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Concurrent services
Concurrency => asynchrony
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External concurrency
System architecture
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Internal concurrency
Software architecture
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Asynchonous vs. synchronous
Synchrony

Atomic execution of (global/functional) transactions
lExternal inputs cannot interleave/interfere with internal message exchange
lImplementation complexity
>Must schedule execution to avoid deadlock/starvation

lWrongly conflated with procedural execution
>Stack scheduling

Asynchrony

Arbitrary interleaving of internal and external messages
lStraightforward implementation and semantics
lSpecification complexity
> Internal architecture exposed
>Composition / abstraction conflict
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Degrees of synchrony
Synchonous procedures

lE.g., Solidity/EVM
lMultiple call conventions
lAsynchrony introduces by callbacks/reentrancy
>DAO fail

Pure asynchrony

lE.g., Scilla
lLimited function calls
lDescriptive specifications

Scheduled asynchrony

lE.g., Tezos
lLinked transactions
lFixed scheduling provides some atomicity
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In praise of synchrony
Natural semantics: global time

Instant reaction to external inputs / scheduling ticks

l Flag async transaction – otherwise instantaneous calls
l Flag single transactions that can be called only once per instant

l Test for simultaneous calls with during t(x, y) { ... }
> Synchronous shared variables can be encoded

Prescriptive specifictions

Transparent process refinement
l Atomic transactions can be spread across several processes

Efficient implementation

Static schedule
l Can be verified or compiled
l Can be sliced across distributed processes
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