
Synchronous Contracts

Georges Gonthier
SmartSpec

01/06/2022-1



Synchronous Contracts

01/06/2022-2

Concurrent services
Concurrency => asynchrony

FA2 contract

admin alt admin

owner owner

auditor

auditor

manager



Synchronous Contracts

01/06/2022-3

External concurrency
System architecture

FA2 contract

admin alt admin

owner
owner

auditor

auditor

manager

client client

clientclient
client

client cl
ie

nt



Synchronous Contracts

01/06/2022-4

Internal concurrency
Software architecture

FA2 contract

admin alt admin

owner
owner

auditor

auditor

manager

client client

clientclient
client

client cl
ie

ntproxy proxyproxy

proxy

proxy proxy proxy

registry
vote

auth



Synchronous Contracts

01/06/2022-5

Asynchonous vs. synchronous
Synchrony

Atomic execution of (global/functional) transactions
lExternal inputs cannot interleave/interfere with internal message exchange
lImplementation complexity
>Must schedule execution to avoid deadlock/starvation

lWrongly conflated with procedural execution
>Stack scheduling

Asynchrony

Arbitrary interleaving of internal and external messages
lStraightforward implementation and semantics
lSpecification complexity
> Internal architecture exposed
>Composition / abstraction conflict



Synchronous Contracts

01/06/2022-6

Degrees of synchrony
Synchonous procedures

lE.g., Solidity/EVM
lMultiple call conventions
lAsynchrony introduces by callbacks/reentrancy
>DAO fail

Pure asynchrony

lE.g., Scilla
lLimited function calls
lDescriptive specifications

Scheduled asynchrony

lE.g., Tezos
lLinked transactions
lFixed scheduling provides some atomicity



Synchronous Contracts

01/06/2022-7

In praise of synchrony
Natural semantics: global time

Instant reaction to external inputs / scheduling ticks

l Flag async transaction – otherwise instantaneous calls
l Flag single transactions that can be called only once per instant

l Test for simultaneous calls with during t(x, y) { ... }
> Synchronous shared variables can be encoded

Prescriptive specifictions

Transparent process refinement
l Atomic transactions can be spread across several processes

Efficient implementation

Static schedule
l Can be verified or compiled
l Can be sliced across distributed processes



Merci !

01/06/2022 -8

Suivez-nous sur www.inria.fr


