
Time debits in nested thunks:

a proof of Okasaki’s banker’s queue

Glen Mével, François Pottier, Jacques-Henri Jourdan

Inria Paris & LMF Paris-Saclay, France

Journée Inria–Nomadic Labs, June 1st 2022

A purely functional queue

We can implement an immutable queue using two lists front and rear :

type ’α queue = ’α list × ’α list

let push (front, rear) x =
(front, x :: rear) – insert into rear list

let pop (front, rear) =
match front with – if front is non-empty...
| x :: front ′ → Some (x, (front ′, rear)) – ...pop its head
| []→ – otherwise...

match List.rev rear with – ...reverse rear to front (costly)...
| x :: front ′ → Some (x, (front ′, [])) – ...and pop head
| [] → None

1

Amortized complexity

The “banker’s method” (Tarjan, 1985) gives constant amortized costs:

• push costs O(1):
• we spend O(1) for cons-ing this element

• we save O(1), covering for this element’s future reversal

• pop costs O(1):
• we spend O(1) for the call to pop itself

• reversal is pre-paid by past pushes

2

Persistence?

Issue: we can’t spend time savings twice

let q = push (push (push nil 1) 2) 3 in
let (x1, q1) = pop q in – we spend our savings here
let (x2, q2) = pop q in – wrong! we don’t have any savings anymore
...

=⇒ Amortized complexity breaks if an old version of the queue is used

Idea (Okasaki, 1999):

1 Compute reversals once =⇒ memoize them

2 Share reversals among futures =⇒ suspend them ahead of time

=⇒ Laziness!

3

The banker’s queue

The front sequence is a stream, i.e., a list computed on-demand:

type ’α stream = ’α cell thunk
and ’α cell = Nil | Cons of ’α × ’α stream

type ’α queue = int × ’α stream × int × ’α list

We enforce that |f | ≥ |r|:
let rebalance ((lenf, f, lenr, r) as q) =
assert (lenf+1 ≥ lenr) ;
if lenf ≥ lenr then q else – re-establish inv. when r grows larger than f :
(lenf+lenr, Stream.append f (Stream.rev_of_list r), 0, [])

– ↑ create a thunk that will reverse r when forced

let push (lenf, f, lenr, r) x =
rebalance (...) – rebalance with element inserted into r

let pop (lenf, f, lenr, r) =
match Stream.pop f with – force the head thunk of f
... rebalance (...) ... – rebalance with head removed from f

4

Amortized complexity of the banker’s queue

Reversing |r| elements is costly, but is done after |f | ≥ |r| calls to pop

=⇒ We can anticipate the cost of reversal on that of previous pops

=⇒ Constant amortized costs:

• rebalance costs O(1)

• push costs O(1)

• pop costs O(1)

5

Persistence: credit vs. debit

Key idea: time is a resource, $n (“n time credits”) allow taking n steps

• The non-lazy queue saves credit for a yet unknown computation

=⇒ Not duplicable (cannot forge money)

• The banker’s queue repays a debit for an already known computation

=⇒ Duplicable (can waste money)

=⇒ The banker’s queue can be used persistently
• Remark: the value is computed only once the debit is repaid

6

Streams and thunks

Building blocks:

• A thunk is a suspended computation, it holds a debit:

isThunk t m φ (m ∈ N)

Ownership of a thunk is duplicable:

isThunk t m φ −∗ isThunk t m φ ⋆ isThunk t m φ

• A stream is a chain of nested thunks, it holds a list of debits:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

isThunk s m1 (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

isThunk s2 m2 (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

isThunk sn+1 0 (λcn+1. cn+1 = Nil)...))

Ownership of a stream is duplicable

7

Anticipation

We can anticipate an inner thunk’s debit:

e.g.

isThunk t1 m1 (λt2. isThunk t2 m2 φ)

isThunk t1 (m1 +m) (λt2. isThunk t2 (m2 −m) φ)

=⇒ We can anticipate debits in a stream:

e.g.

isStream s [

n times︷ ︸︸ ︷
A, ...,A, (n+1)B,

n times︷ ︸︸ ︷
0, ..., 0] [f1, ..., fn, rn+1, ..., r1]

isStream s [A+B, ...,A+B,B, 0, ..., 0] [f1, ..., fn, rn+1, ..., r1]

This is needed in the proof of the banker’s queue

8

Formal proof?

Danielsson (2008) gives a dependent type system (in Agda) for specifying

and verifying amortized costs of programs with thunks

• semi-formal guarantee

• no ghost operations: must insert them in code, manually

must conform to a strict discipline, must balance branches’ costs, payment creates a thunk,
in-depth payment needs special care. . .

• ad-hoc type system, not a general-purpose program logic

Mével et al. (2019) extend Iris with time credits⇒ Iris
$

Today’s work: thunks, streams and the banker’s queue (WIP) in Iris
$

This talk: thunks, streams

9

1 Introduction

2 Iris
$
in a nutshell

3 Specification and proof, without anticipation

4 Anticipation

5 Anticipation

Iris
$

Iris extended with an assertion $n (n ∈ N) satisfying a few laws:

⊢ $0
$(m+ n) ≡ $m ⋆ $n

We can throw credits away, but not forge or duplicate them

Each execution step consumes $1:

e.g. {$1 ⋆ ℓ 7→ v} !ℓ {λv ′. v ′ = v ⋆ ℓ 7→ v}

10

Soundness of Iris
$

Theorem (Soundness)

If {$n} e {True} is derivable in Iris$, then program e is safe and terminates
in at most n steps.

11

Implementation of thunks

type ’α thunk = ’α thunk_contents ref
and ’α thunk_contents =
| Future of (unit → ’α)
| Busy
| Done of ’α

let create f =
ref (Future f)

let force t =
match ! t with
| Future f →

if not (compare_and_set t (Future f) Busy) – forbid concurrent forcing
then exit () ;

let v = f () in – evaluate the thunk...
t := Done v ; – ...and memoize the result
v

| Busy → exit () – forbid reentrancy
| Done v → v

12

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

13

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

13

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be persistent

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

13

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

13

Implementation of streams

A stream is a thunk which computes an element (its head) and another

thunk (its tail):

type ’α stream = ’α cell thunk
and ’α cell = Nil | Cons of ’α × ’α stream

A stream has a list of debits, one before each element:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

isThunk s m1 (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

isThunk s2 m2 (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

isThunk sn+1 0 (λcn+1. cn+1 = Nil)...))

14

(Selected rules) Specification of streams

{
$K

ap
⋆ isStream s [m1, ...,mn] [v1, ..., vn] ⋆ isStream s′ [m′

1
, ...,m′

n′] [v
′
1
, ..., v ′n′]

}
append s s′{

λt. isStream t [A+m1, ...,A+mn,m′
1
, ...,m′

n′] [v1, ..., vn, v
′
1
, ..., v ′n′]

}
{$K

rv
⋆ isList ℓ [v1, ..., vn]}
rev_of _list ℓ

{λs. isStream s [B · n, 0, ..., 0] [vn, ..., v1]}

payStream

isStream s [m1,m2, ...,mn] [v1, ..., vn] $p

|⇛isStream s [m1 − p,m2, ...,mn] [v1, ..., vn]

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

15

Anticipation

The banker’s queue needs anticipation of debits in streams...

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

...therefore in thunks:

anticipate

isThunk t m φ

∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ($n ⋆ φ)

Example: from rules pay and anticipate we can derive:

isThunk t1 m1 (λt2. isThunk t2 m2 φ) $n ⋆ isThunk t2 m2 φ
⇛ isThunk t2 (m2−n) φ

(pay)

|⇛isThunk t1 (m1 + n) (λt2. isThunk t2 (m2 − n) φ)
(anticipate)

nonsensical, thunk

postconditions

must be persistent

16

Anticipation

The banker’s queue needs anticipation of debits in streams...

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

...therefore in thunks:

anticipate

isThunk t m φ

∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ($n ⋆ φ)

Example: from rules pay and anticipate we can derive:

isThunk t1 m1 (λt2. isThunk t2 m2 φ) $n ⋆ isThunk t2 m2 φ
⇛ isThunk t2 (m2−n) φ

(pay)

|⇛isThunk t1 (m1 + n) (λt2. isThunk t2 (m2 − n) φ)
(anticipate)

nonsensical, thunk

postconditions

must be persistent

16

Anticipation

The banker’s queue needs anticipation of debits in streams...

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

...therefore in thunks:

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

Example: from rules pay and anticipate we can derive:

isThunk t1 m1 (λt2. isThunk t2 m2 φ) $n ⋆ isThunk t2 m2 φ
⇛ isThunk t2 (m2−n) φ

(pay)

|⇛isThunk t1 (m1 + n) (λt2. isThunk t2 (m2 − n) φ)
(anticipate)

nonsensical, thunk

postconditions

must be persistent

16

Anticipation

The banker’s queue needs anticipation of debits in streams...

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

...therefore in thunks:

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

Example: from rules pay and anticipate we can derive:

isThunk t1 m1 (λt2. isThunk t2 m2 φ) $n ⋆ isThunk t2 m2 φ
⇛ isThunk t2 (m2−n) φ

(pay)

|⇛isThunk t1 (m1 + n) (λt2. isThunk t2 (m2 − n) φ)
(anticipate)

nonsensical, thunk

postconditions

must be persistent

16

Conclusion

Three library layers: thunks (proven), streams (proven), queues (WIP)

In this talk:

• anticipation of debit

• we overlooked it at first

• non-trivial proof: tree of debits, many invariants

• streams are chains of nested thunks

Not in this talk:

• reentrancy forbidden statically

• non-atomic invariants =⇒ thunks have namespaces
• avoid reentrant streams =⇒ streams have generations (internally)

• full proof of the banker’s queue

• ghost debits! (WIP)

https://gitlab.inria.fr/gmevel/iris-time-proofs

17

https://gitlab.inria.fr/gmevel/iris-time-proofs

Bibliography I

Danielsson, N. A. 2008. Lightweight semiformal time complexity

analysis for purely functional data structures. In Principles of
Programming Languages (POPL).

Mével, G., Jourdan, J.-H., et Pottier, F. 2019. Time credits and time

receipts in Iris. In European Symposium on Programming (ESOP).
Lecture Notes in Computer Science, vol. 11423. Springer, 1–27.

Okasaki, C. 1999. Purely Functional Data Structures. Cambridge

University Press.

Tarjan, R. E. 1985. Amortized computational complexity. SIAM Journal on
Algebraic and Discrete Methods 6, 2, 306–318.

18

http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://gallium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://gallium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://dx.doi.org/10.1137/0606031

Ghost debits?

createDebit

$m ⇛ □Q

|⇛debit m Q

forceDebit

debit 0 Q

|⇛ ▷Q

persistDebit

persistent(debit m Q)

overestimateDebit

debit m1 Q m1 ≤ m2

debit m2 Q

payDebit

debit m Q $p

|⇛debit (m− p) Q

anticipateDebit

debit m Q $n ⋆ Q ⇛ □Q′

|⇛debit (m+ n) Q′

19

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë

20

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë

20

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë

20

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë

20

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë

20

Simplified proof

(assuming a ghost name γt for each location t , by convenience)

thunkInv t φ ≜ ∃n. • n γt
⋆ ∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

isThunk t m φ ≜ ◦m γt
⋆ thunkInv t φ

Ghost state in Auth(N̄,min) reflects the remaining cost:

• • n γ
asserts that the remaining cost is exactly n credits

• ◦m γ
witnesses that the remaining cost is at most m credits

=⇒ persistentË

overestimate: ◦m1

γ −∗ ◦m2

γ
if m1 ≤ m2 Ë

pay: • n γ
⇛ • (n− p)

γ
⋆ ◦ (n− p)

γ
Ë

spec of create: Ë

spec of force: (m = 0) ⇒ (n = 0) ⇒ ($n ≡ emp) Ë
20

How to anticipate?

Problems:

• known upper bounds ◦m must remain valid =⇒ can’t increase • n
• φ is fixed in the invariant =⇒ can’t change it

Solution: stack a new debit, with a new invariant, on top of the old one!

21

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 Dcreate a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 Dcreate a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 Dcreate a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 Dcreate a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A stack of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 Dcreate a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$1 ⋆ A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 6 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$5 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 A

isThunk t 5 A

isThunk t 7 B

isThunk t 10 C

isThunk t 4 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$4 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 4 A

isThunk t 7 B

isThunk t 10 C

isThunk t 4 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$4 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 4 A

isThunk t 7 B

isThunk t 10 C

isThunk t 4 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$4 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 4 A

isThunk t 7 B

isThunk t 10 C

isThunk t 4 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$4 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 4 A

isThunk t 7 B

isThunk t 10 C

isThunk t 4 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$4 −∗ wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 4 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$0 −∗

wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$0 −∗

wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$0 −∗

wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

$0 −∗

wp f () {□A}

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛ □D

v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$3 ⋆ B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 10 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$2 ⋆ A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 7 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 5 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛ □B

v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛

□B v

$0 ⋆

B ⇛ □C

v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

A tree of summand debits

Example scenario:

□A v

$0 ⋆

A ⇛

□B v

$0 ⋆

B ⇛

□C v

$0 ⋆

A ⇛

□D v

isThunk t 0 AisThunk t 0 A

isThunk t 0 B

isThunk t 0 C

isThunk t 0 D

create a thunk with debit 5

and postcondition A

anticipate

anticipate

anticipate

pay $2

pay $1

pay $4

pay $4

force

pay $10

pay $7

pay $5

(wasting $5)

force

22

Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used

Each height h ∈ N has its own debit γt,h

thunkInv t φ ≜ ∃n. • n γt,0
⋆∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

csqInvh t φ ψ ≜ ∃n. • n γt,h ⋆∨
{
∀v. $n ⋆ φ v ⇛ □ψ v
□ψ v

isThunk0 t m φ ≜ ◦m γt,0
⋆ thunkInv t φ

isThunkh t m φ ≜ ∃m′, ψ. m′ ≤ m ⋆ ◦m′ γt,h
⋆ csqInvh t ψ φ

⋆ isThunkh−1 t (m−m′) ψ

isThunk t m φ ≜ ∃h. isThunkh t m φ

Omitted: ghost state in Auth(Ex() + Ag(Val)) for remembering the value

computed

23

Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used

Each height h ∈ N has its own debit γt,h

thunkInv t φ ≜ ∃n. • n γt,0
⋆∨

∃f . t 7→ Future f ⋆ ($n −∗ wp f () {□φ})

t 7→ Busy
∃v. t 7→ Done v ⋆ □φ v

csqInvh t φ ψ ≜ ∃n. • n γt,h ⋆∨
{
∀v. $n ⋆ φ v ⇛ □ψ v
□ψ v

isThunk0 t m φ ≜ ◦m γt,0
⋆ thunkInv t φ

isThunkh t m φ ≜ ∃m′, ψ. m′ ≤ m ⋆ ◦m′ γt,h
⋆ csqInvh t ψ φ

⋆ isThunkh−1 t (m−m′) ψ

isThunk t m φ ≜ ∃h. isThunkh t m φ

Omitted: ghost state in Auth(Ex() + Ag(Val)) for remembering the value

computed

23

Actual implementation of thunks

type ’α thunk = ’α thunk_contents ref
and ’α thunk_contents =
| Future of (unit → ’α)
| Done of ’α

let create f =
ref (Future f)

let force t =
match ! t with
| Future f →

let v = f () in – evaluate the thunk
t := Done v ; – memoize the result
v

| Done v →
v

No reentrancy detection (2 states only) =⇒ static proof obligations

24

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ}
force t

{λv. φ v}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?

How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

One canForce token exists

at the beginning of the world

canForceExcl

canForce canForce

False

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ ⋆ canForce}

force t
{λv. φ v ⋆ canForce}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

One canForce token exists

at the beginning of the world

canForceExcl

canForce canForce

False

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t n φ}

{$K
frc
⋆ isThunk t 0 φ ⋆ canForce}

force t
{λv. φ v ⋆ canForce}

persist

persistent(isThunk t m φ)

overestimate

isThunk t m1 φ m1 ≤ m2

isThunk t m2 φ

pay

isThunk t m φ $p

|⇛isThunk t (m− p) φ

anticipate

isThunk t m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?

How to force a thunk from another thunk?

...But how to thread the token to the inner thunk?

25

Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t N n φ}

{$K
frc
⋆ isThunk t N 0 φ ⋆ canForce N}

force t
{λv. φ v ⋆ canForce N}

persist

persistent(isThunk t N m φ)

overestimate

isThunk t N m1 φ m1 ≤ m2

isThunk t N m2 φ

pay

isThunk t N m φ $p

|⇛isThunk t N (m− p) φ

anticipate

isThunk t N m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t N (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n −∗ wp f () {□φ})}

create f
{λt. isThunk t N n φ}

{$K
frc
⋆ isThunk t N 0 φ ⋆ canForce N}

force t
{λv. φ v ⋆ canForce N}

persist

persistent(isThunk t N m φ)

overestimate

isThunk t N m1 φ m1 ≤ m2

isThunk t N m2 φ

pay

isThunk t N m φ $p

|⇛isThunk t N (m− p) φ

anticipate

isThunk t N m φ ∀v. $n ⋆ φ v ⇛ □ψ v

|⇛isThunk t N (m+ n) ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?

...But how to thread the token to the inner thunk?

25

Specification of thunks

One canForce ⊤ token exists

at the beginning of the world

canForceExcl

canForce N1 canForce N2

(↑N1) ∩ (↑N2) = ∅

{$K
cr
⋆ ($n ⋆ R −∗ wp f () {□φ ⋆ R})}

create f
{λt. isThunk t N n R φ}

{$K
frc
⋆ isThunk t N 0 R φ ⋆ canForce N ⋆ R}

force t
{λv. φ v ⋆ canForce N ⋆ R}

persist

persistent(isThunk t N m R φ)

overestimate

isThunk t N m1 R φ m1 ≤ m2

isThunk t N m2 R φ

pay

isThunk t N m R φ $p

|⇛isThunk t N (m− p) R φ

anticipate

isThunk t N m R φ ∀v. $n ⋆ φ v ⋆ R ⇛ □ψ v ⋆ R

|⇛isThunk t N (m+ n) R ψ

A thunk can be forced twice:

its postcond must be duplicable

A thunk is evaluated only once:

these arrows need not be persistent

Reentrancy?How to force a thunk from another thunk?...But how to thread the token to the inner thunk?

25

Implementation of streams

type ’α stream = ’α cell thunk – a stream is computed on-demand
and ’α cell = Nil | Cons of ’α × ’α stream

let pop (xs : ’α stream) =
match Thunk.force xs with
| Cons (x, xs′)→ Some (x, xs′)
| Nil → None

let rec append (xs : ’α stream) (ys : ’α stream) =
Thunk.create@@fun()→ – this thunk has a constant overhead
match Thunk.force xs with
| Cons (x, xs′)→ Cons (x, append xs′ ys)
| Nil → Thunk.force ys

let rev_of_list (xs : ’α list) : ’α stream =
let rec rev_app (xs : ’α list) (ys : ’α cell) = – rev_app reverses the list eagerly
match xs with – ↓ these new thunks have cost 0
| x :: xs′ → rev_app xs′ (Cons (x, Thunk.create@@fun()→ ys))
| [] → ys in

Thunk.create@@fun()→ rev_app xs Nil – this leading thunk is costly 26

(Selected rules) Specification of streams

{
$K

ap
⋆ isStream s [m1, ...,mn] [v1, ..., vn] ⋆ isStream s′ [m′

1
, ...,m′

n′] [v
′
1
, ..., v ′n′]

}
append s s′{

λt. isStream t [A+m1, ...,A+mn,m′
1
, ...,m′

n′] [v1, ..., vn, v
′
1
, ..., v ′n′]

}
{$K

rv
⋆ isList ℓ [v1, ..., vn]}
rev_of _list ℓ

{λs. isStream s [B · n, 0, ..., 0] [vn, ..., v1]}

payStream

isStream s [m1,m2, ...,mn] [v1, ..., vn] $p

|⇛isStream s [m1 − p,m2, ...,mn] [v1, ..., vn]

anticipate+overestimateStream

isStream s [m1, ...,mn] [v1, ..., vn] ∀k.
∑
i≤k

mi ≤
∑
i≤k

m′
i

|⇛isStream s [m′
1
, ...,m′

n] [v1, ..., vn]

27

Generations

We forbid recursive streams by using generations g ∈ N:

isStream s [m1, ...,mn] [v1, ..., vn] ≜

∃g1. isThunk s Ng1 m1 (naInvTok Eg1) (λc1. ∃s2. c1 = Cons(v1, s2) ⋆

∃g2 ≤ g1. isThunk s2 Ng2 m2 (naInvTok Eg2) (λc2. ∃s3. c2 = Cons(v2, s3) ⋆

.
.
.

∃gn+1 ≤ gn. isThunk sn+1 Ngn+1
0 (naInvTok Egn+1

) (λcn+1. cn+1 = Nil)...))

where:

Eg ≜ ⊤ \ ↑Ng

Eg ⊆ Eg+1

↑Ng+1 ⊆ ↑Ng

28

	Introduction
	Iris$ in a nutshell
	Specification and proof, without anticipation
	Anticipation
	Conclusion
	Bibliography
	Backup
	Anticipation

