

Synchronous Contracts

Georges Gonthier SmartSpec

Concurrent services

Concurrency => asynchrony

External concurrency

System architecture

Internal concurrency

Software architecture

Asynchonous vs. synchronous

Synchrony

Atomic execution of (global/functional) transactions

- External inputs cannot interleave/interfere with internal message exchange
- Implementation complexity
 - > Must schedule execution to avoid deadlock/starvation
- Wrongly conflated with procedural execution
 - > Stack scheduling

Asynchrony

Arbitrary interleaving of internal and external messages

- Straightforward implementation and semantics
- Specification complexity
 - > Internal architecture exposed
 - > Composition / abstraction conflict

Degrees of synchrony

Synchonous procedures

- E.g., Solidity/EVM
- Multiple call conventions
- Asynchrony introduces by callbacks/reentrancy
 - > DAO fail

Pure asynchrony

- E.g., Scilla
- Limited function calls
- Descriptive specifications

Scheduled asynchrony

- E.g., Tezos
- Linked transactions
- Fixed scheduling provides some atomicity

In praise of synchrony

Natural semantics: global time

Instant reaction to external inputs / scheduling ticks

- Flag async transaction otherwise instantaneous calls
- Flag single transactions that can be called only once per instant
- Test for simultaneous calls with during t(x, y) { ... }
 - > Synchronous shared variables can be encoded

Prescriptive specifictions

Transparent process refinement

• Atomic transactions can be spread across several processes

Efficient implementation

Static schedule

- Can be verified or compiled
- Can be sliced across distributed processes

Merci!

Suivez-nous sur www.inria.fr

