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Zen toolkit for computational
linguistics
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ZEN Toolkit

Zen is a computational linguistics toolkit developped for a
Sanskrit processing platform:
• Written in the OCaml programming language.

• It introduces the Aum data-structure for “automata
mista” or “mixed automata”

• Purely applicative data-structure.
• States are adressed using a deterministic part.
• Non-deterministic transitions and loops are encoded using

virtual adresses.
• Annotations for transductions, tagging...

• A reactive process called the reactive engine performs
recognitions or synthesis or analysis...
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Reminder: tries

We recall the structure of lexical trees or tries. A lexicon uses
tries to store words letter by letter. Common initial substrings
are shared. Nodes are marked with a boolean indicating
membership.
Tries may be seen as deterministic finite state automata
recognizing finite languages. Furthermore their sharing as dags
yields the corresponding minimal fsa.
More generally, finite state automata state spaces may be
represented as annotated tries, where the skeleton trie serves to
address the states, and non-deterministic transitions are
annotations, cycles being encoded by virtual adresses. This
way, general finite-state machines may be represented
applicatively, and minimized as dags.
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An aum Interpreter
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Sanskrit: two stages of Automata

• Level 1: Aums for lexicons: Noun, Pv, Verb, Unde, Auxi...

• Level 2: A NFA describing the morphology of Sanskrit words.

• Now the reactive engine deals with 2 different automata controls.

Idea! Each stage should be described as an instance of a unique
model since they have the same nature.
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The Eilenberg Machines
Model
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Built on Non-deterministic Finite Automata (NFA)
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Monoid automata generalize NFA

Let S = (S, ·, 1) be a monoid, An S-automaton A = (Q, δ, I, T ) :
Q finite set, δ function Q → ℘(S ×Q), I ⊆ Q, T ⊆ Q.
One defines:
• path : p = q0

s1−→ q1
s2−→ · · · sn−→ qn

• label of a path : lbl(p) = s1 · ... · sn

• valid path : vp(A), q0 ∈ I et qn ∈ T

• The behavior of the automaton is the set of all labels of
valid paths: |A| = {lbl(p) | p ∈ vp(A)}.

Two standard models of monoid automata:
S = Σ∗ Σ∗-automaton behavior = language
S = Σ∗ × Γ∗ Σ∗ × Γ∗-automaton behavior = relation on words
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The Relational Model

Let D be an abstract set, for the data. A relation ρ from D to
D is a subset of D ×D. A relation is considered as a model of
non-deterministic computation.
The set of endo-relations, written Rel(D), is a monoid:
• Composition : ρ1 ◦ ρ2 = { (x, z) | ∃y, xρ1y ∧ yρ2z }
• Id = { (x, x) | x ∈ D }
• 〈Rel(D), ◦, Id〉 is a monoid.

• Union : ρ1 ∪ ρ2 = {(x, y) | xρ1y ∨ xρ2y}
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Eilenberg Machines
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Eilenberg Machines

D is an abstract set, for the data.
An Eilenberg Machine is a Rel(D)-automaton:

M = (Q, δ, I, T )

From automaton structure we have :
• path : p = q0

ρ1−→ q1
ρ2−→ · · · ρn−→ qn

• label of a path : lbl(p) = ρ1 ◦ ... ◦ ρn

• valid path : vp(M), q0 ∈ I et qn ∈ T

• behavior : |M| = {lbl(p) | p ∈ vp(M)}
The characteristic relation of the machine M is the relation
union of all labels of valid paths :

||M|| =
⋃

ρ∈ |M|

ρ
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For example...

Let M be the Eilenberg machine:

q1start q2 q3
ρ1 ρ2

ρ3

|M| = {ρ1ρ2, ρ1ρ2ρ3ρ2, ρ1ρ2ρ3ρ2ρ3ρ2, · · · }

||M|| = ρ1ρ2 ∪ ρ1ρ2ρ3ρ2 ∪ ρ1ρ2ρ3ρ2ρ3ρ2 ∪ · · ·
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A modular computational model

Let M be an Eilenberg machine, its characteristic relation
||M|| belongs to Rel(D). Thus ||M|| can be used as a relation
labelling another Eilenberg machine.
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Automata, transducers, pushdown automata and
Turing machines

Automata, rational transducers, pushdown automata and
Turing machines have in common a finite state control that uses
tapes and stacks, on which they can read, write and move on...
Let tapes be specified as data D = Σ∗ then operations are
partial functions from D to D and thus also as relations:
• L−1

σ = { (σw, w) | w ∈ Σ∗ }
• R−1

σ = { (wσ,w) | w ∈ Σ∗ }
• Lσ = { (w, σw) | w ∈ Σ∗ }
• Rσ = { (w,wσ) | w ∈ Σ∗ }
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The Word problem for Automata

A word of a rational language L defined by an automaton is
recognized by a machine M is simply obtained by a relabelling :
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Then ||M|| = {(ww′, w′) | w ∈ L}. We refine ||M|| with a
relation ρ = {(ε, ε)}:

||M|| ◦ ρ = {(w, ε) | w ∈ L}



Zen Eilenberg Machines Simulation Regular expressions

Automata, Transducers, Pushdown automata, Turing
machines

What data domain D ?
What relations ρ labelling the machine?

D ρ

NFA Σ∗ L−1
σ

ε-NFA Σ∗ L−1
σε

Transducer Σ∗ × Γ∗ L−1
σε × Rγε

Realtime Trans Σ∗ × Γ∗ L−1
σ × Rw

PDA (Pushdown) Σ∗ × Γ∗ L−1
σ × (L−1

γ ∪ Lγ)

Turing Machines B∗ × B∗ (L−1
b ∪ Lb) × (R−1

b ∪Rb)



Zen Eilenberg Machines Simulation Regular expressions

Samuel Eilenberg

Samuel Eilenberg, Marcel-Paul Schützenberger,
Seymour Gingsburg (ICALP 1972 at IRIA)
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Simulation
of

Eilenberg Machines
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Simulation ?

• Given a machine M and an “input” d of D, we want to
compute the set of solutions:

{ d′ | d
||M||−→ d′ }

• Simulation adapting Zen’s reactive engine. The reactive
engine enumerates the set of solutions.
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Finite Eilenberg Machines

Let M = (Q, δ, I, T ), we define:

• edge: (d, q)
ρ−→ (d′, q′)

with (ρ, q′) ∈ δ(q) and d′ ∈ ρ(d).

• path: p = (d0, q0)
ρ1−→ (d1, q1)

ρ2−→ · · · ρn−→ (dn, qn)

Definition (Finite Eilenberg Machines)

1. Locally finite condition: For all relation ρ labelling M, ρ is
a locally finite relation: for all data d, the set ρ(d) is finite.

2. Nœtherian condition: The length of any path is necessarily
finite.

(d0, q0)
ρ1−→ (d1, q1)

ρ2−→ · · · ρn−→ · · ·

Proposition (Koenig’s Lemma)

The characteristic relation ||M|| is a locally finite relation.
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About the Nœtherian condition

There are two cases for which the Nœtherian condition is
satisfied :
• The state graph contains no cycle : the length of paths is

bounded by the length of the automaton path.
• There is a Nœtherian relation > on D such that for all

relation ρ of the machine, for all data d and d′,

d′ ∈ ρ(d) ⇒ d > d′ .
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About finite automata as finite Eilenberg machines

First, relations are always locally finite.
But the second condition shall be discussed:
• DFA OK. (The tape decreases after each transition)
• NFA OK. (The tape decreases after each transition)
• ε-NFA It depends.

without ε-cycle OK.
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Design choices

For simulating Eilenberg machines in a programming language
we need:
• Polymorphism: for D, the abstract data domain.
• Relations of Rel(D) may be seen as functions thanks to the

following isomorphism:

ρ ∈ ℘(D ×D) = D → ℘(D)

• Finite sets are enumerated using streams

type stream D =
| EOS
| Stream of D × (delay D)

and delay D = unit -> (stream D);

type relation D = D -> (stream D);

• Higher-order constructions: Eilenberg machines are
automata labelled with relations.
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Correctness of the reactive engine

Theorem (Soundness and Completeness)

Let M : Machine be a finite Eilenberg machine. ∀d d′ ∈ D,
d′ ∈ (reactive engine M d) ⇔ Solution M d d’ .

Formally proved in Coq
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Example 1: Modularity

A Sanskrit segmenter with 2 stages of automata:
• A NFA for the geometry of a Sanskrit word
• Aums for lexicons
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Example 2: a non-deterministic model simulated
completely

A complete backtracking parser for an ambiguous
grammar for λ-calculus.
Consider the following ambiguous grammar:

T := x (variable)
| λx.T (abstraction)
| T@T (application)
| (T)

Following this grammar the λ-term "λx.x@λx.x" may be
recognized as "λx.(x@λx.x)" but also as "(λx.x)@(λx.x)".
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Benchmarks

Finding all Solutions:
• "λx.x@(λx.λx.x@x)@x@x@λx.x@x": 522 solutions

instantaneously.
• "x@x@x@x@x@x@x@x@x@x@x@x@x": 208012 solutions : 9

seconds of running time.
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The first solution
For randomly generated ambiguous λ-terms:
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All solutions
For randomly generated unambiguous λ-terms (with all
parentheses):
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Towards computable Eilenberg machines

The reactive engine for finite Eilenberg machines uses a built-in
depth-first search strategy :
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Towards computable Eilenberg machines
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Towards computable Eilenberg machines

• The strategy could be
• Depth-first search (finite Eilenberg Machines)

• Breadth-first search
• Sequential: generalization of deterministic automata DFA
• Cantor enumeration: One particular complete strategy
• Fair strategies
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Towards computable Eilenberg machines

• The modularity needs more general streams: Recursively
enumerable sets are enumerated using streams
type stream D =
| Done
| Elm of D × (delay D)
| Skip of delay D

and delay D = unit -> (stream D);

type relation D = D -> (stream D);
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From regular expressions to
automata
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Regular expressions for regular languages

A,B := 0
| 1
| a, a ∈ Σ
| A + B
| A ·B
| A∗

Theorem (Kleene 1959)

∀Aut,∃A,L(Aut) = L(A),
∀A,∃Aut, L(A) = L(Aut)
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Thompson’s algorithm (1968)

Recursive algorithm over the expression, producing an ε-NFA in
a unique traversal.

1, a, A + B, A ·B, A∗
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Thompson’s algorithm (1968)

value thompson e =

let rec aux e t n = (* e is current regexp, t accumulates the state space, n is last created location *)

match e with
[ One ->

let n1=n+1 and n2=n+2 in
(n1, [ (n1, [ (None, n2) ]) :: t ], n2)

| Symb s ->

let n1=n+1 and n2=n+2 in
(n1, [ (n1, [ (Some s, n2) ]) :: t ], n2)

| Union e1 e2 ->

let (i1,t1,f1) = aux e1 t n in
let (i2,t2,f2) = aux e2 t1 f1 in
let n1=f2+1 and n2=f2+2 in
(n1, [ (n1, [ (None, i1); (None, i2) ]) ::

[ (f1, [ (None, n2) ]) ::

[ (f2, [ (None, n2) ]) :: t2 ] ] ], n2)

| Conc e1 e2 ->

let (i1,t1,f1) = aux e1 t n in
let (i2,t2,f2) = aux e2 t1 f1 in
(i1, [ (f1, [ (None, i2) ]) :: t2 ], f2)

| Star e1 ->

let (i1,t1,f1) = aux e1 t n in
let n1=f1+1 and n2=f1+2 in
let t1’ = [ (f1, [ (None, i1); (None, n2) ]) :: t1 ] in
(n1, [ (n1, [ (None, i1); (None, n2) ]) :: t1’ ], n2)

] in
aux e [] 0

;
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From regular expressions to automata

Automaton Algorithm Complexity Type
Thompson Thompson(1968) O(p) ε-NFA
Position Berry-Sethi (1986) O(n2) NFA
Follow Ilie & Yu (2003) O(n2) NFA

Equation Antimirov (1996) O(n2) NFA

Size comparison:

Position > Follow > Equation
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Position, Follow and Equation automata

The algorithms proceeds in 2 successive steps:
1. Identify the states
2. Compute the transitions

Example

E = a(b(a∗c + d)∗ + e) + d(a∗c + d)∗
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Position automaton
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Follow automaton

2 = 4 = 5

7 = 9 = 10
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Equation automaton

2, 4, 5 = 7, 9, 10

3 = 8
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Position automaton
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Position automaton
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Follow automaton
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Follow automaton
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Equation automaton
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Equation automaton
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Equation automaton
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Algorithms Proofs

Definition (Brzozowski’s derivatives)
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Brzozowski’s algorithm: exponential

Using the following axioms
• A · 1 = 1 ·A = A

A · 0 = 0 ·A = 0
A + 0 = 0 + A = A

• ACI (Associative, commutative, idempotent)
(A + B) + C = A + (B + C)
A + B = B + A
A + A = A

Theorem (Brzozowski 1964)
The set of derivatives is finite (modulo the above axioms).

Corollary (Brzozowski algorithm)

The set of derivatives are the states and the derivatives of
derivatives are the transitions of a deterministic automaton.
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Extension
Regular expressions – Rational expressions

We talk about Rational expressions when they are annotated
with element of a semiring K. This semiring is useful for dealing
with.
• Multiplicities
• Weight
• ...

The algorithms presented may be extended for rational
expressions.
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Conclusion

• Eilenberg Machines offer a general model of
non-deterministic computation, with a finite control and a
computable relational data semantics.

• Simulation using a programming language with
polymorphism & higher-order constructions (OCaml).

• The reactive engine is mathematically rigorous and a good
methodology for simulating more than Finite Eilenberg
machines.

• Regular expressions algorithms compute automata in an
applicative manner.

• Zen perspectives : A language design or domain specific
language based on Eilenberg machines using modularity.
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Thank You !
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Locally finite relations

A finite subset of D enumerated by a finite stream:

type stream D =
| EOS
| Stream of D × (delay D)

and delay D = unit -> stream D;

Relations of Rel(D) are curryfied and thus seen as functions
thanks to the following isomorphism: ℘(D ×D) = D → ℘(D)

type relation D = D -> stream D;
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Finite Eilenberg Machines as a Functor

A machine M = (Q, δ, I, T ) on data D is the following module
signature :

module type Machine = sig
type D;
type Q;
value transition : Q -> list (relation D × Q);
value initial : list Q;
value terminal : Q -> bool;

end;

We provide a functor :

module Engine (M : Machine) = sig
value characteristic : relation D ;

end;
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The Reactive Engine in ML

(* react: D -> Q -> resumption -> stream D *)

value rec react d q res =

let ch = transition q in
if terminal q

then Stream d (fun () -> choose d q ch res) (* Solution found *)

else choose d q ch res

(* choose: D -> Q -> choice -> resumption -> stream D *)

and choose d q ch res =

match ch with
| [] -> continue res

| (rel, q’) :: rest ->

match (rel d) with
| EOS -> choose d q rest res

| Stream d’ del ->

react d’ q’ (Choose(d,q,rest,del,q’) :: res)

(* continue: resumption -> stream D *)

and continue res =

match res with
| [] -> EOS

| Advance(d,q) :: rest -> react d q rest

| Choose(d,q,ch,del,q’) :: rest ->

match (del ()) with
| EOS -> choose d q ch rest

| Stream d’ del’ ->

react d’ q’ (Choose(d,q,ch,del’,q’) :: rest)

;
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The Reactive Engine in Coq
Program Fixpoint react (d : data) (s : state) (res : resumption)

(h1 : WellFormedRes res)

(h : Acc Rext ((Chi (d, s) (S (length (transition s))) O) :: (chi_res res)))

{struct h} : (stream data) :=

if terminal s

then Stream data d (fun x:unit ⇒choose d s (transition s) res h1 _ _)

else choose d s (transition s) res h1 _ _

with choose (d : data) (s : state) (ch : choice) (res : resumption)

(h1 : WellFormedRes res) (h2 : incl ch (transition s))

(h : Acc Rext ((Chi (d, s) (length ch) O) :: (chi_res res)))

{struct h} : (stream data) :=

match ch with
| [] ⇒continue res h1 _

| (rel, s’) :: rest ⇒
match (rel d) with
| EOS ⇒choose d s rest res h1 _ _

| Stream d’ del ⇒react d’ s’ ((Choose d s rest rel del s’) :: res) _ _

end
end

with continue (res : resumption) (h1 : WellFormedRes res)

(h : Acc Rext (chi_res res)) {struct h} : (stream data) :=

match res with
| [] ⇒EOS data

| back :: res’ ⇒
match back with
| Advance d s ⇒react d s res’ _ _

| Choose d s rest rel del s’ ⇒
match (del tt) with
| EOS ⇒choose d s rest res’ _ _ _

| Stream d’ del’ ⇒react d’ s’ ((Choose d s rest rel del’ s’) :: res’) _ _

end
end

end.
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Engine vs Machine

We make a distinction between the terminology “engine” and
“machine”. A machine can be non-deterministic whereas an
engine is a deterministic process able to simulate a
non-deterministic one. Finite Eilenberg machines describe
non-deterministic computations which are enumerated by a
deterministic process: the reactive engine.
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