
A “caller-roots” calling
convention for the OCaml
foreign function interface

Guillaume Munch-Maccagnoni

June 1st 2022



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

OCamlRust:
• Gabriel Scherer (Inria)
• Bruno Deferrari (SimpleStaking)
• Jacques-Henri Jourdan (CNRS)
• Myself

Later works:
• Gabriel Scherer
• Myself



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Interfacing Rust and OCaml
• Strongly typed (memory safety)
• Low-level, system
• Different resource-management mechanisms
• Building upon existing OCaml-C interface

Earlier works:
• Rust & GC: Manish Goregaokar, Alan Jeffrey

(Josephine)
• OCaml & Rust: Stephen Dolan, Frédéric Bour, Zach

Shipko



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

1: Static assurances

2: Language abstractions

3: Computational behaviour

• 2: Manipulate OCaml values from Rust?
• 1: Respect OCaml GC discipline (values move)
• 3: Competitive performance?



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

1: Static assurances

2: Language abstractions

3: Computational behaviour

• 2: Manipulate OCaml values from Rust?
• 1: Respect OCaml GC discipline (values move)
• 3: Competitive performance?



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

OCaml:
• Uniform memory representation allowing

polymorphism
• Memory handled with a generational tracing GC

Rust (C++ model):
• Low-level memory representation that can accomodate

OCaml value representation
• Destructors called in timely fashion
• Well-suited for interoperability



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Different memory management methods:
• Freeing memory: graph traversal to find live values
• Freeing memory: graph traversal to find dead values



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Rust: pointer manipulation, imperative, concurrent.
Example: Dynamic arrays (Vectors) & iterator invalidation
fn main() {

let mut vec = vec![’a’, ’b’, ’c’];
let first = &mut vec[0];
vec.push(’e’);
let mut _vec2 = vec![’f’, ’g’, ’h’];
println!("vec[0] contains {}", first);

}



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

error[E0499]: cannot borrow ‘vec‘ as mutable more than once at a time
--> destructeur10.rs:6:5
|

5 | let first = &mut vec[0];
| --- first mutable borrow occurs here

6 | vec.push(’e’);
| ^^^ second mutable borrow occurs here

7 | let mut _vec2 = vec![’f’, ’g’, ’h’];
8 | println!("vec[0] contains {}", first);
| ----- first borrow later used here

• Either several concurrent reads or one concurrent write
• iterator invalidation ~ data race



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

What else moves values?

Vector GC heap

Vec Runtime capability
iterator pointer to the heap

insert element allocate
index root

cf. works by Goregaokar, Jeffrey, Dolan. . .
• Root is usually a low-level notion (GC implementation

detail)



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

What else moves values?

Vector GC heap

Vec Runtime capability
iterator pointer to the heap

insert element allocate
index root

cf. works by Goregaokar, Jeffrey, Dolan. . .
• Root is usually a low-level notion (GC implementation

detail)



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Callee-roots

OCaml C API: the callee registers values as root
value f(value x)
{
CAMLparam(x);
CAMLlocal(y);
...
CAMLreturn(z);

}

Implementation: stack-allocated linked list



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Callee-roots

Callee-roots in Rust
• Previous works: Dolan, Shipko
• Get rid of Rust macro tricks which were hard to manage

about
pub fn f<’a, ’id>(gc: RuntimeAndValues<’a, ’id>,

x: ValueArg<’id>) -> Value<’a> {
let gc_immut : &Runtime = gc.immut_cap();
let x : Value = gc.extract_temp_value(&x);
...
let gc : &’a mut Runtime = gc.into_cap();
...

}



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Callee-roots

• Making sense of OCaml’s FFI discipline (type safety for
CAMLparam/CAMLlocal)

• Heavy to manipulate in practice (boilerplate erased at
compilation)

• Could be used to provide a thin layer above the OCaml
FFI



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Caller-roots

Alternative: the caller is responsible for registering values
as roots
value * f(value *x)
{
value *y = root_create(...);
... *x, *y ...
return z;

}

e.g. Bour’s CAMLroot
• Easier to write buggy programs in C



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Caller-roots

But fits safely with Rust type system

pub fn f(gc: &’a mut runtime, x: ValueRef<’b>) -> ValueRef<’a> {
...

}

• ValueRef: a polymorphic container (rooted, unrooted or
immediate)

• root_create?



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Boxroot

• Language abstraction: GC root as a smart pointer (cf.
Rust’s Box), derefs into a ValueRef

• Computational behaviour: takes advantage of good
cache locality, lock-free deallocation

• Typing: supports a safe caller-roots calling convention



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Boxroot

Inspired by standard, modern concurrent allocator
technology.
Hooks into the OCaml runtime.

• Pools of ~512 allocatable roots
• Domain-local caches of pools
• Easy to scan during GC



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Boxroot

Generational optimisation
• Only scan “young” roots during minor collection
• Lesson: the simplest solution wins (inlining)
• In the end, there is nothing more in boxroot than an

efficient allocator



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Benchmarks (qualitative)

• OCaml 4.12
• Qualitative (micro-benchmarks, artificial situations)
• Limitation: Single-threaded

• OCaml: Pure OCaml implementation
• Boxroot: via C, using boxroot
• Generational: via C, using OCaml API generational

global roots
• Local: via C, using OCaml API local roots

(CAMLparam, etc.)



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Boxroot vs. Global roots
Let’s do various computations using an OCaml value stored
inside an OCaml or a foreign value. If inside a foreign value,
we need to register it as a root.

Permutations Synthetic Globroot
0

0.5

1

1.5

2

2.5

3

Global root

OCaml
Generational
Boxroot

re
la

ti
ve

 d
u

ra
ti

o
n



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Boxroot vs. Local roots
Let’s simulate an OCaml->C function call which does N
function calls. Each function call manipulates the OCaml
heap and so it needs to register the local variables as roots.

1 10 100 1000
0.0

10.0

20.0

30.0

40.0

50.0

60.0

Local root

CAMLparam/CAMLlocal
Generational global roots
Boxroot
Boxroot (callee roots)

N

n
s



Context & motivations GC in Rust Callee-roots vs. caller-roots Boxroot Conclusion

Conclusion

Academic
• Ideas can be re-used for other languages
• We discovered artificial limitations of Rust’s type

system
• Future: Contributes to merging functional and systems

programming
Practical

• Some ideas have been put into practice in ocaml-rs,
which uses Boxroot.

• Future of the OCaml/Rust interface: additional and
sustained maintainer work needed.



Conclusion

Thank you



References I

Alan Jeffrey. 2018. Josephine: Using JavaScript to safely
manage the lifetimes of Rust data. (2018).
arXiv:cs.PL/1807.00067


	Context & motivations
	GC in Rust
	Callee-roots vs. caller-roots
	Callee-roots
	Caller-roots

	Boxroot
	Boxroot
	Benchmarks (qualitative)

	Conclusion
	Conclusion

	Appendix
	References


