
Under the hood Ongoing and future work Conclusion

Connecting Coq with first-order logic by scope

Chantal Keller
Joint work with Valentin Blot, Louise Dubois de Prisque, Pierre Vial

LMF, Université Paris-Saclay

June, 1st 2022

Connecting Coq with first-order logic by scope Chantal Keller 1 / 15

Under the hood Ongoing and future work Conclusion

SMTCoq automatic tactics
On a goal automatable by SMT solvers:

run one or multiple external SMT solver on the negation of the
goal
use their answers to prove the goal

Coq checker

proof witness encoder

pre-processors

SAT/SMT solver

reification

goal solved error message

first-order Coq goal

proof witness

certificate

optimized certificate

first-order input

Section Group.
Variable G : Type.
Variable e : G.
Variable op : G → G → G.
Variable inv : G → G.

Hypothesis associative :
forall a b c : G, op a (op b c) = op (op a b) c.

Hypothesis identity :
forall a : G, (op e a = a) ∧ (op a e = a).

Hypothesis inverse :
forall a : G, (op a (inv a) = e) ∧ (op (inv a) a = e).

Lemma unique_identity e’:
(forall z, op e’ z = z) → e’ = e.

Proof.
smt (associative, identity, inverse).

Qed.
End Group.

Connecting Coq with first-order logic by scope Chantal Keller 2 / 15

Under the hood Ongoing and future work Conclusion

SMTCoq automatic tactics
On a goal automatable by SMT solvers:

run one or multiple external SMT solver on the negation of the
goal
use their answers to prove the goal

Coq checker

proof witness encoder

pre-processors

SAT/SMT solver

reification

goal solved error message

first-order Coq goal

proof witness

certificate

optimized certificate

first-order input

Section Group.
Variable G : Type.
Variable e : G.
Variable op : G → G → G.
Variable inv : G → G.

Hypothesis associative :
forall a b c : G, op a (op b c) = op (op a b) c.

Hypothesis identity :
forall a : G, (op e a = a) ∧ (op a e = a).

Hypothesis inverse :
forall a : G, (op a (inv a) = e) ∧ (op (inv a) a = e).

Lemma unique_identity e’:
(forall z, op e’ z = z) → e’ = e.

Proof.
smt (associative, identity, inverse).

Qed.
End Group.

Connecting Coq with first-order logic by scope Chantal Keller 2 / 15

Under the hood Ongoing and future work Conclusion

Difficulties for automation in Coq

The dream:
the mathematician/programmer concentrates on the difficult
parts of proofs
Coq automatically fills trivial gaps

But:
Coq’s logic makes even simple goals far from first-order logic
useful to provide good feedback when it fails
multiple representations of the same objects (e.g: Peano
integers are easier to reason about but one may care about
efficiency)

Connecting Coq with first-order logic by scope Chantal Keller 3 / 15

Under the hood Ongoing and future work Conclusion

Ongoing project: Sniper

transformation

transformation

transformation

transformation

CIC Coq goal

first-order Coq goal

Small-grained transformations:

transform a goal G into a new goal G’ (may
leave subgoals to users)
produce a Coq proof that G’ → G

Sniper:

provides a bunch of useful transformations
provides strategies to combine them (called
scope)
then calls SMT solvers

Lemma search_app :
forall {A: Type} (x: A) (l1 l2: list A),
search x (l1 ++ l2) = (search x l1) || (search x l2).

Proof. induction l1; snipe. Qed.

Connecting Coq with first-order logic by scope Chantal Keller 4 / 15

Under the hood Ongoing and future work Conclusion

Ongoing project: Sniper

transformation

transformation

transformation

transformation

CIC Coq goal

first-order Coq goal

Small-grained transformations:

transform a goal G into a new goal G’ (may
leave subgoals to users)
produce a Coq proof that G’ → G

Sniper:

provides a bunch of useful transformations
provides strategies to combine them (called
scope)
then calls SMT solvers

Lemma search_app :
forall {A: Type} (x: A) (l1 l2: list A),
search x (l1 ++ l2) = (search x l1) || (search x l2).

Proof. induction l1; snipe. Qed.

Connecting Coq with first-order logic by scope Chantal Keller 4 / 15

Under the hood Ongoing and future work Conclusion

Outline

1 Under the hood

2 Ongoing and future work

3 Conclusion

Connecting Coq with first-order logic by scope Chantal Keller 5 / 15

Under the hood Ongoing and future work Conclusion

Example of a transformation: datatypes

For each inductive types appearing in the goal, state:

constructors are pairwise disjoint
constructors are injective
every term of this type is generated by one of the constructors

Example of lists:

∀A (x:A) (l:list A), [] ̸= x::l

∀A (x y:A) (l m:list A), x::l = y::m → x = y ∧ l = m

∀A (l:list A), l = [] ∨ l = (hd l defA)::(tl m deflA)

Connecting Coq with first-order logic by scope Chantal Keller 6 / 15

Under the hood Ongoing and future work Conclusion

Example of a transformation: datatypes

For each inductive types appearing in the goal, state:

constructors are pairwise disjoint

constructors are injective
every term of this type is generated by one of the constructors

Example of lists:

∀A (x:A) (l:list A), [] ̸= x::l

∀A (x y:A) (l m:list A), x::l = y::m → x = y ∧ l = m

∀A (l:list A), l = [] ∨ l = (hd l defA)::(tl m deflA)

Connecting Coq with first-order logic by scope Chantal Keller 6 / 15

Under the hood Ongoing and future work Conclusion

Example of a transformation: datatypes

For each inductive types appearing in the goal, state:

constructors are pairwise disjoint
constructors are injective

every term of this type is generated by one of the constructors

Example of lists:

∀A (x:A) (l:list A), [] ̸= x::l

∀A (x y:A) (l m:list A), x::l = y::m → x = y ∧ l = m

∀A (l:list A), l = [] ∨ l = (hd l defA)::(tl m deflA)

Connecting Coq with first-order logic by scope Chantal Keller 6 / 15

Under the hood Ongoing and future work Conclusion

Example of a transformation: datatypes

For each inductive types appearing in the goal, state:

constructors are pairwise disjoint
constructors are injective
every term of this type is generated by one of the constructors

Example of lists:

∀A (x:A) (l:list A), [] ̸= x::l

∀A (x y:A) (l m:list A), x::l = y::m → x = y ∧ l = m

∀A (l:list A), l = [] ∨ l = (hd l defA)::(tl m deflA)

Connecting Coq with first-order logic by scope Chantal Keller 6 / 15

Under the hood Ongoing and future work Conclusion

Implemented transformations

Atomic and pairwise-independent transformations:

make explicit the semantics of uninterpreted symbols
(algebraic datatypes, constant and function definitions)
eliminate unknown constructions (higher-order equalities,
polymorphism, pattern matching, fixpoints)
reflect bijective types and bool/Prop (trakt , Enzo Crance, Assia
Mahboubi and Denis Cousineau)

+ a strategy: scope

Connecting Coq with first-order logic by scope Chantal Keller 7 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types

2 definitions
3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion

4 fixpoints
5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching

6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

∀B, @length B [] = O
∀B (x:B) (l:list B), @length B (x::l) = S (@length B l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀B (x:B) (l:list B), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

∀B, @length B [] = O
∀B (x:B) (l:list B), @length B (x::l) = S (@length B l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀(x:A) (l:list A), [] ̸= x::l

∀B (x y:B) (l m:list B), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

∀B, @length B [] = O
∀B (x:B) (l:list B), @length B (x::l) = S (@length B l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀(x:A) (l:list A), [] ̸= x::l

∀(x y:A) (l m:list A), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

∀B, @length B [] = O
∀B (x:B) (l:list B), @length B (x::l) = S (@length B l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀(x:A) (l:list A), [] ̸= x::l

∀(x y:A) (l m:list A), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀B (l:list B), length B l =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) B l

∀B (l:list B), @length B l = match l . . .

@length A [] = O
∀(x:A) (l:list A), @length A (x::l) = S (@length A l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀(x:A) (l:list A), [] ̸= x::l

∀(x y:A) (l m:list A), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀(l:list A), length =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) A l

∀(l:list A), @length A l = match l . . .

@length A [] = O
∀(x:A) (l:list A), @length A (x::l) = S (@length A l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Example

1 inductive types
2 definitions

3 expansion
4 fixpoints

5 p. matching
6 polymorphism

A:Type l:list A n:nat

∀(x:nat), O ̸= S x ∀(x y:nat), S x = S y → x = y
∀(x:A) (l:list A), [] ̸= x::l

∀(x y:A) (l m:list A), x::l = y::l → x = y ∧ l = m

length = fun (B:Type) ⇒ fix length (l:list B) := match l . . .

∀(l:list A), length =
(fun (B:Type) ⇒ fix length (l:list B) := match l . . .) A l

∀(l:list A), @length A l = match l . . .

@length A [] = O
∀(x:A) (l:list A), @length A (x::l) = S (@length A l)

@length A l = n+1 → l ̸= []

Connecting Coq with first-order logic by scope Chantal Keller 8 / 15

Under the hood Ongoing and future work Conclusion

Relies on multiple meta-programming tools for Coq

Currently:

facts are generated with MetaCoq or coq-elpi
facts are proved in Ltac
everything is combined in Ltac

Connecting Coq with first-order logic by scope Chantal Keller 9 / 15

Under the hood Ongoing and future work Conclusion

Outline

1 Under the hood

2 Ongoing and future work

3 Conclusion

Connecting Coq with first-order logic by scope Chantal Keller 10 / 15

Under the hood Ongoing and future work Conclusion

Ongoing: applications

FreeSpec: certifying impure computations in Coq

complementary to FreeSpec tactics to reason about programs

Coq Tezos of OCaml: translation and verification of the Tezos
protocol

automate verification as much as possible

Connecting Coq with first-order logic by scope Chantal Keller 11 / 15

Under the hood Ongoing and future work Conclusion

Ongoing: new transformations

Ex from FreeSpec: automatically decide some inductive predicates

I nduc t i ve doo r s_o_ca l l e r : Ω → f o r a l l (a : Type) ,
DOORS a → Prop :=

| req_is_open (d : door) (ω : Ω) :
doo r s_o_ca l l e r ω boo l (IsOpen d)

| r eq_togg l e (d : door) (ω : Ω) :
(s e l d ω = f a l s e →s e l (co d) ω = f a l s e) →

doo r s_o_ca l l e r ω un i t (Toggle d) .

↓

De f i n i t i o n doo r s_o_ca l l e r : Ω → f o r a l l (a : Type) ,
DOORS a → Prop :=

fun ω a D ⇒ match D with
| I sOpen _ ⇒ t r u e
| Toggle d ⇒ imp lb (negb (s e l d ω))

(negb (s e l (co d) ω))
end .

Connecting Coq with first-order logic by scope Chantal Keller 12 / 15

Under the hood Ongoing and future work Conclusion

Future: adaptative strategies and user-defined
transformations

transformation

transformation

transformation

transformation

CIC Coq goal

first-order Coq goal

Connecting Coq with first-order logic by scope Chantal Keller 13 / 15

Under the hood Ongoing and future work Conclusion

Outline

1 Under the hood

2 Ongoing and future work

3 Conclusion

Connecting Coq with first-order logic by scope Chantal Keller 14 / 15

Under the hood Ongoing and future work Conclusion

Thanks

opam install coq−sniper

https://github.com/smtcoq/sniper

Many thanks to Nomadic Labs and Inria

Connecting Coq with first-order logic by scope Chantal Keller 15 / 15

https://github.com/smtcoq/sniper

