Time debits in nested thunks: a proof of Okasaki's banker's queue

Glen Mével, François Pottier, Jacques-Henri Jourdan

Inria Paris \& LMF Paris-Saclay, France
Journée Inria-Nomadic Labs, June 1st 2022

A purely functional queue

We can implement an immutable queue using two lists front and rear: type ' α queue $=$ ' α list \times ' α list
let push (front, rear) $x=$ (front, x :: rear)

- insert into rear list
let pop $($ front, rear $)=$ match front with
$\mid x::=$ front ${ }^{\prime} \rightarrow$ Some ($x,\left(\right.$ front $^{\prime}$, rear $)$)
- if front is nonempty...
| [] \rightarrow
match List.rev rear with
- ...pop its head
- otherwise...
- ...reverse rear to front (costly)...
$x::$ front ${ }^{\prime} \rightarrow$ Some ($x,\left(\right.$ front $\left.{ }^{\prime},[]\right)$) - ...and pop head
| [] \rightarrow None

Amortized complexity

The "banker's method" (Tarjan, 1985) gives constant amortized costs:

- push costs $\mathcal{O}(1)$:
- we spend $\mathcal{O}(1)$ for cons-ing this element
- we save $\mathcal{O}(1)$, covering for this element's future reversal
- pop costs $\mathcal{O}(1)$:
- we spend $\mathcal{O}(1)$ for the call to pop itself
- reversal is pre-paid by past pushes

Persistence?

Issue: we can't spend time savings twice

$$
\text { let } q=\text { push (push (push nil 1) 2) } 3 \text { in }
$$

let $\left(x_{1}, q_{1}\right)=p o p q$ in \quad we spend our savings here
let $\left(x_{2}, q_{2}\right)=p o p q$ in -wrong! we don't have any savings anymore
\Longrightarrow Amortized complexity breaks if an old version of the queue is used Idea (Okasaki, 1999):
(1) Compute reversals once \Longrightarrow memorize them
(2) Share reversals among futures \Longrightarrow suspend them ahead of time
\Longrightarrow Laziness!

The banker's queue

The front sequence is a stream, i.e., a list computed on-demand:
type ' α stream $=$ ' α cell thunk
and ' α cell $=$ Nil \mid Cons of ' $\alpha \times$ ' α stream
type ' α queue $=$ int \times ' α stream \times int \times ' α list
We enforce that $|f| \geq|r|:$
let rebalance ((lenf, f, lent, r) as q) $=$ assert (lent $+1 \geq$ lent);
if lent \geq lent then q else - reestablish inv. when r grows larger than f : (lent + lent, Stream.append f (Stream.rev_of_list r), 0, [])
$-\uparrow$ create a thunk that will reverse r when forced
let push (lent, f, lent, r) $x=$ rebalance (...)

- rebalance with element inserted into r
let pop (lent, f, lent, r) $=$ match Stream. pop f with - force the head thunk of f
... rebalance (...) ... - rebalance with head removed from f

Amortized complexity of the banker's queue

Reversing $|r|$ elements is costly, but is done after $|f| \geq|r|$ calls to pop
\Longrightarrow We can anticipate the cost of reversal on that of previous pops
\Longrightarrow Constant amortized costs:

- rebalance costs $\mathcal{O}(1)$
- push costs $\mathcal{O}(1)$
- pop costs $\mathcal{O}(1)$

Persistence: credit vs. debit

Key idea: time is a resource, $\$ n$ (" n time credits") allow taking n steps

- The non-lazy queue saves credit for a yet unknown computation \Longrightarrow Not duplicable (cannot forge money)
- The banker's queue repays a debit for an already known computation \Longrightarrow Duplicable (can waste money)
\Longrightarrow The banker's queue can be used persistently
- Remark: the value is computed only once the debit is repaid

Streams and thunks

Building blocks:

- A thunk is a suspended computation, it holds a debit:

$$
\text { isThunk } t m \varphi \quad(m \in \mathbb{N})
$$

Ownership of a thunk is duplicable:

$$
\text { isThunk } \operatorname{tm} \varphi \quad * \text { isThunk } t m \varphi \star \text { isThunk } t m \varphi
$$

- A stream is a chain of nested thunks, it holds a list of debits:

$$
\begin{aligned}
& \text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \triangleq \\
& \quad \text { is Thunk s } m_{1}\left(\lambda c_{1} \cdot \exists s_{2} \cdot c_{1}=\operatorname{Cons}\left(v_{1}, s_{2}\right) \star\right. \\
& \quad \text { isThunk } s_{2} m_{2}\left(\lambda c_{2} . \exists s_{3} \cdot c_{2}=\operatorname{Cons}\left(v_{2}, s_{3}\right) \star\right.
\end{aligned}
$$

$$
\text { isThunk } \left.\left.s_{n+1} 0\left(\lambda c_{n+1} \cdot c_{n+1}=N i l\right) \ldots\right)\right)
$$

Ownership of a stream is duplicable

Anticipation

We can anticipate an inner thunk's debit:

$$
\text { e.g. } \frac{\text { isThunk } t_{1} m_{1}\left(\lambda t_{2} \text {. isThunk } t_{2} m_{2} \varphi\right)}{\text { isThunk } t_{1}\left(m_{1}+m\right)\left(\lambda t_{2} . \text { isThunk } t_{2}\left(m_{2}-m\right) \varphi\right)}
$$

\Longrightarrow We can anticipate debits in a stream:

$$
\text { e.g. } \frac{\text { isStream } s[\overbrace{A, \ldots, A}^{n \text { times }},(n+1) B, \overbrace{0, \ldots, 0}^{n \text { times }}\left[f_{1}, \ldots, f_{n}, r_{n+1}, \ldots, r_{1}\right]}{\text { isStream } s[A+B, \ldots, A+B, B, 0, \ldots, 0]\left[f_{1}, \ldots, f_{n}, r_{n+1}, \ldots, r_{1}\right]}
$$

This is needed in the proof of the banker's queue

Formal proof?

Danielsson (2008) gives a dependent type system (in Agda) for specifying and verifying amortized costs of programs with thunks

- semi-formal guarantee
- no ghost operations: must insert them in code, manually
must conform to a strict discipline, must balance branches' costs, payment creates a thunk, in-depth payment needs special care...
- ad-hoc type system, not a general-purpose program logic

Mével et al. (2019) extend Iris with time credits \Rightarrow Iris ${ }^{\$}$
Today's work: thunks, streams and the banker's queue (WIP) in Iris ${ }^{\$}$
This talk: thunks, streams

(1) Introduction

(2) Iris $^{\$}$ in a nutshell
(3) Specification and proof, without anticipation
(4) Anticipation
(5) Anticipation

Iris extended with an assertion $\$ n(n \in \mathbb{N})$ satisfying a few laws:

$$
\begin{aligned}
& \vdash \$ 0 \\
\$(m+n) & \equiv \$ m \star \$ n
\end{aligned}
$$

We can throw credits away, but not forge or duplicate them
Each execution step consumes $\$ 1$:

$$
\text { e.g. }\{\$ 1 \star \ell \mapsto v\}!\ell\left\{\lambda v^{\prime} . v^{\prime}=v \star \ell \mapsto v\right\}
$$

Soundness of Iris ${ }^{\$}$

Theorem (Soundness)

If $\{\$ n\} e\{$ True $\}$ is derivable in Iris ${ }^{\$}$, then program e is safe and terminates in at most n steps.

Implementation of thunks

```
type ' \(\alpha\) thunk \(=\) ' \(\alpha\) thunk_contents ref
and ' \(\alpha\) thunk_contents =
    Future of (unit \(\rightarrow\) ' \(\alpha\) )
    Busy
    Done of ' \(\alpha\)
let create \(f=\)
    ref (Future f)
let force \(t=\)
    match! \(t\) with
    | Future \(f \rightarrow\)
        if not (compare_and_set \(t\) (Future f) Busy) - forbid concurrent forcing
        then exit ();
        let \(v=f()\) in
        \(t:=\) Done \(v\);
        v
    | Busy \(\rightarrow\) exit ()
                            - evaluate the thunk...
                            - ...and memoize the result
                            - forbid reentrancy
    Done \(v \rightarrow v\)
```


Specification of thunks

$$
\begin{array}{cc}
\left\{\$ K_{c r} \star(\$ n-* \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\text {fic }} \star \text { isThunk } t 0 \varphi\right\} \\
\text { create } f & \text { force } t \\
\{\lambda t . \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v\} \\
\text { PERSIST } \\
\text { persistent }(\text { isThunk } t m \varphi)
\end{array}
$$

OVERESTIMATE
$\frac{\text { isThunk } t m_{1} \varphi \quad m_{1} \leq m_{2}}{\text { isThunk } t m_{2} \varphi}$

$$
\begin{aligned}
& \text { PAY } \\
& \frac{\text { isThunk } t m \varphi}{\Rightarrow \text { isThunk } t(m-p) \varphi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ANTICIPATE } \\
& \text { isThunk } t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v \\
& \Rightarrow \text { isThunk } t(m+n) \psi
\end{aligned}
$$

Specification of thunks

Specification of thunks

Specification of thunks

$$
\begin{array}{cc}
\left\{\$ K_{c r} \star(\$ n-* \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\text {fic }} \star \text { isThunk } t 0 \varphi\right\} \\
\text { create } f & \text { force } t \\
\{\lambda t . \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v\} \\
\text { PERSIST } \\
\text { persistent }(\text { isThunk } t m \varphi)
\end{array}
$$

OVERESTIMATE
$\frac{\text { isThunk } t m_{1} \varphi \quad m_{1} \leq m_{2}}{\text { isThunk } t m_{2} \varphi}$

$$
\begin{aligned}
& \text { PAY } \\
& \frac{\text { isThunk } t m \varphi}{\Rightarrow \text { isThunk } t(m-p) \varphi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ANTICIPATE } \\
& \text { isThunk } t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v \\
& \Rightarrow \text { isThunk } t(m+n) \psi
\end{aligned}
$$

Implementation of streams

A stream is a thunk which computes an element (its head) and another thunk (its tail):

$$
\begin{aligned}
& \text { type ' } \alpha \text { stream }=\text { ' } \alpha \text { cell thunk } \\
& \text { and ' } \alpha \text { cell }=\text { Nil } \mid \text { Cons of ' } \alpha \times \text { ' } \alpha \text { stream }
\end{aligned}
$$

A stream has a list of debits, one before each element:

$$
\begin{aligned}
& \text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \triangleq \\
& \text { isThunk } s m_{1}\left(\lambda c_{1} \cdot \exists s_{2} \cdot c_{1}=\operatorname{Cons}\left(v_{1}, s_{2}\right) \star\right. \\
& \text { isThunk } s_{2} m_{2}\left(\lambda c_{2} \cdot \exists s_{3} \cdot c_{2}=\operatorname{Cons}\left(v_{2}, s_{3}\right) \star\right. \\
& \quad \ddots \\
& \left.\left.\quad \text { isThunk } s_{n+1} 0\left(\lambda c_{n+1} \cdot c_{n+1}=N i l\right) \ldots\right)\right)
\end{aligned}
$$

(Selected rules) Specification of streams

$\left\{\$ K_{\text {ap }} \star\right.$ isStream $s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \star$ isStream $\left.s^{\prime}\left[m_{1}^{\prime}, \ldots, m_{n^{\prime}}^{\prime}\right]\left[v_{1}^{\prime}, \ldots, v_{n^{\prime}}^{\prime}\right]\right\}$ append s st
$\left\{\lambda t\right.$. isStream $\left.t\left[A+m_{1}, \ldots, A+m_{n}, m_{1}^{\prime}, \ldots, m_{n^{\prime}}^{\prime}\right]\left[v_{1}, \ldots, v_{n}, v_{1}^{\prime}, \ldots, v_{n^{\prime}}^{\prime}\right]\right\}$

$$
\begin{gathered}
\left\{\$ K_{\mathrm{rv}} \star \text { isList } \ell\left[v_{1}, \ldots, v_{n}\right]\right\} \\
\text { rev_of_list } \ell
\end{gathered}
$$

$$
\left\{\lambda s . \text { isStream } s[B \cdot n, 0, \ldots, 0]\left[v_{n}, \ldots, v_{1}\right]\right\}
$$

payStream
$\frac{\text { isStream } s\left[m_{1}, m_{2}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \$ p}{\Leftrightarrow \text { isStream } s\left[m_{1}-p, m_{2}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right]}$

ANTICIPATE+OVERESTIMATESTREAM

\Leftrightarrow isStream $s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]$

Anticipation

The banker's queue needs anticipation of debits in streams...

$$
\begin{aligned}
& \begin{array}{l}
\text { ANTICIPATE+OVERESTIMATESTREAM } \\
\text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \forall k . \sum_{i \leq k} m_{i} \leq \sum_{i \leq k} m_{i}^{\prime} \\
\Rightarrow \text { isStream } s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]
\end{array}
\end{aligned}
$$

...therefore in thunks:
anticipate
isThunk $t m \varphi$

$$
\Leftrightarrow \text { isThunk } t(m+n)(\$ n \star \varphi)
$$

Anticipation

The banker's queue needs anticipation of debits in streams...

$$
\begin{aligned}
& \begin{array}{l}
\text { ANTICIPATE+OVERESTIMATESTREAM } \\
\text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \forall k . \sum_{i \leq k} m_{i} \leq \sum_{i \leq k} m_{i}^{\prime} \\
\Rightarrow \text { isStream } s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]
\end{array} .
\end{aligned}
$$

...therefore in thunks:

$\frac{$| ANticlipate |
| :--- |
| isThunk $t m \varphi$ |}{$\Leftrightarrow \text { isThunk } t(m+n)(\$ n \star \varphi)$}

nonsensical, thunk
postconditions
must be persistent

Anticipation

The banker's queue needs anticipation of debits in streams...

$$
\begin{aligned}
& \begin{array}{l}
\text { ANTICIPATE+OVERESTIMATESTREAM } \\
\text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \forall k . \sum_{i \leq k} m_{i} \leq \sum_{i \leq k} m_{i}^{\prime} \\
\Rightarrow \text { isStream } s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]
\end{array}
\end{aligned}
$$

...therefore in thunks:
anticipate
isThunk $t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Anticipation

The banker's queue needs anticipation of debits in streams...

$$
\begin{aligned}
& \begin{array}{l}
\text { ANTICIPATE+OVERESTIMATESTREAM } \\
\text { isStream } s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \forall k . \sum_{i \leq k} m_{i} \leq \sum_{i \leq k} m_{i}^{\prime} \\
\Rightarrow \text { isStream } s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]
\end{array}
\end{aligned}
$$

...therefore in thunks:

anticipate

isThunk $t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Example: from rules PAY and ANTICIPATE we can derive:

$$
\begin{aligned}
& \text { isThunk } t_{1} m_{1}\left(\lambda t_{2} . \text { isThunk } t_{2} m_{2} \varphi\right) \begin{array}{c}
\$ n \star \text { isThunk } t_{2} m_{2} \varphi \\
\\
\\
\Rightarrow \text { isThunk } t_{1}\left(m_{1}+n\right)\left(\lambda t_{2} \text {. isThunk } t_{2}\left(m_{2}-n\right) \varphi\right)
\end{array} \text { isThunk } t_{2}\left(m_{2}-n\right) \varphi \\
& \text { (ANTICIPATE) }
\end{aligned}
$$

Conclusion

Three library layers: thunks (proven), streams (proven), queues (WIP) In this talk:

- anticipation of debit
- we overlooked it at first
- non-trivial proof: tree of debits, many invariants
- streams are chains of nested thunks

Not in this talk:

- reentrancy forbidden statically
- non-atomic invariants \Longrightarrow thunks have namespaces
- avoid reentrant streams \Longrightarrow streams have generations (internally)
- full proof of the banker's queue
- ghost debits! (WIP)
https://gitlab.inria.fr/gmevel/iris-time-proofs

Bibliography I

Danielsson, N. A. 2008. Lightweight semiformal time complexity analysis for purely functional data structures. In Principles of Programming Languages (POPL).

Mével, G., Jourdan, J.-H., et Pottier, F. 2019. Time credits and time receipts in Iris. In European Symposium on Programming (ESOP). Lecture Notes in Computer Science, vol. 11423. Springer, 1-27.

Okasaki, C. 1999. Purely Functional Data Structures. Cambridge University Press.

TARJAN, R. E. 1985. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods 6, 2, 306-318.

Ghost debits?

createDebit $\$ m \Rightarrow \square Q$	forceDebit debit $0 Q$
debit $m Q$	$\Leftrightarrow \triangleright Q$

> PERSISTDebit persistent (debit $m Q$)

overestimateDebit
debit $m_{1} Q \quad m_{1} \leq m_{2}$
debit $m_{2} Q$

$$
\begin{aligned}
& \begin{array}{l}
\text { PayDebit } \\
\operatorname{debit~} m Q \quad \$ p \\
\Rightarrow \operatorname{debit}(m-p) Q
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ANTICIPATEDEBIT } \\
& \frac{\operatorname{debit} m Q \quad \$ n \star Q \Rightarrow \square Q^{\prime}}{\Rightarrow \operatorname{debit}(m+n) Q^{\prime}}
\end{aligned}
$$

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.
isThunk $\operatorname{tm} \varphi \triangleq \operatorname{com}^{\wedge}$ thunkInv $t \varphi$
Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.

Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

- $\bullet_{\bullet-\eta^{\gamma}}$ asserts that the remaining cost is exactly n credits

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.
isThunk $\operatorname{tm} \varphi \triangleq \operatorname{lom}^{\gamma_{t}} \star$ thunkInv $t \varphi$
Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

- $\bullet_{n}^{n} \eta^{\gamma}$ asserts that the remaining cost is exactly n credits
- O_{1}, witnesses that the remaining cost is at most m credits

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.

Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

- $-n^{\gamma}$ asserts that the remaining cost is exactly n credits
- $\left.{ }^{\circ}=\right]^{\gamma}$ witnesses that the remaining cost is at most m credits \Longrightarrow persistent

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.
isThunk $\operatorname{tm} \varphi \triangleq \underbrace{}_{\text {thunkInv } t \varphi}$
Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

- $\bullet_{-n}^{n} i^{\gamma}$ asserts that the remaining cost is exactly n credits
- ${ }^{-\infty}$ \Longrightarrow persistent

Simplified proof

(assuming a ghost name γ_{t} for each location t, by convenience)
thunkInv $t \varphi \triangleq \exists n$.
isThunk $t m \varphi \triangleq \operatorname{lom}^{-1 \gamma_{t}} \star$ thunkInv $t \varphi$
Ghost state in $\operatorname{Auth}(\overline{\mathbb{N}}, \min)$ reflects the remaining cost:

- $\underbrace{}_{-\quad-\eta^{\gamma}}{ }^{\gamma}$ asserts that the remaining cost is exactly n credits
- ${ }^{\circ}$ \Longrightarrow persistent

spec of create:
spec of force: $(m=0) \Rightarrow(n=0) \Rightarrow(\$ n \equiv e m p)$

How to anticipate?

Problems:

- known upper bounds
- φ is fixed in the invariant \Longrightarrow can't change it

Solution: stack a new debit, with a new invariant, on top of the old one!

A stack of summand debits

Example scenario:

create a thunk with debit 5 and postcondition A

isThunk $t 5$ A

$$
\$ 5 * w p f()\{\square A\}
$$

A stack of summand debits

Example scenario:

isThunk $t 5$ A

$$
\$ 5 * w p f()\{\square A\}
$$

A stack of summand debits

Example scenario:

A stack of summand debits

Example scenario:

A stack of summand debits

Example scenario:

A stack of summand debits

Example scenario:

isThunk $t 5$ A

$$
\$ 5 * w p f()\{\square A\}
$$

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

$$
\begin{aligned}
& \text { pay } \$ 10 \\
& \text { isThuık } t 10 \mathrm{C}
\end{aligned}
$$

$$
\$ 3 \star B \Rightarrow \square C
$$

isThunk t 0 D
isThunk $t 7 B$

isThunk t 0 A isThunk $t 5$ A
$\square A v$

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

isThunk t 0 D

isThunk $t 0$ A
isThunk t 0 B

isThunk $t 0$ A
$\square A v$

A tree of summand debits

Example scenario:

isThunk t 0 D

isThunk t 0 A
isThunk t 0 B

isThunk $t 0$ A
$\square A v$

A tree of summand debits

Example scenario:

A tree of summand debits

Example scenario:

Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used Each height $h \in \mathbb{N}$ has its own debit $\gamma_{t, h}$

$$
\text { thunkInv } t \varphi \triangleq \exists n . \underbrace{-n_{1}^{\prime} \gamma_{t, 0}} \star \vee\left\{\begin{aligned}
\exists f . & t \mapsto \text { Future } f \star(\$ n \rightarrow w p f()\{\square \varphi\}) \\
t & \mapsto \text { Busy } \\
\exists v . t & \mapsto \text { Done } v \star \square \varphi v
\end{aligned}\right.
$$

$$
\operatorname{csq}^{2} \ln _{h} t \varphi \psi \triangleq \exists n \cdot{ }_{\bullet \bullet-n}^{\gamma_{t, h}} \star \vee\left\{\begin{array}{l}
\forall v . \$ n \star \varphi v \Rightarrow \square \psi v \\
\square \psi v
\end{array}\right.
$$

isThunk $_{0} t m \varphi \triangleq \quad$ thunkInv $t \varphi$
isThunk $_{h} t m \varphi \triangleq \exists m^{\prime}, \psi \cdot m^{\prime} \leq m \star \operatorname{csq}^{\prime} \operatorname{mon}_{h} t \psi \varphi$

$$
\star \text { isThunk }_{h-1} t\left(m-m^{\prime}\right) \psi
$$

isThunk $\operatorname{tm} \varphi \triangleq \exists h$. isThunk $_{h} \operatorname{tm} \varphi$

Proof with anticipation

We stack a new invariant and ghost state each time anticipate is used Each height $h \in \mathbb{N}$ has its own debit $\gamma_{t, h}$

$$
\begin{aligned}
& \text { thunkInv } t \varphi \triangleq \exists n . \\
& \operatorname{csq}^{2} \ln _{h} t \varphi \psi \triangleq \exists n .{ }^{\bullet-n} \gamma_{t, h} \star \vee\left\{\begin{array}{l}
\forall v . \$ n \star \varphi v \Rightarrow \square \psi v \\
\square \psi v
\end{array}\right.
\end{aligned}
$$

isThunk $_{0} t m \varphi \triangleq \quad$ thunkInv $t \varphi$
isThunk $_{h} t m \varphi \triangleq \exists m^{\prime}, \psi \cdot m^{\prime} \leq m \star \operatorname{csqlnv}_{h} t \psi \varphi$

$$
\star \text { isThunk }_{h-1} t\left(m-m^{\prime}\right) \psi
$$

isThunk $\operatorname{tm} \varphi \triangleq \exists h$. isThunk $_{h} \operatorname{tm} \varphi$
Omitted: ghost state in $\operatorname{Auth}(\operatorname{Ex}()+\operatorname{Ag}(\mathrm{VAL}))$ for remembering the value computed

Actual implementation of thunks

type ' α thunk = ' α thunk_contents ref and ' α thunk_contents =
| Future of (unit \rightarrow ' α)
| Done of ' α
let create $f=$ ref (Future f)
let force $t=$ match! t with
| Future $f \rightarrow$

$$
\text { let } v=f() \text { in } \quad-\text { evaluate the thunk }
$$

$t:=$ Done $v ; \quad$ - memoize the result
v
\mid Done $v \rightarrow$
v
No reentrancy detection (2 states only) \Longrightarrow static proof obligations

Specification of thunks

$$
\begin{array}{cc}
\left\{\$ K_{\mathrm{cr}} \star(\$ n-* \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\text {fic }} \star \text { isThunk } t 0 \varphi\right\} \\
\text { create } f & \text { force } t \\
\{\lambda t \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v\} \\
\text { PERSIST } \\
\text { persistent }(\text { isThunk } t m \varphi)
\end{array}
$$

OVERESTIMATE
$\frac{\text { isThunk } t m_{1} \varphi \quad m_{1} \leq m_{2}}{\text { isThunk } t m_{2} \varphi}$

$$
\begin{aligned}
& \frac{\text { PAY }}{\text { isThunk } t m \varphi} \\
& \Rightarrow \text { isThunk } t(m-p) \varphi
\end{aligned}
$$

ANTICIPATE
isThunkt $m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Specification of thunks

Specification of thunks

$$
\begin{array}{cc}
\left\{\$ K_{\mathrm{cr}} \star(\$ n-* \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\text {fic }} \star \text { isThunk } t 0 \varphi\right\} \\
\text { create } f & \text { force } t \\
\{\lambda t \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v\} \\
\text { PERSIST } \\
\text { persistent }(\text { isThunk } t m \varphi)
\end{array}
$$

OVERESTIMATE
$\frac{\text { isThunk } t m_{1} \varphi \quad m_{1} \leq m_{2}}{\text { isThunk } t m_{2} \varphi}$

$$
\begin{aligned}
& \frac{\text { PAY }}{\text { isThunk } t m \varphi} \\
& \Rightarrow \text { isThunk } t(m-p) \varphi
\end{aligned}
$$

ANTICIPATE
isThunkt $m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Specification of thunks

$$
\begin{array}{cc}
\left\{\$ K_{\mathrm{cr}} \star(\$ n \rightarrow \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\text {fic }} \star \text { isThunk } t 0 \varphi\right\} \\
\text { create } f & \text { force } t \\
\{\lambda \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v\}
\end{array}
$$

PERSIST

$$
\begin{gathered}
\text { persis } \\
\text { Reentrancy? }
\end{gathered}
$$

overestimate
isThunk $t m_{1} \varphi \quad m_{1} \leq m_{2}$ isThunk $t m_{2} \varphi$

PAY
$\frac{\text { isThunk t } m \varphi \quad \$ p}{\# \text { isThunk } t(m-p) \varphi}$

ANTICIPATE isThunkt $m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$ \Rightarrow isThunk $t(m+n) \psi$

Specification of thunks

One canForce token exists at the beginning of the world

canForceExcl canForce canForce False

$$
\begin{array}{cc}
\left\{\$ K_{\mathrm{cr}} \star(\$ n \rightarrow \text { wp } f()\{\square \varphi\})\right\} & \left\{\$ K_{\mathrm{frc}} \star \text { isThunk } t 0 \varphi \star \text { canForce }\right\} \\
\text { create } f & \text { force } t \\
\{\lambda t . \text { isThunk } t n \varphi\} & \{\lambda v . \varphi v \star \text { canForce }\} \\
\text { PERSIST } \\
\text { persistent }(\text { isThunk } t m \varphi)
\end{array}
$$

overestimate		PAY	
isThunk $t m_{1} \varphi$	$m_{1} \leq m_{2}$	isThunk $t \mathrm{~m} \varphi$	\$p
isThunk		\Rightarrow isThunk t (m	p) φ

ANTICIPATE
isThunk $t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Specification of thunks

canForceExcl
One canForce token exists at the beginning of the world
$\frac{\text { canForce canForce }}{\text { False }}$

$$
\begin{gathered}
\left\{\$ K_{\mathrm{cr}} \star(\$ n * w p f()\{\square \varphi\})\right\} \\
\text { create } f \\
\{\lambda t . \text { isThunk } t n \varphi\} \\
\text { How to force a thunk from another thunk? } \\
\text { persisistent }(\text { isThunk } t \mathrm{~m} \varphi)
\end{gathered}
$$

OVERESTIMATE
isThunk $t m_{1} \varphi$

isThunk $t m_{2} \varphi$$\quad$| PAY |
| :--- |
| $\frac{\text { isThunk } t m \varphi \quad \$ p}{\equiv \text { isThunk } t(m-p) \varphi}$ |

ANTICIPATE
isThunk $t m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Leftrightarrow \text { isThunk } t(m+n) \psi
$$

Specification of thunks

canForceExcl

One canForce \top token exists at the beginning of the world
$\frac{\text { canForce } \mathcal{N}_{1} \quad \text { canForce } \mathcal{N}_{2}}{\left(\uparrow \mathcal{N}_{1}\right) \cap\left(\uparrow \mathcal{N}_{2}\right)=\varnothing}$

$$
\begin{aligned}
& \left\{\$ K_{\mathrm{cr}} \star(\$ n \rightarrow w p f()\{\square \varphi\})\right\} \quad\left\{\$ K_{\text {frc }} \star \text { isThunk } t \mathcal{N} 0 \varphi \star \text { canForce } \mathcal{N}\right\} \\
& \text { create } f \\
& \{\lambda t \text {. isThunk } t \mathcal{N} n \varphi\} \\
& \text { force } t \\
& \{\lambda v . \varphi v \star \text { canForce } \mathcal{N}\} \\
& \text { PERSIST } \\
& \text { persistent (isThunk } t \mathcal{N} m \varphi \text {) }
\end{aligned}
$$

overestimate
isThunk $t \mathcal{N} m_{1} \varphi \quad m_{1} \leq m_{2}$ isThunk $t \mathcal{N} m_{2} \varphi$

PAY
$\frac{\text { isThunk } t \mathcal{N} m \varphi \quad \$ p}{\Leftrightarrow \text { isThunk } t \mathcal{N}(m-p) \varphi}$

ANTICIPATE
isThunk $t \mathcal{N} m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$

$$
\Rightarrow \text { isThunk } t \mathcal{N}(m+n) \psi
$$

Specification of thunks

canForceExcl

One canForce \top token exists at the beginning of the world
$\frac{\text { canForce } \mathcal{N}_{1} \quad \text { canForce } \mathcal{N}_{2}}{\left(\uparrow \mathcal{N}_{1}\right) \cap\left(\uparrow \mathcal{N}_{2}\right)=\varnothing}$

$$
\begin{gathered}
\left\{\$ K_{\mathrm{cr}} \star(\$ n \rightarrow \text { wp } f()\{\square \varphi\})\right\} \\
\text { create } f \\
\{\lambda t . \text { isThunk } t \mathcal{N} n \varphi\} \\
\text {...But how to thread the token to the inner thunk? } \\
\text { persistent }(\text { isThunk } t \mathcal{N} m \varphi)
\end{gathered}
$$

| OVERESTIMATE
 isThunk $t \mathcal{N} m_{1} \varphi \quad m_{1} \leq m_{2}$
 isThunk $t \mathcal{N} m_{2} \varphi$ |
| :--- | | PAY |
| :--- |
| isThunk $t \mathcal{N} m \varphi \quad \$ p$ |
| \models isThunk $t \mathcal{N}(m-p) \varphi$ |

ANTICIPATE
isThunk $t \mathcal{N} m \varphi \quad \forall v . \$ n \star \varphi v \Rightarrow \square \psi v$
\Rightarrow isThunk $t \mathcal{N}(m+n) \psi$

Specification of thunks

canForceExcl

One canForce T token exists
at the beginning of the world

$\left.\$ K_{\mathrm{cr}} \star(\$ n \star R \rightarrow w p f()\{\square \varphi \star R\})\right\}\left\{\$ K_{\mathrm{frc}} \star\right.$ isThunk $t \mathcal{N} 0 R \varphi \star$ canForce $\mathcal{N} \star R$ create f
$\{\lambda t$. isThunk $t \mathcal{N} n R \varphi\} \quad\{\lambda v . \varphi v \star$ canForce $\mathcal{N} \star R\}$

> PERSIST
> persistent (isThunk $t \mathcal{N} m R \varphi$)
overestimate
$\frac{\text { isThunk } t \mathcal{N} m_{1} R \varphi \quad m_{1} \leq m_{2}}{\text { isThunk } t \mathcal{N} m_{2} R \varphi}$

PAY
$\frac{\text { isThunk } t \mathcal{N} m R \varphi \quad \$ p}{\Leftrightarrow \text { isThunk } t \mathcal{N}(m-p) R \varphi}$

ANTICIPATE
isThunk $t \mathcal{N} m R \varphi \quad \forall v . \$ n \star \varphi v \star R \Rightarrow \square \psi v \star R$
\Leftrightarrow isThunk $t \mathcal{N}(m+n) R \psi$

Implementation of streams

type ' α stream $=$ ' α cell thunk

- a stream is computed on-demand
and ' α cell $=$ Nil \mid Cons of ' $\alpha \times$ ' α stream
let $\operatorname{pop}(x s$: ' α stream $)=$ match Thunk.force xs with
Cons $\left(x, x s^{\prime}\right) \rightarrow$ Some $\left(x, x s^{\prime}\right)$
\mid Nil \rightarrow None
let rec append (xs : ' α stream) $(y s$: ' α stream $)=$
Thunk.create@@fun() \rightarrow
- this thunk has a constant overhead match Thunk.force xs with
\mid Cons $\left(x, x s^{\prime}\right) \rightarrow$ Cons (x, append $x s^{\prime} y s$)
\mid Nil \rightarrow Thunk.force ys
let rev_of_list (xs : ' α list) : ' α stream $=$
let rec rev_app (xs : ' α list) $(y s: ' \alpha$ cell) $=\quad$ rev_app reverses the list eagerly match xs with
$-\downarrow$ these new thunks have cost 0
$\mid x:: x s^{\prime} \rightarrow r e v _a p p x s^{\prime}($ Cons $(x$, Thunk.create@@fun() $\rightarrow y s)$)
$\mid[] \rightarrow y s$ in
Thunk.create@@fun() \rightarrow rev_app xs Nil
- this leading thunk is costly

(Selected rules) Specification of streams

$\left\{\$ K_{\text {ap }} \star\right.$ isStream $s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \star$ isStream $\left.s^{\prime}\left[m_{1}^{\prime}, \ldots, m_{n^{\prime}}^{\prime}\right]\left[v_{1}^{\prime}, \ldots, v_{n^{\prime}}^{\prime}\right]\right\}$ append $s s^{\prime}$
$\left\{\lambda\right.$. isStream $\left.t\left[A+m_{1}, \ldots, A+m_{n}, m_{1}^{\prime}, \ldots, m_{n^{\prime}}^{\prime}\right]\left[v_{1}, \ldots, v_{n}, v_{1}^{\prime}, \ldots, v_{n^{\prime}}^{\prime}\right]\right\}$

$$
\begin{gathered}
\left\{\$ K_{\mathrm{rv}} \star \text { isList } \ell\left[v_{1}, \ldots, v_{n}\right]\right\} \\
\text { rev_of_list } \ell \\
\left\{\lambda s . \text { isStream } s[B \cdot n, 0, \ldots, 0]\left[v_{n}, \ldots, v_{1}\right]\right\}
\end{gathered}
$$

payStream
$\frac{\text { isStream } s\left[m_{1}, m_{2}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \quad \$ p}{\Rightarrow \text { isStream } s\left[m_{1}-p, m_{2}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right]}$
anticipate + overestimateStream

\Leftrightarrow isStream $s\left[m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right]\left[v_{1}, \ldots, v_{n}\right]$

Generations

We forbid recursive streams by using generations $g \in \mathbb{N}$:
isStream $s\left[m_{1}, \ldots, m_{n}\right]\left[v_{1}, \ldots, v_{n}\right] \triangleq$
$\exists g_{1}$. isThunk $s \mathcal{N}_{g_{1}} m_{1}\left(\right.$ nalnvTok $\left.\mathcal{E}_{g_{1}}\right)\left(\lambda c_{1} . \exists s_{2} . c_{1}=\operatorname{Cons}\left(v_{1}, s_{2}\right) \star\right.$ $\exists g_{2} \leq g_{1}$. isThunk $s_{2} \mathcal{N}_{g_{2}} m_{2}\left(\right.$ nalnvTok $\left.\mathcal{E}_{g_{2}}\right)\left(\lambda c_{2} . \exists s_{3} . c_{2}=\operatorname{Cons}\left(v_{2}, s_{3}\right)\right.$ \ddots.

$$
\exists g_{n+1} \leq g_{n} . \text { isThunk } s_{n+1} \mathcal{N}_{g_{n+1}} 0\left(\text { nalnvTok } \mathcal{E}_{g_{n+1}}\right)\left(\lambda c_{n+1} \cdot c_{n+1}=\right.
$$

where:

$$
\begin{aligned}
\mathcal{E}_{g} & \triangleq \top \backslash \uparrow \mathcal{N}_{g} \\
\mathcal{E}_{g} & \subseteq \mathcal{E}_{g+1} \\
\uparrow \mathcal{N}_{g+1} & \subseteq \uparrow \mathcal{N}_{g}
\end{aligned}
$$

