Simulating Finite Eilenberg Machines with a Reactive Engine

Benoît Razet

INRIA Paris-Rocquencourt

Abstract

Eilenberg machines have been introduced in 1974 in the field of formal language theory. They are finite automata for which the alphabet is interpreted by mathematical relations over an abstract set. They generalize many finite state machines. We consider in the present work the subclass of finite Eilenberg machines for which we provide an executable complete simulator. This program is specified using the Coq proof assistant. The correctness of the algorithm is also proved formally and mechanically verified using Coq. Using its extraction mechanism, the Coq proof assistant allows to translate the specification into an executable OCaml program. The algorithm and specification are inspired from the reactive engine of Gérard Huet. The finite Eilenberg machines model includes deterministic and non-deterministic automata (DFA and NFA) but also real-time transducers. As an example, we present a pushdown automaton (PDA) recognizing ambiguous terms of the λ-calculus. We show that this pushdown automaton is a finite Eilenberg machine, then the simulation using the reactive engine provides a complete recognizer for this particular context-free language.

Keywords: Automata, Eilenberg machines, Coq

1 Introduction

Samuel Eilenberg introduced in the chapter 10 of his book “Automata, Languages and Machines” [4] a general computational model, now called Eilenberg machines, meant to study the formal languages of the Chomsky hierarchy. In this formalism a machine is defined as an automaton labelled with binary relations over a set X. The set X abstracts data structures common in language theory such as tapes, counters, stacks, etc, used by automata on words, push-down automata, transducers etc. Moreover binary relations give a built-in notion of non-determinism. Many translations [4] of usual computational models such as automata, transducers, real-time transducers, two-way automata, push-down automata and Turing machines can be presented as Eilenberg machines.

The generality of this model is interesting for specifying problems that use many different kind of machines. Unfortunately the expressive power of this formalism and its presentation in set theory makes it unrealistic from an effective point of
view. For these reasons we have introduced a restriction of the model called finite Eilenberg machines in a recent paper [8]. We have provided a simulation algorithm, in the spirit of the reactive engine of Gérard Huet [5]. It is written in OCaml [7] and we have given an informal proof of its correctness.

The proof of correctness uses an inductive principle based on the multiset ordering [3] over three mutually recursive predicates. Due to the subtlety of the termination argument we find necessary to formalize the simulation in a proof assistant. Using the Coq proof assistant [1] and its PROGRAM extension [10], we provide a specification of finite Eilenberg machines along with mechanized proof of its termination and correctness.

The remainder of this paper is organized as follows. Section 2 provides the specification of finite Eilenberg machines. Section 3 presents the termination proof techniques needed for the reactive engine definition provided in Section 4. Section 5 presents the proof of correctness of the reactive engine. Section 6 discusses the program obtained by the extraction mechanism of Coq. Section 7 provides an example of a pushdown automaton recognizing words of the λ-calculus as a finite Eilenberg machine and discusses the efficiency of the reactive engine which provides all solutions with respect to the pushdown automaton.

2 Finite Eilenberg machines

We recall that unit is the singleton datatype containing the unique value denoted tt. In our specification streams are finitely defined objects for enumerating on demand (lazy lists).

```
Inductive stream (data : Set) : Set :=
  | EOS : stream data
  | Stream : data → (unit → stream data) → stream data.

Definition delay (data : Set) : Set := unit → stream data.
```

A stream value is either the empty stream EOS (“End of Stream”) for encoding the empty enumeration or else a value Stream d del that provides the first element d of the enumeration and a value del as a delayed computation of the rest of the enumeration. Since this specification will be translated into ML and because ML computes with the restriction of λ-calculus to weak reduction, the computation of a value of type delay data such as del is delayed because it is a functional value. This well known technique permits computation on demand. Note that this technique would not apply in a programming language evaluating inside a function body (strong reduction in λ-calculus terminology). Remark that a stream value is necessarily finite because it is an Inductive definition. More general datatypes allowing potentially infinite values in Coq are provided by CoInductive construction.

Mathematical relations are objects that specify possibly non-deterministic computation. We restrict our study to binary relations on a domain data which are defined as Coq functions from data to streams of data:

```
Definition relation (data : Set) : Set := data → stream data.
```

The choice of breaking the symmetry of relations is justified by the isomorphism between subsets of pairs of values of a set X and functions from X to subsets of X. A stream value may encode a finite set, thus relations of type relation are locally
finite relations that is: for all data \(d \) the set of elements in relation with \(d \) is finite.

Let us introduce a membership predicate for streams similar to the predicate \(\text{In} \) in library \textit{List}:

\[
\text{Inductive In_stream (data : Set) : data \to \text{stream data} \to \text{Prop} :=}
\]
\[
| \text{InStr1 : } \forall (d : \text{data}) (\text{del} : \text{delay data}),
\text{In_stream } __ _ _ _ _ _ d (\text{Stream data d del}) \\
| \text{InStr2 : } \forall (d : \text{data}) (d' : \text{data}) (\text{del} : \text{delay data}),
\text{In_delay data d del } \to \text{In_stream } __ _ _ _ _ _ d (\text{Stream data d' del})
\]

\[
\text{with In_delay (data : Set) : data \to \text{delay data} \to \text{Prop} :=}
\]
\[
| \text{InDel: } \forall (d : \text{data}) (\text{del} : \text{delay data}),
\text{In_stream } __ _ _ _ _ _ d (\text{del tt}) \to \text{In_delay } __ _ _ _ _ _ _ d \text{ del}.
\]

It is an \textit{Inductive} mutually recursive predicate on both \textit{stream} and \textit{delay} types.

We define our subclass of Eilenberg machine first using relations specified as being of type \textit{relation} then as a module containing five parameters. Let us call such a module a \textit{Machine}:

\[
\text{Module Type Machine.}
\]
\[
\text{Parameter data: Set.}
\]
\[
\text{Parameter state: Set.}
\]
\[
\text{Parameter transition: state \to list ((relation data) * state).}
\]
\[
\text{Parameter initial: list state.}
\]
\[
\text{Parameter terminal: state \to bool.}
\]
\[
\text{End Machine.}
\]

Libraries \textit{List} and \textit{Bool} provide datastructure types \textit{list} and \textit{bool}. The parameter \textit{data} corresponds to an abstract set referred as \(X \) in the original work of Eilenberg.

The other parameters \textit{state}, \textit{transition}, \textit{initial} and \textit{terminal} encode the automaton structure traditionally written \((Q, \delta, I, T)\). A machine is an automaton labelled with relations instead of a traditional alphabet. In the remainder we will use the following notations: \(d \ d' \ d1 \) for a \textit{data} value, \(s \ s' \ s1 \) for a \textit{state} value, \(ch \ ch' \ ch1 \) for a \textit{list ((relation data) * state)} value and \(rel \ rel' \ rel1 \) for values of type \textit{relation data}.

Now we assume given a machine \(M \) of type \textit{Machine} declaring a functor with \(M \) as argument.

\[
\text{Module Engine (M : Machine).}
\]
\[
\text{Import M.}
\]

The following \textit{cell} type is the “state” notion for the machine, it is the cartesian product of \textit{data} and \textit{state}.

\[
\text{Definition cell : Set := (data * state).}
\]

The following \textit{edge} property specifies a correct reduction step in the machine \(M \):

\[
\text{Definition edge d s rel d' s' : Prop :=}
\]
\[
\text{In (rel,s')} (\text{transition s}) \land \text{In_stream data d' (rel d)}.
\]

Intuitively, it is a relation between two cells \((d,s)\) and \((d',s')\) linked by a relation \(rel; (rel,s') \) is a transition of state \(s \) and \(d d' \) are in relation by \(rel \).

A finite sequence of reduction steps is encoded in the manner of lists:

\[
\text{Inductive sequence : Set :=}
\]
\[
| \text{Seq1: data \to state \to sequence}
| \text{Seq2: data \to state \to (relation data) \to sequence \to sequence.}
\]

A sequence of reductions is not allowed to be empty, it contains at least one cell. This definition of sequence does not specify the fact that reductions are correct
edges, this is specified using the \textit{path} predicate defined below. For this purpose functions \texttt{hd_seq} and \texttt{tl_seq} give respectively the heading cell and the cell of the tail of a sequence \texttt{seq}:

\begin{verbatim}
Definition hd_seq (seq : sequence) : cell :=
 match seq
 | Seq1 d s ⇒ (d, s)
 | Seq2 d s _ _ ⇒ (d, s)
end.

Fixpoint tl_seq (seq : sequence) struct seq : cell :=
 match seq
 | Seq1 d s ⇒ (d, s)
 | Seq2 _ _ _ seq' ⇒ tl_seq seq'
end.
\end{verbatim}

A correct sequence is then defined as the following inductive predicate:

\begin{verbatim}
Inductive path : sequence → Prop :=
 Path1 : ∀ d s, path (Seq1 d s)
 Path2 : ∀ d s rel d' s' seq,
 path seq → (d', s') = hd_seq seq → edge d s rel d' s' →
 path (Seq2 d s rel seq).
\end{verbatim}

The following two functions \texttt{init} and \texttt{term} ensure that the state of a cell \texttt{c} is initial and terminal with respect to \texttt{initial} and \texttt{terminal} parameters of the machine \texttt{M}.

\begin{verbatim}
Definition init (c : cell) : Prop := In (snd c) initial.
Definition term (c : cell) : Prop := terminal (snd c) = true.
\end{verbatim}

Finally we formalize a data \texttt{d'} to be a solution of data \texttt{d} with respect to machine \texttt{M} as the following:

\begin{verbatim}
Definition Solution (d d' : data) : Prop :=
 ∃ seq : sequence, path seq → d = fst (hd_seq seq) ∧ d' = fst (tl_seq seq) ∧
 init (hd_seq seq) ∧ term (tl_seq seq).
\end{verbatim}

The data \texttt{d'} is a solution of \texttt{d} if and only if there exists a path between them beginning with an initial state and ending with a terminal state.

We recall that the \textit{finite Eilenberg machine} model \cite{8} consists in two restrictions with respect to Eilenberg machines:

(i) The above specification of relation operation as function from \texttt{data} to finite stream of \texttt{data}. \textit{(first condition)}

(ii) “Computations” are necessarily finite. \textit{(second condition)}

For this second condition we introduce a relation on cells and we assume it is a well-founded relation:

\begin{verbatim}
Definition Rcell (c' c : cell) : Prop := ∃ rel : relation data,
 edge (fst c) (snd c) rel (fst c') (snd c').
Hypothesis WfRcell : ∀ c:cell, Acc Rcell c.
\end{verbatim}

It will be clear in Section 3 why this hypothesis corresponds to the non existence of infinite path. At this point we have all we need to enunciate the theorem we aim at proving:

\begin{verbatim}
Theorem goal : ∃ f : (relation data),
 ∀ (d d' : data), Solution d d' ←→ In_stream data d' (f d).
\end{verbatim}

It says that there exists a functional relation \texttt{f} simulating correctly the machine \texttt{M} with respect to the \texttt{Solution} specification. In the remainder we will provide such a \texttt{f} which is a generalization of the reactive engine of Gérard Huet and prove the
theorem for this function. Even if our function \(f \) will be a reactive process by nature, we will show that \(f \) terminates for any data \(d \), this allows us to define it using the Fixpoint construction of Coq. We will say that \(f \) is the characteristic relation of \(M \) and thus call it characteristic_relation.

3 Construction of the termination argument for the reactive engine

In this section we give termination proof techniques for proving the termination of the process that simulates any finite Eilenberg machine. The techniques rely on the use of well-founded relations. Coq provides a library for this purpose called \(\text{Wf} \). Let us recall basic notions of the library. First, a binary relation on elements of type \(A \) is a predicate \(R : A \rightarrow A \rightarrow \text{Prop} \). A well-founded relation is a relation for which the chains of elements left-related by \(R \) are necessarily finite. This is formalized by the following accessibility predicate \(\text{Acc} \):

Inductive Acc (R : A \rightarrow A \rightarrow \text{Prop}) (x: A) : Prop :=
| Acc_intro : (\forall y:A, R y x \rightarrow Acc R y) \rightarrow Acc R x.

Intuitively, if \(\text{Acc} R x \) holds then there cannot be an infinite sequence \(x_i (i \in \mathbb{N}) \) such that \(R x_{i+1} x_i \) holds for any index \(i \). A relation \(R \) is well-founded if every element is accessible:

Definition well_founded (R : A \rightarrow A \rightarrow \text{Prop}) := \forall a:A, Acc R a.

We also consider the well-founded induction principle \(\text{well_founded_ind} \):

Theorem well_founded_ind : \forall (R : A \rightarrow A \rightarrow \text{Prop}),
well_founded R \rightarrow
\forall P : A \rightarrow \text{Prop},
(\forall x : A, (\forall y : A, R y x \rightarrow P y) \rightarrow P x) \rightarrow \forall a : A, P a.

Further explanations are provided in the book of Yves Bertot and Pierre Castéran \([2]\). Now we shall define a type of module containing a set \(D \) and a well-founded relation \(R \) and call this module type \(\text{WFMODULE} \):

Module Type WFMODULE.
Parameter D : Set.
Parameter R : D \rightarrow D \rightarrow \text{Prop}.
Hypothesis WFD : \forall d : D, Acc R d.
End WFMODULE.

The traditional well-founded relation on lists is the ordering on their length. Let us define a new well-founded relation on lists called BiListExtension:

Module BiListExtension (N : WFMODULE).
Import N.
Inductive Rext : list D \rightarrow list D \rightarrow \text{Prop} :=
| Rext1 : \forall (d : D) (l : list D), Rext 1 (d :: l)
| Rext2 : \forall (d1 d2 : D) (l : list D),
 R d1 d2 \rightarrow Rext (d1 :: l) (d2 :: l)
| Rext3 : \forall (d1 d2 d3 : D) (l : list D),
 R d1 d3 \rightarrow R d2 d3 \rightarrow Rext (d1 :: (d2 :: l)) (d3 :: l).

The relation \(\text{Rext} \) is a simple case of the multiset ordering extension \([3]\) for the two following reasons:

(i) The replacement of one element is performed only on the element at the head of the list and not at any position.

(ii) It replaces an element with at most two elements strictly less with respect to the relation \(R \). The multiset ordering allows instead the replacement of one
element by a finite multiset of others strictly less.

We prove that \(R_{\text{ext}} \) is well-founded:

Theorem WfRext: \(\forall (1 : \text{list } D), \text{Acc } R_{\text{ext}} 1. \)

The proof is by structural induction on the list 1, using the fact that \(D \) is well-founded.

End BiListExtension.

Let us introduce an abbreviation for list of transitions of the machine \(M \):

Definition choice : Set := list ((relation data) * state).

We define the following two datatypes used by the reactive engine:

Inductive backtrack : Set :=
| Advance : data → state → backtrack |
| Choose : data → state → choice → (relation data) → (delay data) → state → backtrack. |

Definition resumption : Set := list backtrack.

Finite Eilenberg machines are possibly non-deterministic and need thus a backtracking mechanism for their simulation. Values of type backtrack allow to save the multiple choices due to the non-deterministic nature of the machine. The reactive engine will stack such backtrack values in a resumption of type resumption. A value Advance \(d \ s \) means being on cell \((d,s) \). A value Backtrack \(d \ s \ ch \ rel \ del \ s' \) means being on cell \((d,s) \), looking at transition \((\text{rel},s') \) of \(\text{transition } s \), \(\text{del} \) being a delay of \((\text{rel } d) \) and \(ch\) transitions included in \(\text{transition } s \). This is specified by the following WellFormedBack predicate which is an invariant of any backtrack value constructed:

Inductive WellFormedBack : backtrack → Prop :=
| WFB1 : \(\forall d \ s, \text{WellFormedBack } \text{(Advance } d \ s) \) |
| WFB2 : \(\forall d \ s ch \ rel \ del \ s', \text{In }\)\((\text{rel},s') \)\(\text{(transition } s) \)\(\rightarrow \text{In}_{\text{stream }\text{data}} d1 \)\((\text{del }tt) \)\(\rightarrow \text{In}_{\text{stream }\text{data}} d1 \)\((\text{rel }d) \)\(\rightarrow \text{incl } ch \)\(\)\(\text{(transition } s) \)\(\rightarrow \text{WellFormedBack } \text{(Choose } d \ s ch \ rel \ del \ s') \). |

Well formed resumptions are lists of well formed backtrack values:

Definition WellFormedRes (res : resumption) : Prop :=
\(\forall b: \text{backtrack}, \text{In } b \text{ res } \Rightarrow \text{WellFormedBack } b \).

In Coq we need to prove the termination of recursive functions. Let us now construct our argument of termination. First we introduce a measure \(\text{chi} \) which is a triple consisting of a cell and two natural numbers:

Inductive \(\text{chi} \) : Set :=
| Chi: cell → nat → nat → \(\text{chi} \). |

The two natural numbers are respectively the length of a choice list and the length of a stream. The first one is already available in the library \(\text{List} \) with the function length and the second one is the function length_del defined here as the following:

Fixpoint length_str (str : stream data) {struct str} : nat :=
| \text{EOS } \Rightarrow 0 |
| \text{Stream } _ {\text{del}} \Rightarrow S (\text{length_str } \text{(del }tt)) |

Definition length_del (del : delay data) : nat :=
\(\text{length_str } (\text{del }tt) \).

A \(\text{chi} \) measure is associated to backtrack values as the following:

117
The final measure value we will consider for proving the termination is list of chi measure. Such values are associated to any resumption using the map function of module List:

\[
\text{Definition chi_res (res : resumption) : list chi := map chi_back res.}
\]

Now we are to introduce a well-founded relation on lists of chi and use it for the termination of the reactive engine. The Pred relation is simply the predecessor relation on natural numbers which is well-founded:

\[
\text{Definition Pred (n' n : nat) : Prop := n = S n'.}
\]

\[
\text{Lemma WfPred: } \forall n:nat, \text{ Acc Pred n.}
\]

Let RChi be a relation on chi which is a specific lexicographic ordering.

\[
\text{Inductive RChi : chi \rightarrow chi \rightarrow Prop :=}
\]

\[
| \text{RC1: } \forall c' n1' n2' c n1 n2, \quad \text{Rcell c' c } \rightarrow \text{RChi (Chi c' n1' n2') (Chi c n1 n2)}
| \text{RC2: } \forall c n1' n2' n1 n2, \quad \text{Pred n1' n1 } \rightarrow \text{RChi (Chi c n1' n2') (Chi c n1 n2)}
| \text{RC3: } \forall c n1 n2' n2, \quad \text{Pred n2' n2 } \rightarrow \text{RChi (Chi c n1 n2') (Chi c n1 n2)}
\]

The relation RChi is also well-founded.

\[
\text{Lemma WfRChi: } \forall v:chi, \text{ Acc RChi v.}
\]

Now we extend RChi as a BiListExtension in the module called MyUtil:

\[
\text{Module ModuleWfChiRes.}
\]

\[
\text{Definition D := chi.}
\]

\[
\text{Definition R := Rchi.}
\]

\[
\text{Definition WFD := WfRChi.}
\]

\[
\text{End ModuleWfChiRes.}
\]

\[
\text{Module MyUtil := BiListExtension(ModuleWfChiRes).}
\]

\[
\text{Import MyUtil.}
\]

We thus obtain the corresponding instance of the well-founded Rext relation on lists of chi.

4 The reactive engine

We are now going to introduce the so-called reactive engine which simulates the finite Eilenberg machine \(M \) which is a priori a non-deterministic machine; a data \(d \) may have many solutions \(d' \) with respect to the Solution predicate.

The central part of the reactive engine is defined as three mutually recursive functions react, choose and continue with the PROGRAM Coq extension [10].

\[
\text{Program Fixpoint react (d : data) (s : state) (res : resumption) (h1 : WellFormedRes res res) (h : Acc Rext ((Chi (d, s) (S (length (transition s))) O) :: (chi_res res)))}{\text{ (struct h) : (stream data) :=}}
\]

\[
\text{if terminal s then Stream data d (fun x:unit => choose d s (transition s) res h1 _ _)}
\]

\[
\text{else choose d s (transition s) res h1 _ _ with choose (d : data) (s : state) (ch : choice) (res : resumption) (h1 : WellFormedRes res res) (h2 : incl ch (transition s))}{\text{ (h : Acc Rext ((Chi (d, s) (length ch) O) :: (chi_res res)))}}
\]
(struct h) : (stream data) :=
match ch with
| [] ⇒ continue res h1 _
| (rel, s') :: rest ⇒
match (rel d) with
| EOS ⇒ choose d s rest res h1 _
| Stream d' del ⇒ react d' s' ((Choose d s rest rel del s') :: res) _ _
end
end

with continue (res : resumption)
(h1 : WellFormedRes res)
(h : Acc Rext (chi_res res)) {struct h} : (stream data) :=
match res with
| [] ⇒ EOS data
| back :: res' ⇒
match back with
| Advance d s ⇒ react d s res' _ _
| Choose d s rest rel del s' ⇒
match (del tt) with
| EOS ⇒ choose d s rest res' _ _
| Stream d' del' ⇒ react d' s' ((Choose d s rest rel del' s') :: res') _ _
end
end
end.

First omit parameters h1, h2 and h in this definition. The function react checks whether the state is terminal and then provides an element of the stream delaying the rest of the exploration calling the function choose. This function choose performs the non-deterministic search over transitions, choosing them in the natural order induced by the list data structure. The function continue manages the backtracking mechanism and the enumeration of finite streams of relations; it always chooses to backtrack on the last pushed value in the resumption. Remark that these three mutually recursive functions do not use any side effect and are written in a pure functional style completely tail-recursive using the resumption as a continuation mechanism.

The three functions ensure that arguments computed are well formed as a post-condition if arguments are well-formed as a pre-condition in the predicate h1. The predicate h2 ensures a part of the well-formedness of the list of transitions in function choose. The termination is ensured using the accessibility predicate on list of chi in the predicate h; the property WfRext is used to ensure that all recursive calls are performed with structurally less argument of h.

Using the PROGRAM extension of Coq [10] we obtain a readable program definition. It is due to two features of PROGRAM. First, it is allowed to give function definitions without providing all logical justifications which are delayed as proof obligations. Each underscore character in the body of the function creates a proof obligation according to function declarations. Secondly, PROGRAM brings the following enhancement concerning the dependent pattern matching:

match v return T with
| | | . . ⇒ . . is replaced with
| | | . . ⇒ . .
end (refl_equal v)

One shall appreciate the improvements brought by PROGRAM in the definition of the reactive engine compared with the same reactive engine without PROGRAM.
as presented in the research report [9]. The proof obligations generated by PRO-
GRAM are the same predicates as the ones explicitly provided in the reactive engine
definition in the research report; which are the properties due to program invariants
concerning to h_1, h_2 and the termination argument corresponding to h.

Let d be a data, a machine may be initialized with any of its initial states. We
encode this non-determinism as a resumption containing only Advance construc-
tors. This is performed by the following \texttt{init_res} function:

\begin{verbatim}
Fixpoint init_res (d : data) (l : list state) (acc : resumption) {
 struct l} : resumption :=
match l with
 | [] => acc
 | (s :: rest) => init_res d rest ((Advance d s) :: acc)
end.
\end{verbatim}

The parameter \texttt{acc} is an accumulator for the resulting resumption. The function
\texttt{init_res} is initialized with an empty accumulator and the parameter \texttt{l} equal to
\texttt{initial} (the list of initial states of the machine). A resumption computed by
\texttt{init_res} is easily proved to be well formed:

\textbf{Lemma} lemma_init : \forall d l, WellFormedRes (init_res d l []).

Finally we define the function \texttt{characteristic_relation} of expected type
\texttt{relation data} that should have the following functionality: given a data \texttt{d}, the
stream \texttt{characteristic_relation d} contains exactly all data \texttt{d'} such that the
predicate Solution d d' is true.

\textbf{Definition} characteristic_relation : relation data :=
fun (d: data) => continue (init_res d initial [])
(lemma_init d initial) (WfRext (chi_res (init_res d initial [])丙)).

The function \texttt{characteristic_relation} is the function \texttt{f} of the theorem \texttt{goal}
we were looking for.

\textbf{Remark.} Engine versus Machine. We make a distinction between the
terminology “engine” and “machine”. A machine can be non-deterministic whereas
an engine is a deterministic process able to simulate a non-deterministic one. Finite
Eilenberg machines describe non-deterministic computations which are enumerated
by a deterministic process: the reactive engine.

5 Correctness of the reactive engine: soundness and
completeness

We are to prove the soundness and the completeness of the function
\texttt{characteristic_relation}. For this purpose we need to prove soundness and com-
pleteness of the three mutually recursive functions \texttt{react}, \texttt{choose} and \texttt{continue
functions}. The following predicates specify invariants of those functions:

\textbf{Definition} PartSol (d : data) (s : state) (d' : data) : Prop :=
exists seq:sequence, path seq \land \langle d, s \rangle = \text{hd seq} \land \langle d', \text{fst (tl seq seq)} \rangle \land \text{term (tl seq seq)} .

The property PartSol d s d' holds if and only if the cell \texttt{(d,s)} begins a path with
a terminal cell with data \texttt{d'}. We extend this predicate on backtrack and resumption
values:

\textbf{Inductive} PartSolBack : backtrack \rightarrow data \rightarrow Prop :=
 | SB1: \forall d s d',
 PartSol d s d' \rightarrow PartSolBack (Advance d s) d'
 | SB2: \forall d s ch a del s1 d',
The following predicate enriches \textit{PartSol} for the specification of \textit{choice} transitions.

\begin{definition}
\exists r, \exists s, \exists d1, d2.
\text{In\,(rel, s, ch, rel, del, s1)} (d') \land \text{PartSol_choice}(d, s, ch, rel, del, s1) \land \\
\text{PartSol_choice}(d, s, ch, rel, del, s1) \land \text{PartSol_choice}(d, s, ch, rel, del, s1).
\end{definition}

We extend it to backtrack and resumption values:

\begin{inductive}
\textbf{PartSol_Back2}: backtrack \rightarrow data \rightarrow \textit{Prop} :=
\begin{enumerate}
\item SB3: \forall d s d', \text{PartSol_Back2}(\text{Advance\ d\ s\ d')}
\item SB4: \forall d s ch rel del s1 d',
\text{PartSol_choice}(d, s, ch, rel, del, s1) \land \\
\text{PartSol_Back2}(\text{Choose\ d\ s\ ch\ rel\ del\ s1} d').
\item SB5: \forall d s ch rel del s1 d1 d',
\text{In\ delay\ data\ d1\ del\ PartSol_Back2}(\text{Choose\ d\ s\ ch\ rel\ del\ s1} d').
\end{enumerate}
\end{inductive}

\begin{definition}
\exists b: backtrack, \text{In\ b\ res \land \text{PartSol_Back2}(b\ d')}
\end{definition}

The soundness lemma of the three functions \textit{react}, \textit{choose} and \textit{continue} is stated as follows:

\begin{lemma}
\textbf{soundness_lemma}: \forall \,(v: \text{list\ chi}),
(\forall d s res\ h1\ h\ d',
\text{v} = (\text{Chi\ (d,\ s)} (S\ (\text{length\ (transition\ s)}))\ 0:: \text{chi_res\ res}) \rightarrow
\text{In_stream\ data\ d'\ (react\ d\ s\ res\ h1\ h)} \rightarrow \\
\text{PartSol_Back2}(\text{Advance\ d\ s\ d'}) \land \\
\text{PartSol_Res2}(\text{react\ d\ s\ res\ h1\ h}, d')
\land (\forall d s ch\ res\ h1\ h2\ h\ d',
\text{v} = (\text{Chi\ (d,\ s)} (\text{length\ ch})\ 0:: \text{chi_res\ res}) \rightarrow
\text{In_stream\ data\ d'\ (choose\ d\ s\ res\ h1\ h2\ h)} \rightarrow \\
\text{PartSol_Back2}(\text{Choose\ d\ s\ ch\ res\ h1\ h2\ h}) \land \\
\text{PartSol_Res2}(\text{choose\ d\ s\ ch\ res\ h1\ h2\ h}, d')
\land (\forall res\ h1\ h\ d',
\text{v} = \text{chi_res\ res} \rightarrow
\text{In_stream\ data\ d'\ (continue\ res\ h1\ h)} \rightarrow \\
\text{PartSol_Res2}(\text{continue\ res\ h1\ h}), d')).
\end{lemma}

The proof is a case analysis by simultaneous well-founded induction over the measure \textit{v}.

Using this soundness lemma we prove the soundness theorem for the reactive engine: For all data \textit{d} and \textit{d'}, if \textit{d'} is enumerated by the reactive engine applied to \textit{d} then \textit{d'} is a solution of \textit{d}.

\begin{theorem}
\textbf{soundness}: \forall \,(d\ d': \text{data}),
\text{In_stream\ data\ d'\ (characteristic_relation\ d)} \rightarrow \text{Solution\ d'\ d'}.
\end{theorem}

In the same way we give the completeness lemma which is a bit stronger than the converse of the soundness lemma since it uses \textit{PartSol_Res2} and \textit{PartSol_choice} instead of \textit{PartSol_Res} and \textit{PartSol}.

\begin{lemma}
\textbf{completeness_lemma}: \forall \,(v: \text{list\ chi}),
(\forall d s res\ h1\ h\ d',
\text{v} = (\text{Chi\ (d,\ s)} (S\ (\text{length\ (transition\ s)}))\ 0:: \text{chi_res\ res}) \rightarrow
\text{PartSol_Res2}(\text{react\ d\ s\ res\ h1\ h}), d' \rightarrow \\
\text{PartSol_Res2}(\text{react\ d\ s\ res\ h1\ h}), d'
\land (\forall d s ch\ res\ h1\ h2\ h\ d',
\text{v} = (\text{Chi\ (d,\ s)} (\text{length\ ch})\ 0:: \text{chi_res\ res}) \rightarrow
\text{PartSol_choice\ d\ ch\ d'\ (choose\ d\ s\ res\ h1\ h2\ h)}, d' \rightarrow \\
\text{PartSol_Res2}(\text{choose\ d\ s\ ch\ res\ h1\ h2\ h}), d' \land \\
\text{PartSol_Res2}(\text{choose\ d\ s\ ch\ res\ h1\ h2\ h}), d'
\land (\forall res\ h1\ h\ d',
\text{v} = \text{chi_res\ res} \rightarrow
\text{PartSol_Res2}(\text{choose\ d\ s\ ch\ res\ h1\ h2\ h}), d' \land \\
\text{PartSol_Res2}(\text{choose\ d\ s\ ch\ res\ h1\ h2\ h}), d')
\end{lemma}

121
The proof is again a case analysis by simultaneous well-founded induction over the measure v.

Using the completeness lemma we prove the completeness of the reactive engine: For all data d and d', if d' is a solution of d then d' is enumerated by the reactive engine applied to d.

Theorem completeness: $\forall (d, d' : \text{data}), \text{Solution} d \Rightarrow \text{In_stream data} d' (\text{characteristic_relation} d)$.

The correctness of the reactive engine combines both soundness and completeness: The reactive engine enumerates exactly all solutions:

Theorem correctness: $\forall (d, d' : \text{data}), \text{Solution} d \Leftrightarrow \text{In_stream data} d' (\text{characteristic_relation} d)$.

End Engine.

6 Program extraction

The formal development above used as specification language the *Calculus of Inductive Constructions*, a version of higher-order logic suited for abstract mathematical development, but also for constructive reasoning about computational objects. Here the sort `Prop` is needed for logical properties, when the sort `Set` is used for computational objects. This allows a technique of program extraction which can be evoked for extracting an actual computer program verifying the logical specification. Thus, using *OCaml* as the target extraction language, the Coq proof assistant provides mechanically the following program:

```ocaml
type 'a list =
 | Nil
 | Cons of 'a * 'a list

type 'data stream =
 | EOS
 | Stream of 'data * (unit -> 'data stream)

type 'data delay = unit -> 'data stream

type 'data relation = 'data -> 'data stream

module type Machine = sig
  type data
  type state
  val transition : state -> (data relation * state) list
  val initial : state list
  val terminal : state -> bool
end

module Engine = functor (M: Machine) -> struct

type choice = (M.data relation * M.state) list

type backtrack =
 | Advance of M.data * M.state
 | Choose of M.data * M.state * choice * M.data relation * M.data delay * M.state

type resumption = backtrack list

let rec react d s res =
  if M.terminal s
  then Stream (d, (fun x -> choose d s (M.transition s) res))
  else choose d s (M.transition s) res

and choose d s ch res =
  match ch with
```

122
\[\text{characteristic_relation}\ d\ =\ \text{continue}\ (\text{init_res}\ d\ \text{M.\ initial\ Nil}) \]

Despite its high-level character, this program is computationally efficient. Note that all recursion calls are terminal, thus implemented by jumps. The extracted program could be expected from an OCaml programmer because it is not cluttered with logical justifications which are not needed for computational aspects: the predicates \(h \), \(h1 \) and \(h2 \) appearing in the definitions of \(\text{react} \), \(\text{choose} \) and \(\text{continue} \) are erased. The reader will check that this program is indeed very close to the original one of finite Eilenberg machines \([8]\) but also to the original reactive engine introduced by Gérard Huet \([5]\) or even to its extensions \([6]\).

7 Example: a pushdown automaton recognizing words of the \(\lambda \)-calculus

We discuss in this section the efficiency of the reactive engine obtained above. For this purpose let us embed into the finite Eilenberg machine model a pushdown automaton recognizing terms of the \(\lambda \)-calculus. Then we will discuss the efficiency of the reactive engine performing the search of solutions upon this pushdown automaton.

Consider the following ambiguous grammar for \(\lambda \)-terms:

\[T : = \ x\ \ \text{(variable)} \]
\[\ |\ \lambda x\ T\ \text{(abstraction)} \]
\[\ |\ T\ @\ T\ \text{(application)} \]
\[\ |\ (T) \]

Terminal symbols of this language are \(x \), \(\lambda \), \(\cdot \), \((\) \) and \(@ \). The symbol \(T \) is non-terminal. Following this grammar the \(\lambda \)-term "\(\lambda x.x@\lambda x.x \)" may be recognized as "\(\lambda x.(x@\lambda x.x) \)" but also as "\((\lambda y.x)@((\lambda x.x)) \)". Thus a complete parsing algorithm should return two solutions. The grammar is context-free and is recognizable by a pushdown automaton (PDA). Let us recall that a PDA manipulates both a tape
Fig. 1. Pushdown automaton (PDA) recognizing ambiguous λ-terms

and a stack. The word to be recognized is written on the tape and the stack is used as a weakened memory (only push and pop operations are allowed).

The PDA given in figure 1 recognizes λ-terms of the above grammar. For drawing convenience, the initial state q_1 is duplicated, its two occurrences shall be considered as equal. The stack symbols that may be encountered are the following: t, λ, \emptyset, and \langle. Labels written with an exponent $+$ (respectively $-$) are interpreted as a push (respectively a pop) operation on stack. Labels written without exponent are interpreted as the tape truncation. A run of this PDA is assumed to be initialized with a tape equal to the λ-term and with an empty stack. The acceptance condition of the PDA is that the tape is empty and the stack contains only the symbol t. The edge from q_1 to q_f labelled with Accept encodes this acceptance condition. In the Coq specification, the tape and stack are specified as two list values. Let tape and stack be the two corresponding datatypes, every operations labelling this PDA are easily encoded as relation (tape * stack), thus it satisfies the first condition of finite Eilenberg machines. Also there is a measure depending on a triple of state and lengths of tape and stack which decreases along any edge; it shows that the computations in depths are necessarily finite, this is precisely the second condition that must obey a finite Eilenberg machine.

The Coq’s extraction technology provides a pushdown automaton as an OCaml module M of type Machine. We obtain a reactive engine simulating the pushdown automaton plugging M to the Engine functor. Now we have a complete recognizer for words of the λ-calculus. Given a λ-term the reactive engine enumerates all possible solutions (recognitions) of the pushdown automaton. This enumeration is computed on demand as a stream value. For example, running the reactive
engine with the λ-term "\(\lambda x.x@((\lambda x.\lambda x.x@x)@x@x@x)@x@x@x\)" produces a stream of length 522, that is there are 522 different ways to recognize the term; the λ-term "\(x@x@x@x@x@x@x@x@x@x@x\)" produces a stream of length 208012.

The depth first search strategy of the reactive engine has good complexity properties compared to a more general breadth first search which is not needed for simulating finite Eilenberg machines. Two benchmarks show that our approach is relevant. The first benchmark presented in figure 2(a) shows the reactive engine running time for obtaining a first solution to randomly generated λ-terms. The second benchmark presented in figure 2(b), shows the reactive engine running time for obtaining the unique solution to randomly generated unambiguous λ-terms (with all parentheses explicited). Both benchmarks show that the average running time of the reactive engine is linear with respect to the length of words.

8 Conclusion

We have presented a complete specification of the finite Eilenberg machines model. We have designed and formally specified a restriction of the multiset ordering [3]. It has allowed us to implement the reactive engine simulating finite Eilenberg machines into the Coq logic of total functions. Thanks to those formalizations we have been able to prove formally the correctness (soundness and completeness) of the reactive engine with regard to finite Eilenberg machines. The reactive engine presented here has taken benefit from the PROGRAM extension of Coq [10]. Its definition is very close to the one presented in OCaml in the article introducing the finite Eilenberg machine model [8].

Since deterministic and non-deterministic finite automata (DFA and NFA) and real-time transducers are particular finite Eilenberg machines, our reactive engine can be used to solve the word problem on those machines. Moreover, we have shown that our approach solves problems of higher complexity since we have embedded into the finite Eilenberg machine model a pushdown automaton recognizing ambiguous words of the λ-calculus. The reactive engine performs with success the search of
all solutions in a lazy manner. The language of words of the \(\lambda \)-calculus belongs to the class of context-free languages. This point makes us believe that the Eilenberg machines model might offer a base for the design of a high-level language to specify and solve more general non-deterministic computational problems.

Acknowledgments

The author would like to thank Gérard Huet, Matthieu Sozeau, Jean-Baptiste Tristan and Nicolas Pouillard for their various contributions to this work.

References

