Still, we can also provide a type nat of primitive natural numbers. Then we would define
behavioral equivalence on nat as the relation in Val(nat) ×Val(nat) by

M1 ≃nat M2

def

⇐⇒ ∃n ∶ nat, M1 ⇓ n ∧M2 ⇓ n

As for the logical equivalence, we defined

VJnatK = {(n,n) ∣ n ∈ Val(nat)}
Notice that nat is another observable type. All properties are preserved.

7.7.2 Products

Encodable Given closed types τ1 and τ2, we defined

τ1 × τ2
△== ∀α. (τ1 → τ2 → α)→ α

(M1,M2) △== Λα.λx ∶τ1 → τ2 → α.x M1 M2

M.i
△
== M (λx1 ∶τ1. λx2 ∶τ2. xi)

Lemma 43
If M ∶ τ1 × τ2, then M ≅τ1×τ2 (M1,M2) for some M1 ∶ τ1 and M2 ∶ τ2.
If M ∶ τ1 × τ2 and M.1 ≅τ1 M1 and M.2 ≅τ2 M2, then M ≅τ1×τ2 (M1,M2)
Primitive With primitive pairs, we define:

VJτ × σKη
△
== {((V1,W1), (V2,W2)) ∣ (V1, V2) ∈ VJτKη ∧ (W1,W2) ∈ VJσKη}

7.7.3 Sums

VJτ + σKη
△== {(inj1 V1, inj1 V2) ∣ (V1, V2) ∈ VJτKη} ⋃ {(inj2 W1, inj2 W2) ∣ (W1,W2) ∈ VJσKη}

Notice that sums, as all datatypes, can also be encoded in System F.

7.7.4 Lists

We could extend the language with lists and define:

VJlist τKη
△== {([V 1

1
; . . . V n

1
], [V 1

2
; . . . V n

2
]) ∣ n ∈ IN ∧∀k ∈ [1, n], (V k

1
, V k

2
) ∈ VJτKη}
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Assume that α ↦ (ρ1, ρ2,R) is in η such that R in R(ρ1, ρ2) represents the graph ⟨g⟩ of a
function g ∶ ρ1 → ρ2, that is R = {(V1, V2) ∣ g V1 ⇓ V2}.

Then VJlist αKη is equal to ⟨map ρ1 ρ2 g⟩, that is composed of all pairs (V1, V2) such
map ρ1 ρ2 g W1 ⇓W2.

Indeed, a pair (W1,W2) in VJlist αKη is of the form ([V 1
1
; . . . V n

1
], [V 1

2
; . . . V n

2
]) for some

n where all pairs (V k
1
, V k

2
) are in VJτKη, that is, ∠g, hence such that g V1 ⇓ V2. Therefore[g V 1

1
; . . . g V n

1
] ⇓ [V 1

2
; . . . V n

2
]. That is, map ρ1 ρ2 W1 ⇓W2.

Exercise 46 (sort)
Assume sort ∶ ∀α. (α → α → B) → list α → list α (1). Show that for all g of ground
type ρ1 → ρ2, and all (comparison) functions cmp1 of type ρ1 → ρ1 → B and cmp2 of type
ρ2 → ρ2 → B satisfying

∀V,W ∈ Val(ρ1), cmp2 (g V ) (g W ) ≅ cmp1 V W (2)
we have, for all U in Val(list ρ1),

sort ρ2 cmp2 (map ρ1 ρ2 g U) ≅ map ρ1 ρ2 g (sort ρ1 cmp1 U) (3)
Solution: Let ρ1 and ρ2 be fixed and g be a function g satisfying (2). We show (3). By
the fundamental lemma applied to (1), we have sort ∼σ sort where σ is ∀α. (α → α → B) →
list α→ list α. Thus, for all ρ1, ρ2, relations R in R(ρ1, ρ2), we have

∀(cmp1, cmp2) ∈ VJα → α → BKη, (4)
∀(V1, V2) ∈ VJlist αKη, (sort ρ1 cmp1 V1, sort ρ2 cmp2 (V2)) ∈ EJlist αKη (5)

where η is α ↦ (ρ1, ρ2,R)). We may choose R to be the graph ⟨g⟩ of the function g.
Let us show (4). Let (V1, V2) and (W1,W2) be in VJαKη, i.e. g V1 ⇓ V2 and g W1 ⇓ W2.

Hence cmp2 (g V1) (g W1) ⇓ cmp2 V2 W2. Which implies cmp2 (g V1) (g W1) ≅ cmp2 V2 W2.
Combining with (2), we have cmp1 V1 W1 ≅ cmp2 V2 W2. Since we are at type B, this coincide
with logical equivalence, which proves (cmp1 V1 W1, cmp2 V2 W2) ∈ EJBKη, as expected.

Therefore, (5) holds, which given that VJαKη is equal to ⟨map ρ1 ρ2 g⟩, reads
∀V1 ∶ list ρ1, V2 ∶ list ρ2,

map ρ1 ρ2 g V1 ⇓ V2 Ô⇒ ∃W1,W2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
map ρ1 ρ2 g W1 ⇓ W2 (6)
sort ρ1 cmp1 V1 ⇓W1 (7)
sort ρ2 cmp2 V2 ⇓W2 (8)

This implies

∀V1 ∶ list ρ1, ∃W1,W2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
map ρ1 ρ2 g W1 ⇓ W2 (6)
sort ρ1 cmp1 V1 ⇓W1 (7)
sort ρ2 cmp2 (map ρ1 ρ2 g V1) ⇓W2

In turns, by combining (6) and (7) we get

∀V1 ∶ list ρ1, ∃W2, { map ρ1 ρ2 g (sort ρ1 cmp1 V1) ⇓W2

sort ρ2 cmp2 (map ρ1 ρ2 g V1) ⇓W2



150 CHAPTER 7. LOGICAL RELATIONS

Which implies

∀V ∶ list ρ1,

map ρ1 ρ2 g (sort ρ1 cmp1 V ) ≅ sort ρ2 cmp2 (map ρ1 ρ2 g V )

7.7.5 Existential types

We define:

VJ∃α. τKη
△== {(pack V1, ρ1 as ∃α. τ,pack V2, ρ2 as ∃α. τ) ∣ V1 ⊢ η1(∃α. τ) ∧ V2 ⊢ η2(∃α. τ) ∧

∃ρ1, ρ2,R ∈ R(ρ1, ρ2), (V1, V2) ∈ EJτKη,α↦(ρ1 ,ρ2,R)}

Example 3 Consider V1

△== (not, tt), and V2

△== (succ,0) and σ
△== (α → α) × α. Let R in

R(B,nat) be {(tt,2n), (ff ,2n + 1) ∣ n ∈ IN} and η be α↦ (B,nat,R).
We have (pack V1,B as ∃α.σ, pack V2,nat as ∃α. σ) ∈ VJ∃α. σK. To see this it suffices to

show (V1, V2) ∈ VJσKη, that is ((not, tt), (succ,0)) ∈ VJ(α → α) × αKη. In turn, it suffices to
show both (not, succ) ∈ VJα → αKη and (tt,0) ∈ VJαKη. The latter holds by construction since(tt,0) ∈ R. To show the former, we assume (W1,W2) in VJαKη, i.e. in R. Hence, it must be
either of the form

• (tt,2n); and (notW1, succW2) reduces to (ff,2n + 1), or of the form

• (ff,2n + 1) and (notW1, succW2)reduces to (tt,2n + 2).
In both cases, (notW1, succ W2) reduces to a pair in R, i.e. in VJαKη, hence it is in EJαKη.

Representation independence A client of an existential type ∃α. τ should not see the
difference between two implementations N1 and N2 of ∃α. τ with witness types ρ1 and ρ2.

Assume that ρ1 and ρ2 are two closed representation types and R is in R(ρ1, ρ2). Let
η be α ↦ (ρ1, ρ2,R). Suppose that N1 ∶ τ[α ↦ ρ1] and N2 ∶ τ[α ↦ ρ2] are two equivalent
implementations of the operations, i.e. (N1,N2) ∈ EJτKη .

A client M has type ∀α. τ → σ with α ∉ fv(σ); it must use the argument parametrically,
and the result is independent of the witness type. Indeed the client satisfies (M,M) ∈
EJ∀α. τ → σKη and therefore (M ρ1 N1,M ρ2 N2) is in EJσK (as α is not free in σ), which
implies M ρ1 N1 ≅σ M ρ2 N2.

That is, the behavior with the implementation N1 with representation type ρ1 is indis-
tinguishable from the behavior with implementation N2 with representation type ρ2.
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7.7.6 Step-indexed logical relations

How do we deal with recursive types? Assume that we allow equi-recursive types.

τ ∶∶= . . . ∣ µα.τ
A naive definition would be

VJµα.τKη = VJ[α ↦ µα.τ]τKη
But this is ill-founded, because [α ↦ µα.τ]τ is usually larger than τ .

The solution is to use indexed-logical relations.
We use a sequence of decreasing relations indexed by integers (fuel), which is consumed

during unfolding of recursive types.

Step-indexing (a taste) We define a sequence VkJτKη indexed by natural numbers n ∈ IN
that relates values of type τ up to n reduction steps.

VkJBKη = {(tt, tt), (ff ,ff)}
VkJτ → σKη = {(V1, V2) ∣ ∀j < k,∀(W1,W2) ∈ VjJτKη,(V1 W1, V2 W2) ∈ EjJσKη}
VkJαKη = (ηRα).k

VkJ∀α. τKη = {(V1, V2) ∣ ∀ρ1, ρ2,R ∈ Rk(ρ1, ρ2),∀j < k,(V1 ρ1, V2 ρ2) ∈ VjJτKη,α↦(ρ1 ,ρ2,R)}
VkJµα.τKη = Vk−1J[α ↦ µα.τ]τKη
EkJτKη = {(M1,M2) ∣ ∀j < k,M1 ⇓j V1

Ô⇒ ∃V2,M2 ⇓ V2 ∧ (V1, V2) ∈ Vk−jJτKη}
By ⇓j , we mean reduces in j-steps. Rj(ρ1, ρ2) is a sequence of decreasing relations between
closed values of closed types ρ1 and ρ2 of length (at least) j.

Notice that the relation is asymmetric.
We define

∆;Γ ⊢M1 ≾M2 ∶ τ
def

⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆;Γ ⊢M1,M2 ∶ τ.

∀η ∈ Rk
∆
(δ1, δ2),∀(γ1, γ2) ∈ GkJΓK,

(γ1(δ1(M1)), γ2(δ2(M2)) ∈ EkJτKη
and

∆;Γ ⊢M1 ∼M2 ∶ τ
△== ⋀

⎧⎪⎪⎨⎪⎪⎩
∆;Γ ⊢M1 ≾M2 ∶ τ

∆;Γ ⊢M2 ≾M1 ∶ τ

Notations and proofs get a bit involved.
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▷ Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks. The MLton com-
piler, 2007.
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Université Paris 7, September 1976.

▷ John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.

▷ Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95: Proceedings of
the seventh international conference on Functional programming languages and computer
architecture, pages 160–169, New York, NY, USA, 1995a. ACM. ISBN 0-89791-719-7.

Mark P. Jones. Typing Haskell in Haskell. In In Haskell Workshop, 1999a.

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York,
NY, USA, 1995b. ISBN 0-521-47253-9.

▷ Mark P. Jones. Typing Haskell in Haskell. In Haskell workshop, October 1999b.

▷ Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, 1997.

▷ Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Programming, 17(01):1,
2006.

Stefan Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
LFP ’92: Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 193–204, New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi: http://doi.
acm.org/10.1145/141471.141540.

▷ Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXPTIME-complete.
In Colloquium on Trees in Algebra and Programming, volume 431 of Lecture Notes in
Computer Science, pages 206–220. Springer, May 1990.

▷ Oleg Kiselyov. Higher-kinded bounded polymorphism. web page.

http://dx.doi.org/10.2307/1995158
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf
http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf
http://doi.acm.org/10.1145/224164.224198
http://web.cecs.pdx.edu/~mpj/thih/
http://research.microsoft.com/en-us/um/people/simonpj/papers/type-class-design-space/multi.ps.gz
http://www.journals.cambridge.org/abstract_S0956796806006034
http://dx.doi.org/10.1007/3-540-52590-4_50
http://okmij.org/ftp/ML/higher-kind-poly.html


BIBLIOGRAPHY 215

▷ Peter J. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation: part
I. Communications of the ACM, 8(2):89–101, 1965.
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