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A purely functional queue

We can implement an immutable queue using two lists front and rear :

type ’α queue = ’α list × ’α list

let push (front, rear) x =
(front, x :: rear) – insert into rear list

let pop (front, rear) =
match front with – if front is non-empty...
| x :: front ′ → Some (x, (front ′, rear)) – ...pop its head
| []→ – otherwise...

match List.rev rear with – ...reverse rear to front (costly)...
| x :: front ′ → Some (x, (front ′, [])) – ...and pop head
| [] → None
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Amortized complexity

The “banker’s method” (Tarjan, 1985) gives constant amortized costs:

• push costs O(1):
• we spend O(1) for cons-ing this element

• we save O(1), covering for this element’s future reversal

• pop costs O(1):
• we spend O(1) for the call to pop itself

• reversal is pre-paid by past pushes
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Persistence?

Issue: we can’t spend time savings twice

let q = push (push (push nil 1) 2) 3 in
let (x1, q1) = pop q in – we spend our savings here
let (x2, q2) = pop q in – wrong! we don’t have any savings anymore
...

=⇒ Amortized complexity breaks if an old version of the queue is used

Idea (Okasaki, 1999):

1 Compute reversals once =⇒ memoize them

2 Share reversals among futures =⇒ suspend them ahead of time

=⇒ Laziness!
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The banker’s queue

The front sequence is a stream, i.e., a list computed on-demand:

type ’α stream = ’α cell thunk
and ’α cell = Nil | Cons of ’α × ’α stream

type ’α queue = int × ’α stream × int × ’α list

We enforce that |f | ≥ |r|:
let rebalance ((lenf, f, lenr, r) as q) =
assert (lenf+1 ≥ lenr) ;
if lenf ≥ lenr then q else – re-establish inv. when r grows larger than f :
(lenf+lenr, Stream.append f (Stream.rev_of_list r), 0, [])

– ↑ create a thunk that will reverse r when forced

let push (lenf, f, lenr, r) x =
rebalance (...) – rebalance with element inserted into r

let pop (lenf, f, lenr, r) =
match Stream.pop f with – force the head thunk of f
... rebalance (...) ... – rebalance with head removed from f
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Amortized complexity of the banker’s queue

Reversing |r| elements is costly, but is done after |f | ≥ |r| calls to pop

=⇒ We can anticipate the cost of reversal on that of previous pops

=⇒ Constant amortized costs:

• rebalance costs O(1)

• push costs O(1)

• pop costs O(1)
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Persistence: credit vs. debit

Key idea: time is a resource, $n (“n time credits”) allow taking n steps

• The non-lazy queue saves credit for a yet unknown computation

=⇒ Not duplicable (cannot forge money)

• The banker’s queue repays a debit for an already known computation

=⇒ Duplicable (can waste money)

=⇒ The banker’s queue can be used persistently
• Remark: the value is computed only once the debit is repaid
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Streams and thunks

Building blocks:

• A thunk is a suspended computation, it holds a debit:

isThunk t m φ (m ∈ N)

Ownership of a thunk is duplicable:

isThunk t m φ −∗ isThunk t m φ ⋆ isThunk t m φ

• A stream is a chain of nested thunks, it holds a list of debits:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

isThunk s m1 (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

isThunk s2 m2 (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

isThunk sn+1 0 (λcn+1. cn+1 = Nil)...))

Ownership of a stream is duplicable
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Anticipation

We can anticipate an inner thunk’s debit:

e.g.

isThunk t1 m1 (λt2. isThunk t2 m2 φ)

isThunk t1 (m1 +m) (λt2. isThunk t2 (m2 −m) φ)

=⇒ We can anticipate debits in a stream:

e.g.

isStream s [

n times︷ ︸︸ ︷
A, ...,A, (n+1)B,

n times︷ ︸︸ ︷
0, ..., 0] [f1, ..., fn, rn+1, ..., r1]

isStream s [A+B, ...,A+B,B, 0, ..., 0] [f1, ..., fn, rn+1, ..., r1]

This is needed in the proof of the banker’s queue
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Formal proof?

Danielsson (2008) gives a dependent type system (in Agda) for specifying

and verifying amortized costs of programs with thunks

• semi-formal guarantee

• no ghost operations: must insert them in code, manually

must conform to a strict discipline, must balance branches’ costs, payment creates a thunk,
in-depth payment needs special care. . .

• ad-hoc type system, not a general-purpose program logic

Mével et al. (2019) extend Iris with time credits⇒ Iris
$

Today’s work: thunks, streams and the banker’s queue (WIP) in Iris
$

This talk: thunks, streams
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1 Introduction

2 Iris
$
in a nutshell

3 Specification and proof, without anticipation

4 Anticipation
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Iris
$

Iris extended with an assertion $n (n ∈ N) satisfying a few laws:

⊢ $0
$(m+ n) ≡ $m ⋆ $n

We can throw credits away, but not forge or duplicate them

Each execution step consumes $1:

e.g. {$1 ⋆ ℓ 7→ v} !ℓ {λv ′. v ′ = v ⋆ ℓ 7→ v}
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Soundness of Iris
$

Theorem (Soundness)

If {$n} e {True} is derivable in Iris$, then program e is safe and terminates
in at most n steps.
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Implementation of thunks

type ’α thunk = ’α thunk_contents ref
and ’α thunk_contents =
| Future of (unit → ’α)
| Busy
| Done of ’α

let create f =
ref (Future f )

let force t =
match ! t with
| Future f →

if not (compare_and_set t (Future f ) Busy) – forbid concurrent forcing
then exit () ;

let v = f () in – evaluate the thunk...
t := Done v ; – ...and memoize the result
v

| Busy → exit () – forbid reentrancy
| Done v → v
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Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?
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Implementation of streams

A stream is a thunk which computes an element (its head) and another

thunk (its tail):

type ’α stream = ’α cell thunk
and ’α cell = Nil | Cons of ’α × ’α stream

A stream has a list of debits, one before each element:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

isThunk s m1 (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

isThunk s2 m2 (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

isThunk sn+1 0 (λcn+1. cn+1 = Nil)...))
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(Selected rules) Specification of streams

{
$K

ap
⋆ isStream s [m1, ...,mn] [v1, ..., vn] ⋆ isStream s′ [m′

1
, ...,m′

n′ ] [v
′
1
, ..., v ′n′ ]

}
append s s′{

λt. isStream t [A+m1, ...,A+mn,m′
1
, ...,m′

n′ ] [v1, ..., vn, v
′
1
, ..., v ′n′ ]

}
{$K

rv
⋆ isList ℓ [v1, ..., vn]}
rev_of _list ℓ

{λs. isStream s [B · n, 0, ..., 0] [vn, ..., v1]}

payStream

isStream s [m1,m2, ...,mn] [v1, ..., vn] $p

|⇛isStream s [m1 − p,m2, ...,mn] [v1, ..., vn]

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]
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Anticipation

The banker’s queue needs anticipation of debits in streams...

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

...therefore in thunks:

anticipate

isThunk t m φ

∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ($n ⋆ φ)

Example: from rules pay and anticipate we can derive:

isThunk t1 m1 (λt2. isThunk t2 m2 φ) $n ⋆ isThunk t2 m2 φ
⇛ isThunk t2 (m2−n) φ

(pay)

|⇛isThunk t1 (m1 + n) (λt2. isThunk t2 (m2 − n) φ)
(anticipate)

nonsensical, thunk

postconditions

must be persistent
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Conclusion

Three library layers: thunks (proven), streams (proven), queues (WIP)

In this talk:

• anticipation of debit

• we overlooked it at first

• non-trivial proof: tree of debits, many invariants

• streams are chains of nested thunks

Not in this talk:

• reentrancy forbidden statically

• non-atomic invariants =⇒ thunks have namespaces
• avoid reentrant streams =⇒ streams have generations (internally)

• full proof of the banker’s queue

• ghost debits! (WIP)

https://gitlab.inria.fr/gmevel/iris-time-proofs
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Ghost debits?

createDebit

$m ⇛ □Q

|⇛debit m Q

forceDebit

debit 0 Q

|⇛ ▷Q

persistDebit

persistent(debit m Q)

overestimateDebit

debit m1 Q m1 ≤ m2

debit m2 Q

payDebit

debit m Q $p

|⇛debit (m− p) Q

anticipateDebit

debit m Q $n ⋆ Q ⇛ □Q′

|⇛debit (m+ n) Q′
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Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨


∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë
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How to anticipate?

Problems:

• known upper bounds ◦m must remain valid =⇒ can’t increase • n
• φ is fixed in the invariant =⇒ can’t change it

Solution: stack a new debit, with a new invariant, on top of the old one!
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A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force
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Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used

Each height h ∈ N has its own debit γt,h

thunkInv t φ ≜ ∃n. • n γt,0
⋆∨


∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

csqInvh t φ ψ ≜ ∃n. • n γt,h ⋆∨
{
∀v. $n ⋆ φ v ⇛ □ψ v
□ψ v

isThunk0 t m φ ≜ ◦m γt,0
⋆ thunkInv t φ

isThunkh t m φ ≜ ∃m′, ψ. m′ ≤ m ⋆ ◦m′ γt,h
⋆ csqInvh t ψ φ

⋆ isThunkh−1 t (m−m′) ψ

isThunk t m φ ≜ ∃h. isThunkh t m φ

Omitted: ghost state in Auth(Ex() + Ag(Val)) for remembering the value

computed

23



Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used

Each height h ∈ N has its own debit γt,h

thunkInv t φ ≜ ∃n. • n γt,0
⋆∨


∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

csqInvh t φ ψ ≜ ∃n. • n γt,h ⋆∨
{
∀v. $n ⋆ φ v ⇛ □ψ v
□ψ v

isThunk0 t m φ ≜ ◦m γt,0
⋆ thunkInv t φ

isThunkh t m φ ≜ ∃m′, ψ. m′ ≤ m ⋆ ◦m′ γt,h
⋆ csqInvh t ψ φ

⋆ isThunkh−1 t (m−m′) ψ

isThunk t m φ ≜ ∃h. isThunkh t m φ

Omitted: ghost state in Auth(Ex() + Ag(Val)) for remembering the value

computed

23



Actual implementation of thunks

type ’α thunk = ’α thunk_contents ref
and ’α thunk_contents =
| Future of (unit → ’α)
| Done of ’α

let create f =
ref (Future f )

let force t =
match ! t with
| Future f →

let v = f () in – evaluate the thunk
t := Done v ; – memoize the result
v

| Done v →
v

No reentrancy detection (2 states only) =⇒ static proof obligations
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Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?
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Specification of thunks

One canForce token exists

at the beginning of the world

canForceExcl

canForce canForce

False
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Specification of thunks

One canForce token exists

at the beginning of the world

canForceExcl

canForce canForce

False

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ ⋆ canForce}

force t
{λv. φ v ⋆ canForce}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?

How to force a thunk from another thunk?

...But how to thread the token to the inner thunk?
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Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t N n φ}

{$K
frc
⋆ isThunk t N 0 φ ⋆ canForce N}

force t
{λv. φ v ⋆ canForce N}

persist

persistent(isThunk t N m φ)

overestimate

isThunk t N m1 φ m1 ≤ m2

isThunk t N m2 φ

pay

isThunk t N m φ $p

|⇛isThunk t N (m− p) φ

anticipate

isThunk t N m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t N (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?
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Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t N n φ}

{$K
frc
⋆ isThunk t N 0 φ ⋆ canForce N}

force t
{λv. φ v ⋆ canForce N}

persist

persistent(isThunk t N m φ)

overestimate

isThunk t N m1 φ m1 ≤ m2

isThunk t N m2 φ

pay

isThunk t N m φ $p

|⇛isThunk t N (m− p) φ

anticipate

isThunk t N m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t N (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?

...But how to thread the token to the inner thunk?
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Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n ⋆ R −∗ wp f () {□φ ⋆ R})}

create f
{λt. isThunk t N n R φ}

{$K
frc
⋆ isThunk t N 0 R φ ⋆ canForce N ⋆ R}

force t
{λv. φ v ⋆ canForce N ⋆ R}

persist

persistent(isThunk t N m R φ)

overestimate

isThunk t N m1 R φ m1 ≤ m2

isThunk t N m2 R φ

pay

isThunk t N m R φ $p

|⇛isThunk t N (m− p) R φ

anticipate

isThunk t N m R φ ∀v. $n ⋆ φ v ⋆ R ⇛ □ψ v ⋆ R

|⇛isThunk t N (m+ n) R ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25



Implementation of streams

type ’α stream = ’α cell thunk – a stream is computed on-demand
and ’α cell = Nil | Cons of ’α × ’α stream

let pop (xs : ’α stream) =
match Thunk.force xs with
| Cons (x, xs′)→ Some (x, xs′)
| Nil → None

let rec append (xs : ’α stream) (ys : ’α stream) =
Thunk.create@@fun()→ – this thunk has a constant overhead
match Thunk.force xs with
| Cons (x, xs′)→ Cons (x, append xs′ ys)
| Nil → Thunk.force ys

let rev_of_list (xs : ’α list) : ’α stream =
let rec rev_app (xs : ’α list) (ys : ’α cell) = – rev_app reverses the list eagerly
match xs with – ↓ these new thunks have cost 0
| x :: xs′ → rev_app xs′ (Cons (x, Thunk.create@@fun()→ ys))
| [] → ys in

Thunk.create@@fun()→ rev_app xs Nil – this leading thunk is costly 26



(Selected rules) Specification of streams

{
$K

ap
⋆ isStream s [m1, ...,mn] [v1, ..., vn] ⋆ isStream s′ [m′

1
, ...,m′

n′ ] [v
′
1
, ..., v ′n′ ]

}
append s s′{

λt. isStream t [A+m1, ...,A+mn,m′
1
, ...,m′

n′ ] [v1, ..., vn, v
′
1
, ..., v ′n′ ]

}
{$K

rv
⋆ isList ℓ [v1, ..., vn]}
rev_of _list ℓ

{λs. isStream s [B · n, 0, ..., 0] [vn, ..., v1]}

payStream

isStream s [m1,m2, ...,mn] [v1, ..., vn] $p

|⇛isStream s [m1 − p,m2, ...,mn] [v1, ..., vn]

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

27



Generations

We forbid recursive streams by using generations g ∈ N:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

∃g1. isThunk s Ng1 m1 (naInvTok Eg1) (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

∃g2 ≤ g1. isThunk s2 Ng2 m2 (naInvTok Eg2) (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

∃gn+1 ≤ gn. isThunk sn+1 Ngn+1
0 (naInvTok Egn+1

) (λcn+1. cn+1 = Nil)...))

where:

Eg ≜ ⊤ \ ↑Ng

Eg ⊆ Eg+1

↑Ng+1 ⊆ ↑Ng

28
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