
Zen Eilenberg Machines Simulation Regular expressions

Automata Modelling and Simulation:
from the Zen Toolkit to Eilenberg Machines

Gérard Huet & Benôıt Razet

INRIA Rocquencourt

ICON 2008 - Pune
December 20th 2008

Zen Eilenberg Machines Simulation Regular expressions

Zen toolkit for computational
linguistics

Zen Eilenberg Machines Simulation Regular expressions

ZEN Toolkit

Zen is a computational linguistics toolkit developped for a
Sanskrit processing platform:
• Written in the OCaml programming language.

• It introduces the Aum data-structure for “automata
mista” or “mixed automata”

• Purely applicative data-structure.
• States are adressed using a deterministic part.
• Non-deterministic transitions and loops are encoded using

virtual adresses.
• Annotations for transductions, tagging...

• A reactive process called the reactive engine performs
recognitions or synthesis or analysis...

Zen Eilenberg Machines Simulation Regular expressions

ZEN Toolkit

Zen is a computational linguistics toolkit developped for a
Sanskrit processing platform:
• Written in the OCaml programming language.
• It introduces the Aum data-structure for “automata

mista” or “mixed automata”
• Purely applicative data-structure.
• States are adressed using a deterministic part.
• Non-deterministic transitions and loops are encoded using

virtual adresses.
• Annotations for transductions, tagging...

• A reactive process called the reactive engine performs
recognitions or synthesis or analysis...

Zen Eilenberg Machines Simulation Regular expressions

ZEN Toolkit

Zen is a computational linguistics toolkit developped for a
Sanskrit processing platform:
• Written in the OCaml programming language.
• It introduces the Aum data-structure for “automata

mista” or “mixed automata”
• Purely applicative data-structure.
• States are adressed using a deterministic part.
• Non-deterministic transitions and loops are encoded using

virtual adresses.
• Annotations for transductions, tagging...

• A reactive process called the reactive engine performs
recognitions or synthesis or analysis...

Zen Eilenberg Machines Simulation Regular expressions

Reminder: tries

We recall the structure of lexical trees or tries. A lexicon uses
tries to store words letter by letter. Common initial substrings
are shared. Nodes are marked with a boolean indicating
membership.
Tries may be seen as deterministic finite state automata
recognizing finite languages. Furthermore their sharing as dags
yields the corresponding minimal fsa.
More generally, finite state automata state spaces may be
represented as annotated tries, where the skeleton trie serves to
address the states, and non-deterministic transitions are
annotations, cycles being encoded by virtual adresses. This
way, general finite-state machines may be represented
applicatively, and minimized as dags.

Zen Eilenberg Machines Simulation Regular expressions

References

• Sanskrit site: http://pauillac.inria.fr/∼huet/SKT/
• Sandhi Analysis paper:
http://pauillac.inria.fr/∼huet/FREE/tagger.ps

• Course notes:
http://pauillac.inria.fr/∼huet/ZEN/esslli.ps

• Course slides:
http://pauillac.inria.fr/∼huet/ZEN/Trento.ps

• ZEN library:
http://pauillac.inria.fr/∼huet/ZEN/zen.tar

• Objective Caml: http://caml.inria.fr/ocaml/

http://pauillac.inria.fr/~huet/SKT/
http://pauillac.inria.fr/~huet/FREE/tagger.ps
http://pauillac.inria.fr/~huet/ZEN/esslli.ps
http://pauillac.inria.fr/~huet/ZEN/Trento.ps
http://pauillac.inria.fr/~huet/ZEN/zen.tar
http://caml.inria.fr/ocaml/

Zen Eilenberg Machines Simulation Regular expressions

An aum Interpreter

Zen Eilenberg Machines Simulation Regular expressions

Sanskrit: two stages of Automata

• Level 1: Aums for lexicons: Noun, Pv, Verb, Unde, Auxi...

• Level 2: A NFA describing the morphology of Sanskrit words.

• Now the reactive engine deals with 2 different automata controls.

Idea! Each stage should be described as an instance of a unique
model since they have the same nature.

Zen Eilenberg Machines Simulation Regular expressions

Sanskrit: two stages of Automata

• Level 1: Aums for lexicons: Noun, Pv, Verb, Unde, Auxi...

• Level 2: A NFA describing the morphology of Sanskrit words.

• Now the reactive engine deals with 2 different automata controls.

Idea! Each stage should be described as an instance of a unique
model since they have the same nature.

Zen Eilenberg Machines Simulation Regular expressions

Sanskrit: two stages of Automata

• Level 1: Aums for lexicons: Noun, Pv, Verb, Unde, Auxi...

• Level 2: A NFA describing the morphology of Sanskrit words.

• Now the reactive engine deals with 2 different automata controls.

Idea! Each stage should be described as an instance of a unique
model since they have the same nature.

Zen Eilenberg Machines Simulation Regular expressions

Sanskrit: two stages of Automata

• Level 1: Aums for lexicons: Noun, Pv, Verb, Unde, Auxi...

• Level 2: A NFA describing the morphology of Sanskrit words.

• Now the reactive engine deals with 2 different automata controls.

Idea! Each stage should be described as an instance of a unique
model since they have the same nature.

Zen Eilenberg Machines Simulation Regular expressions

The Eilenberg Machines
Model

Zen Eilenberg Machines Simulation Regular expressions

Built on Non-deterministic Finite Automata (NFA)

q1start

q2start

q3

q4

a

a

b

c

d

b

c

Zen Eilenberg Machines Simulation Regular expressions

Monoid automata generalize NFA

Let S = (S, ·, 1) be a monoid, An S-automaton A = (Q, δ, I, T) :
Q finite set, δ function Q → ℘(S ×Q), I ⊆ Q, T ⊆ Q.
One defines:
• path : p = q0

s1−→ q1
s2−→ · · · sn−→ qn

• label of a path : lbl(p) = s1 · ... · sn

• valid path : vp(A), q0 ∈ I et qn ∈ T

• The behavior of the automaton is the set of all labels of
valid paths: |A| = {lbl(p) | p ∈ vp(A)}.

Two standard models of monoid automata:
S = Σ∗ Σ∗-automaton behavior = language
S = Σ∗ × Γ∗ Σ∗ × Γ∗-automaton behavior = relation on words

Zen Eilenberg Machines Simulation Regular expressions

Monoid automata generalize NFA

Let S = (S, ·, 1) be a monoid, An S-automaton A = (Q, δ, I, T) :
Q finite set, δ function Q → ℘(S ×Q), I ⊆ Q, T ⊆ Q.
One defines:
• path : p = q0

s1−→ q1
s2−→ · · · sn−→ qn

• label of a path : lbl(p) = s1 · ... · sn

• valid path : vp(A), q0 ∈ I et qn ∈ T

• The behavior of the automaton is the set of all labels of
valid paths: |A| = {lbl(p) | p ∈ vp(A)}.

Two standard models of monoid automata:
S = Σ∗ Σ∗-automaton behavior = language
S = Σ∗ × Γ∗ Σ∗ × Γ∗-automaton behavior = relation on words

Zen Eilenberg Machines Simulation Regular expressions

The Relational Model

Let D be an abstract set, for the data. A relation ρ from D to
D is a subset of D ×D. A relation is considered as a model of
non-deterministic computation.
The set of endo-relations, written Rel(D), is a monoid:
• Composition : ρ1 ◦ ρ2 = { (x, z) | ∃y, xρ1y ∧ yρ2z }
• Id = { (x, x) | x ∈ D }
• 〈Rel(D), ◦, Id〉 is a monoid.

• Union : ρ1 ∪ ρ2 = {(x, y) | xρ1y ∨ xρ2y}

Zen Eilenberg Machines Simulation Regular expressions

The Relational Model

Let D be an abstract set, for the data. A relation ρ from D to
D is a subset of D ×D. A relation is considered as a model of
non-deterministic computation.
The set of endo-relations, written Rel(D), is a monoid:
• Composition : ρ1 ◦ ρ2 = { (x, z) | ∃y, xρ1y ∧ yρ2z }
• Id = { (x, x) | x ∈ D }
• 〈Rel(D), ◦, Id〉 is a monoid.
• Union : ρ1 ∪ ρ2 = {(x, y) | xρ1y ∨ xρ2y}

Zen Eilenberg Machines Simulation Regular expressions

Eilenberg Machines

q1start

q2start

q3

q4

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

Zen Eilenberg Machines Simulation Regular expressions

Eilenberg Machines

D is an abstract set, for the data.
An Eilenberg Machine is a Rel(D)-automaton:

M = (Q, δ, I, T)

From automaton structure we have :
• path : p = q0

ρ1−→ q1
ρ2−→ · · · ρn−→ qn

• label of a path : lbl(p) = ρ1 ◦ ... ◦ ρn

• valid path : vp(M), q0 ∈ I et qn ∈ T

• behavior : |M| = {lbl(p) | p ∈ vp(M)}
The characteristic relation of the machine M is the relation
union of all labels of valid paths :

||M|| =
⋃

ρ∈ |M|

ρ

Zen Eilenberg Machines Simulation Regular expressions

Eilenberg Machines

D is an abstract set, for the data.
An Eilenberg Machine is a Rel(D)-automaton:

M = (Q, δ, I, T)

From automaton structure we have :
• path : p = q0

ρ1−→ q1
ρ2−→ · · · ρn−→ qn

• label of a path : lbl(p) = ρ1 ◦ ... ◦ ρn

• valid path : vp(M), q0 ∈ I et qn ∈ T

• behavior : |M| = {lbl(p) | p ∈ vp(M)}

The characteristic relation of the machine M is the relation
union of all labels of valid paths :

||M|| =
⋃

ρ∈ |M|

ρ

Zen Eilenberg Machines Simulation Regular expressions

Eilenberg Machines

D is an abstract set, for the data.
An Eilenberg Machine is a Rel(D)-automaton:

M = (Q, δ, I, T)

From automaton structure we have :
• path : p = q0

ρ1−→ q1
ρ2−→ · · · ρn−→ qn

• label of a path : lbl(p) = ρ1 ◦ ... ◦ ρn

• valid path : vp(M), q0 ∈ I et qn ∈ T

• behavior : |M| = {lbl(p) | p ∈ vp(M)}
The characteristic relation of the machine M is the relation
union of all labels of valid paths :

||M|| =
⋃

ρ∈ |M|

ρ

Zen Eilenberg Machines Simulation Regular expressions

For example...

Let M be the Eilenberg machine:

q1start q2 q3
ρ1 ρ2

ρ3

|M| = {ρ1ρ2, ρ1ρ2ρ3ρ2, ρ1ρ2ρ3ρ2ρ3ρ2, · · · }

||M|| = ρ1ρ2 ∪ ρ1ρ2ρ3ρ2 ∪ ρ1ρ2ρ3ρ2ρ3ρ2 ∪ · · ·

Zen Eilenberg Machines Simulation Regular expressions

A modular computational model

Let M be an Eilenberg machine, its characteristic relation
||M|| belongs to Rel(D). Thus ||M|| can be used as a relation
labelling another Eilenberg machine.

q1start

q2start

q3

q4

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

q1start

q2

q4

||M||

ρ3

ρ4

ρ5

ρ6

Zen Eilenberg Machines Simulation Regular expressions

A modular computational model

Let M be an Eilenberg machine, its characteristic relation
||M|| belongs to Rel(D). Thus ||M|| can be used as a relation
labelling another Eilenberg machine.

q1start

q2start

q3

q4

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

q1start

q2

q4

||M||

ρ3

ρ4

ρ5

ρ6

Zen Eilenberg Machines Simulation Regular expressions

Automata, transducers, pushdown automata and
Turing machines

Automata, rational transducers, pushdown automata and
Turing machines have in common a finite state control that uses
tapes and stacks, on which they can read, write and move on...
Let tapes be specified as data D = Σ∗ then operations are
partial functions from D to D and thus also as relations:
• L−1

σ = { (σw, w) | w ∈ Σ∗ }
• R−1

σ = { (wσ,w) | w ∈ Σ∗ }
• Lσ = { (w, σw) | w ∈ Σ∗ }
• Rσ = { (w,wσ) | w ∈ Σ∗ }

Zen Eilenberg Machines Simulation Regular expressions

The Word problem for Automata

A word of a rational language L defined by an automaton is
recognized by a machine M is simply obtained by a relabelling :

q1start

q2start

q3

q4

a

a

b

c

d

b

c q1start

q2start

q3

q4

L−1
a

L−1
a

L−1
b

L−1
c

L−1
d

L−1
b

L−1
c

Then ||M|| = {(ww′, w′) | w ∈ L}. We refine ||M|| with a
relation ρ = {(ε, ε)}:

||M|| ◦ ρ = {(w, ε) | w ∈ L}

Zen Eilenberg Machines Simulation Regular expressions

Automata, Transducers, Pushdown automata, Turing
machines

What data domain D ?
What relations ρ labelling the machine?

D ρ

NFA Σ∗ L−1
σ

ε-NFA Σ∗ L−1
σε

Transducer Σ∗ × Γ∗ L−1
σε × Rγε

Realtime Trans Σ∗ × Γ∗ L−1
σ × Rw

PDA (Pushdown) Σ∗ × Γ∗ L−1
σ × (L−1

γ ∪ Lγ)

Turing Machines B∗ × B∗ (L−1
b ∪ Lb) × (R−1

b ∪Rb)

Zen Eilenberg Machines Simulation Regular expressions

Samuel Eilenberg

Samuel Eilenberg, Marcel-Paul Schützenberger,
Seymour Gingsburg (ICALP 1972 at IRIA)

Zen Eilenberg Machines Simulation Regular expressions

Simulation
of

Eilenberg Machines

Zen Eilenberg Machines Simulation Regular expressions

Simulation ?

• Given a machine M and an “input” d of D, we want to
compute the set of solutions:

{ d′ | d
||M||−→ d′ }

• Simulation adapting Zen’s reactive engine. The reactive
engine enumerates the set of solutions.

Zen Eilenberg Machines Simulation Regular expressions

Simulation ?

• Given a machine M and an “input” d of D, we want to
compute the set of solutions:

{ d′ | d
||M||−→ d′ }

• Simulation adapting Zen’s reactive engine. The reactive
engine enumerates the set of solutions.

Zen Eilenberg Machines Simulation Regular expressions

Finite Eilenberg Machines

Let M = (Q, δ, I, T), we define:

• edge: (d, q)
ρ−→ (d′, q′)

with (ρ, q′) ∈ δ(q) and d′ ∈ ρ(d).

• path: p = (d0, q0)
ρ1−→ (d1, q1)

ρ2−→ · · · ρn−→ (dn, qn)

Definition (Finite Eilenberg Machines)

1. Locally finite condition: For all relation ρ labelling M, ρ is
a locally finite relation: for all data d, the set ρ(d) is finite.

2. Nœtherian condition: The length of any path is necessarily
finite.

(d0, q0)
ρ1−→ (d1, q1)

ρ2−→ · · · ρn−→ · · ·

Proposition (Koenig’s Lemma)

The characteristic relation ||M|| is a locally finite relation.

Zen Eilenberg Machines Simulation Regular expressions

About the Nœtherian condition

There are two cases for which the Nœtherian condition is
satisfied :
• The state graph contains no cycle : the length of paths is

bounded by the length of the automaton path.
• There is a Nœtherian relation > on D such that for all

relation ρ of the machine, for all data d and d′,

d′ ∈ ρ(d) ⇒ d > d′ .

Zen Eilenberg Machines Simulation Regular expressions

About finite automata as finite Eilenberg machines

First, relations are always locally finite.
But the second condition shall be discussed:
• DFA OK. (The tape decreases after each transition)
• NFA OK. (The tape decreases after each transition)
• ε-NFA It depends.

without ε-cycle OK.

q1start

q2start

q3

q4

a

a

b

ε

d

b

ε

Zen Eilenberg Machines Simulation Regular expressions

About finite automata as finite Eilenberg machines

First, relations are always locally finite.
But the second condition shall be discussed:
• DFA OK. (The tape decreases after each transition)
• NFA OK. (The tape decreases after each transition)
• ε-NFA It depends.

without ε-cycle OK.

q1start

q2start

q3

q4

a

a

b

ε

d

b

ε

Zen Eilenberg Machines Simulation Regular expressions

Design choices

For simulating Eilenberg machines in a programming language
we need:
• Polymorphism: for D, the abstract data domain.
• Relations of Rel(D) may be seen as functions thanks to the

following isomorphism:

ρ ∈ ℘(D ×D) = D → ℘(D)

• Finite sets are enumerated using streams

type stream D =
| EOS
| Stream of D × (delay D)

and delay D = unit -> (stream D);

type relation D = D -> (stream D);

• Higher-order constructions: Eilenberg machines are
automata labelled with relations.

Zen Eilenberg Machines Simulation Regular expressions

Correctness of the reactive engine

Theorem (Soundness and Completeness)

Let M : Machine be a finite Eilenberg machine. ∀d d′ ∈ D,
d′ ∈ (reactive engine M d) ⇔ Solution M d d’ .

Formally proved in Coq

Zen Eilenberg Machines Simulation Regular expressions

Correctness of the reactive engine

Theorem (Soundness and Completeness)

Let M : Machine be a finite Eilenberg machine. ∀d d′ ∈ D,
d′ ∈ (reactive engine M d) ⇔ Solution M d d’ .

Formally proved in Coq

Zen Eilenberg Machines Simulation Regular expressions

Example 1: Modularity

A Sanskrit segmenter with 2 stages of automata:
• A NFA for the geometry of a Sanskrit word
• Aums for lexicons

Zen Eilenberg Machines Simulation Regular expressions

Example 2: a non-deterministic model simulated
completely

A complete backtracking parser for an ambiguous
grammar for λ-calculus.
Consider the following ambiguous grammar:

T := x (variable)
| λx.T (abstraction)
| T@T (application)
| (T)

Following this grammar the λ-term "λx.x@λx.x" may be
recognized as "λx.(x@λx.x)" but also as "(λx.x)@(λx.x)".

Zen Eilenberg Machines Simulation Regular expressions

q1start q2 q7

q3

q4

q5

q6

q8

q9

q10 q11

q12 q13

q1

qf

λ

(

@

x

t−Accept

x

(+

@+

t+

λ−

@−

(−

· λ+

t+

t−

t+

)

t+

Zen Eilenberg Machines Simulation Regular expressions

Benchmarks

Finding all Solutions:
• "λx.x@(λx.λx.x@x)@x@x@λx.x@x": 522 solutions

instantaneously.
• "x@x@x@x@x@x@x@x@x@x@x@x@x": 208012 solutions : 9

seconds of running time.

Zen Eilenberg Machines Simulation Regular expressions

The first solution
For randomly generated ambiguous λ-terms:

0.8

0.6

0.4

0.2

0
200000150000100000500000

ru
nn

in
g

tim
e

(s
ec

on
ds

)

length of words (number of symbols)

Zen Eilenberg Machines Simulation Regular expressions

All solutions
For randomly generated unambiguous λ-terms (with all
parentheses):

0.8

0.6

0.4

0.2

0
200000150000100000500000

ru
nn

in
g

tim
e

(s
ec

on
ds

)

length of words (number of symbols)

Zen Eilenberg Machines Simulation Regular expressions

Towards computable Eilenberg machines

The reactive engine for finite Eilenberg machines uses a built-in
depth-first search strategy :

Zen Eilenberg Machines Simulation Regular expressions

Towards computable Eilenberg machines

Zen Eilenberg Machines Simulation Regular expressions

Towards computable Eilenberg machines

• The strategy could be
• Depth-first search (finite Eilenberg Machines)

• Breadth-first search
• Sequential: generalization of deterministic automata DFA
• Cantor enumeration: One particular complete strategy
• Fair strategies

Zen Eilenberg Machines Simulation Regular expressions

Towards computable Eilenberg machines

• The modularity needs more general streams: Recursively
enumerable sets are enumerated using streams
type stream D =
| Done
| Elm of D × (delay D)
| Skip of delay D

and delay D = unit -> (stream D);

type relation D = D -> (stream D);

Zen Eilenberg Machines Simulation Regular expressions

From regular expressions to
automata

Zen Eilenberg Machines Simulation Regular expressions

Regular expressions for regular languages

A,B := 0
| 1
| a, a ∈ Σ
| A + B
| A ·B
| A∗

Theorem (Kleene 1959)

∀Aut,∃A,L(Aut) = L(A),
∀A,∃Aut, L(A) = L(Aut)

Zen Eilenberg Machines Simulation Regular expressions

Thompson’s algorithm (1968)

Recursive algorithm over the expression, producing an ε-NFA in
a unique traversal.

1, a, A + B, A ·B, A∗

Zen Eilenberg Machines Simulation Regular expressions

Thompson’s algorithm (1968)

value thompson e =

let rec aux e t n = (* e is current regexp, t accumulates the state space, n is last created location *)

match e with
[One ->

let n1=n+1 and n2=n+2 in
(n1, [(n1, [(None, n2)]) :: t], n2)

| Symb s ->

let n1=n+1 and n2=n+2 in
(n1, [(n1, [(Some s, n2)]) :: t], n2)

| Union e1 e2 ->

let (i1,t1,f1) = aux e1 t n in
let (i2,t2,f2) = aux e2 t1 f1 in
let n1=f2+1 and n2=f2+2 in
(n1, [(n1, [(None, i1); (None, i2)]) ::

[(f1, [(None, n2)]) ::

[(f2, [(None, n2)]) :: t2]]], n2)

| Conc e1 e2 ->

let (i1,t1,f1) = aux e1 t n in
let (i2,t2,f2) = aux e2 t1 f1 in
(i1, [(f1, [(None, i2)]) :: t2], f2)

| Star e1 ->

let (i1,t1,f1) = aux e1 t n in
let n1=f1+1 and n2=f1+2 in
let t1’ = [(f1, [(None, i1); (None, n2)]) :: t1] in
(n1, [(n1, [(None, i1); (None, n2)]) :: t1’], n2)

] in
aux e [] 0

;

Zen Eilenberg Machines Simulation Regular expressions

From regular expressions to automata

Automaton Algorithm Complexity Type
Thompson Thompson(1968) O(p) ε-NFA
Position Berry-Sethi (1986) O(n2) NFA
Follow Ilie & Yu (2003) O(n2) NFA

Equation Antimirov (1996) O(n2) NFA

Size comparison:

Position > Follow > Equation

Zen Eilenberg Machines Simulation Regular expressions

Position, Follow and Equation automata

The algorithms proceeds in 2 successive steps:
1. Identify the states
2. Compute the transitions

Example

E = a(b(a∗c + d)∗ + e) + d(a∗c + d)∗

Zen Eilenberg Machines Simulation Regular expressions

Position automaton

0start 1 6

2 5

4

3

8

97

10

a

d

b

e

a

d

c

a

c

a

c

a

d

c

a

d

c

a

c

a

c

a

d

c

Zen Eilenberg Machines Simulation Regular expressions

Follow automaton

2 = 4 = 5

7 = 9 = 10

0start 1 6

2, 4, 5 3

7, 9, 10 8

a

d

b

e

a

c, d a

c

a

c, d a

c

Zen Eilenberg Machines Simulation Regular expressions

Equation automaton

2, 4, 5 = 7, 9, 10

3 = 8
0start 1 6

2, 4, 5, 7, 9, 10 3, 8

a

d

b

e

a

c, d

a

c

Zen Eilenberg Machines Simulation Regular expressions

Position automaton

Zen Eilenberg Machines Simulation Regular expressions

Position automaton

Zen Eilenberg Machines Simulation Regular expressions

Follow automaton

Zen Eilenberg Machines Simulation Regular expressions

Follow automaton

Zen Eilenberg Machines Simulation Regular expressions

Equation automaton

Zen Eilenberg Machines Simulation Regular expressions

Equation automaton

Zen Eilenberg Machines Simulation Regular expressions

Equation automaton

Zen Eilenberg Machines Simulation Regular expressions

Algorithms Proofs

Definition (Brzozowski’s derivatives)

d(0)

da
= 0,

d(1)

da
= 0,

d(b)

da
= 0,

d(a)

da
= 1

d(A + B)

da
=

d(A)

da
+

d(B)

da

d(A ·B)

da
=

d(A)

da
·B + δ(A) · d(B)

da

d(A∗)

da
=

d(A)

da
·A∗

Definition (derivatives on words)

d

d aw
(A) =

d

d w
(

d

da
(A))

Zen Eilenberg Machines Simulation Regular expressions

Brzozowski’s algorithm: exponential

Using the following axioms
• A · 1 = 1 ·A = A

A · 0 = 0 ·A = 0
A + 0 = 0 + A = A

• ACI (Associative, commutative, idempotent)
(A + B) + C = A + (B + C)
A + B = B + A
A + A = A

Theorem (Brzozowski 1964)
The set of derivatives is finite (modulo the above axioms).

Corollary (Brzozowski algorithm)

The set of derivatives are the states and the derivatives of
derivatives are the transitions of a deterministic automaton.

Zen Eilenberg Machines Simulation Regular expressions

Extension
Regular expressions – Rational expressions

We talk about Rational expressions when they are annotated
with element of a semiring K. This semiring is useful for dealing
with.
• Multiplicities
• Weight
• ...

The algorithms presented may be extended for rational
expressions.

Zen Eilenberg Machines Simulation Regular expressions

Conclusion

• Eilenberg Machines offer a general model of
non-deterministic computation, with a finite control and a
computable relational data semantics.

• Simulation using a programming language with
polymorphism & higher-order constructions (OCaml).

• The reactive engine is mathematically rigorous and a good
methodology for simulating more than Finite Eilenberg
machines.

• Regular expressions algorithms compute automata in an
applicative manner.

• Zen perspectives : A language design or domain specific
language based on Eilenberg machines using modularity.

Zen Eilenberg Machines Simulation Regular expressions

Thank You !

Zen Eilenberg Machines Simulation Regular expressions

Locally finite relations

A finite subset of D enumerated by a finite stream:

type stream D =
| EOS
| Stream of D × (delay D)

and delay D = unit -> stream D;

Relations of Rel(D) are curryfied and thus seen as functions
thanks to the following isomorphism: ℘(D ×D) = D → ℘(D)

type relation D = D -> stream D;

Zen Eilenberg Machines Simulation Regular expressions

Finite Eilenberg Machines as a Functor

A machine M = (Q, δ, I, T) on data D is the following module
signature :

module type Machine = sig
type D;
type Q;
value transition : Q -> list (relation D × Q);
value initial : list Q;
value terminal : Q -> bool;

end;

We provide a functor :

module Engine (M : Machine) = sig
value characteristic : relation D ;

end;

Zen Eilenberg Machines Simulation Regular expressions

The Reactive Engine in ML

(* react: D -> Q -> resumption -> stream D *)

value rec react d q res =

let ch = transition q in
if terminal q

then Stream d (fun () -> choose d q ch res) (* Solution found *)

else choose d q ch res

(* choose: D -> Q -> choice -> resumption -> stream D *)

and choose d q ch res =

match ch with
| [] -> continue res

| (rel, q’) :: rest ->

match (rel d) with
| EOS -> choose d q rest res

| Stream d’ del ->

react d’ q’ (Choose(d,q,rest,del,q’) :: res)

(* continue: resumption -> stream D *)

and continue res =

match res with
| [] -> EOS

| Advance(d,q) :: rest -> react d q rest

| Choose(d,q,ch,del,q’) :: rest ->

match (del ()) with
| EOS -> choose d q ch rest

| Stream d’ del’ ->

react d’ q’ (Choose(d,q,ch,del’,q’) :: rest)

;

Zen Eilenberg Machines Simulation Regular expressions

The Reactive Engine in Coq
Program Fixpoint react (d : data) (s : state) (res : resumption)

(h1 : WellFormedRes res)

(h : Acc Rext ((Chi (d, s) (S (length (transition s))) O) :: (chi_res res)))

{struct h} : (stream data) :=

if terminal s

then Stream data d (fun x:unit ⇒choose d s (transition s) res h1 _ _)

else choose d s (transition s) res h1 _ _

with choose (d : data) (s : state) (ch : choice) (res : resumption)

(h1 : WellFormedRes res) (h2 : incl ch (transition s))

(h : Acc Rext ((Chi (d, s) (length ch) O) :: (chi_res res)))

{struct h} : (stream data) :=

match ch with
| [] ⇒continue res h1 _

| (rel, s’) :: rest ⇒
match (rel d) with
| EOS ⇒choose d s rest res h1 _ _

| Stream d’ del ⇒react d’ s’ ((Choose d s rest rel del s’) :: res) _ _

end
end

with continue (res : resumption) (h1 : WellFormedRes res)

(h : Acc Rext (chi_res res)) {struct h} : (stream data) :=

match res with
| [] ⇒EOS data

| back :: res’ ⇒
match back with
| Advance d s ⇒react d s res’ _ _

| Choose d s rest rel del s’ ⇒
match (del tt) with
| EOS ⇒choose d s rest res’ _ _ _

| Stream d’ del’ ⇒react d’ s’ ((Choose d s rest rel del’ s’) :: res’) _ _

end
end

end.

Zen Eilenberg Machines Simulation Regular expressions

Engine vs Machine

We make a distinction between the terminology “engine” and
“machine”. A machine can be non-deterministic whereas an
engine is a deterministic process able to simulate a
non-deterministic one. Finite Eilenberg machines describe
non-deterministic computations which are enumerated by a
deterministic process: the reactive engine.

	Zen
	Eilenberg Machines
	Simulation
	Regular expressions
	

