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Abstract. We consider the problem of spectral clustering with partial
supervision in the form of must-link and cannot-link constraints. Such
pairwise constraints are common in problems like coreference resolution
in natural language processing. The approach developed in this paper
is to learn a new representation space for the data together with a dis-
tance in this new space. The representation space is obtained through
a constraint-driven linear transformation of a spectral embedding of the
data. Constraints are expressed with a Gaussian function that locally
reweights the similarities in the projected space. A global, non-convex
optimization objective is then derived and the model is learned via gradi-
ent descent techniques. Our algorithm is evaluated on standard datasets
and compared with state of the art algorithms, like [14,18,31]. Results on
these datasets, as well on the CoNLL-2012 coreference resolution shared
task dataset, show that our algorithm significantly outperforms related
approaches and is also much more scalable.

1 Introduction

Clustering is the task of mapping a set of points into groups (or “clusters”) in
such a way that points which are assigned to the same group are more similar
to each others than they are to points assigned to other groups. Clustering
algorithms have a large range of applications in data mining and related fields,
from exploratory data analysis to well-known partitioning problems like noun
phrase coreference resolution to more recent problems like community detection
in social networks.

Over the recent years, various approaches to clustering have relied on spectral
decomposition of the graph representing the data, whether the data inherently
come in the form of a graph (e.g., a social network) or the graph is derived from
the data (e.g., a similarity graph between data vectors). One way to understand
spectral clustering is to view it as a continuous relaxation of the NP-complete
normalized- or ratio-cut problems [28,22,21]. Spectral clustering has important
advantages over previous approaches like k-means, one being that it does not
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make strong assumptions on the shape (e.g., convexity) of the underlying clus-
ters. Spectral clustering first consists in computing the first k eigenvectors asso-
ciated with the smallest eigenvalues of the graph Laplacian. Discrete partitions
are then obtained by running k-means on the space spanned by these eigenvec-
tors. This leads to approximations of different optimal cuts of the graphs, which
are known to be potentially quite loose [10,11]. Spectral clustering can also be
understood in terms of the spectral embedding of the graph, the change of rep-
resentation of the data represented by nodes. Indeed, the spectral decomposition
of the graph Laplacian gives a projection of the data in a new feature space in
which Euclidean distance corresponds to a similarity given by the graph (e.g.,
the resistance distance [15,27]).

In practice, it is often the case that the space spanned by the first k eigenvec-
tors is not rich enough to single out the correct partition. Running k-means in
a transformation of this space may yield a better partition than the one found
in the original space. We propose to exploit pairwise constraints to guide the
process of finding such a transformation. From this perspective, our work builds
upon and extends previous attempts at incorporating constraints in spectral
clustering [30,16,34,14,5,19,32,18,32,26]. While clustering is often performed in
a unsupervised way, there are many situations in which some form of super-
vision is available or can easily be acquired. For instance, part of the domain
knowledge in natural language processing problems, like noun phrase corefer-
ence resolution, naturally translates into constraints. For instance, gender and
number mismatches between noun phrases (e.g., Bill Clinton vs. she/they) give
strong indication that these noun phrases should not appear in the same cluster.

In this paper, we consider the setting wherein supervision is only partial,
which is arguably more realistic setting when annotation is costly. Partial super-
vision takes the form of pairwise constraints, whereby two points are assigned to
identical (must-link) or different clusters (cannot-link), irrespective of the clus-
ters labels. All must-link constraints can be satisfied in polynomial time using
a simple transitive closure. In some problems, constraints may be inconsistent,
due to noisy preprocessing of the data for instance, and satisfying all cannot-link
constraints is NP-complete for k > 2, see [7]. These constraints can contradict
the unconstrained cuts of the graph. For example, two nodes close in graph could
be constrained as cannot-link and conversely two nodes far away in the graph
could be constrained as must-link. One open research question is how does one
best integrate this type of partial supervision into the clustering algorithm.

In this paper, we propose to learn a linear transformation X of the spectral
embedding of the graph with the partial supervision given by the constraints.
Our algorithm also learns a similarity in order to find a partition such that
similar nodes are in the same cluster, dissimilar nodes are in different clusters,
and the maximum number of pairwise constraints are satisfied. When two nodes
must link (respectively cannot link), their similarity is constrained to be close to
1 (respectively close to 0). In the learning step, the similarity is locally distorted
around constrained nodes using a Gaussian function applied on the Euclidean
distance in the feature space obtained by X. In order to increase the gap between
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Fig. 1: This figure shows intuitively the process behind fgpwc. From a spectral
embedding of a graph, Gaussian functions distort the distance between con-
strained pairs of nodes such that it become smaller or larger depending de-
pending on the quality (must-link or cannot-link) attributed to the constraint.
Gaussian functions act as a new similarity for the pair of nodes and it should be
close to 1 if the pair must link and close to 0 if the pair cannot link.

must-link and cannot-link constraints, we use two Gaussian functions of different
variances. As illustrated in Figure 1, this technique ensures that the distance in
the new feature space between nodes in cannot-link constraints is significantly
larger than the distance between nodes that must link. From this modeling, we
derive a non-convex optimization problem to learn the transformation X. We
solve this problem using a gradient descent approach with an initialization for
X that coincides with the unconstrained solution of the problem.

Our algorithm, fgpwc (for Fast Gaussian PairWise Clustering), is evaluated
empirically on a large variety of datasets, corresponding either to genuine net-
work data or to vectorial data converted into graphs. Two sets of experiments
are conducted: the first one involves classification task, using commonly used
data sets in the field. Empirical results place our algorithm above competing
systems on most of the data sets. The second one involves a real task in the field
of natural language processing: namely, the noun phrase coreference resolution
task as described in the CoNLL-2012 shared task [25]. Our results show our al-
gorithm compares favorably with the unconstrained spectral clustering approach
of [6], outperforming it on medium-size and large clusters.

2 Background and Notation

Let G = (V, E ,W) be an undirected connected graph with node set V =
{v1, . . . , vn}, edge set E ⊆ V × V and non-negative similarity matrix W, such
that Wij is the weight on the edge (vi, vj). Let (λ1,u1), . . . , (λn,un) be eigen-



value/eigenvectors pairs of the graph Laplacian Lsym = I − D−1/2WD−1/2,

such that λ1 ≤ λ2 ≤ · · · ≤ λn. The matrix U =
(√

1
λ1
u1

√
1
λ2
u2 . . .

√
1
λn
un

)
is a spectral embedding of the graph. It can be thought as an Euclidean feature
space where each node vi is represented by a data point whose coordinates in
this space are the components of the vector vi equal to the ith row of the matrix
U. The first eigenvector u1 is the constant vector 1 biased by the degrees of
the nodes, u1 = D1/2

1 and can be dropped from the feature space, as it does
not provide any information for characterizing nodes. Eigenvectors u2, . . . ,un
are functions that map the manifold of the graph to real lines. If f is such a
function, then f>Lsymf = 1

2

∑n
i,j=1 Wij(f i−f j)2 provides an estimate of how

far nearby points will be mapped by f [3]. As m increases, the space spanned by
u2, . . . ,um with mn will describe smaller and smaller details in the data. In the

following, we consider a spectral embedding Vm =
(
u2 . . . um

)
=
(
v1 . . .vn

)>
.

To each each node of the graph vi correspond a vector vi that lives in this space.
Pairwise constraints are defined as follows. Let M, C ⊂ V × V be two sets of

pairs of nodes, describing must-link and cannot-link constraints. Let K be the
total number of constraints. If (vi, vj) ∈ M, then vi and vj should be in the
same cluster, and if (vi, vj) ∈ C then vi and vj should be in different clusters.
We introduce the K ×m matrices A, B and the K-dimensional vector q:

A =

vi1...
viK

 B =

vj1...
vjK

 qk =

{
1 if (vik , vjk) ∈M
0 if (vik , vjk) ∈ C

where (vik ,vjk) are vectors describing the kth pair of nodes (vik , vjk) inM∪C.

3 Problem Formulation

We propose to learn a linear transformation φ of the feature space Vm that
best satisfies the constraints. Let φ(vi) = viX where X is a m × m matrix
describing the transformation of the space. We want to find a projection of the
feature space φ(vi) such that the clusters are dense and far away from each
other. Ideally, if nodes (vi, vj) ∈ M then the distance between φ(vi) and φ(vj)
should equal zero and if nodes (vi, vj) ∈ C then the distance between φ(vi)
and φ(vj) should be very large. We introduce two Gaussian functions to locally
distort the similarities for constrained pairs. Gaussian parameters σm and σc
are chosen such that σm ≤ σc. The similarity between two nodes vi and vj
is exp−‖vi−vj‖2/σm if (vi, vj) ∈ M and exp−‖vi−vj‖2/σc if (vi, vj) ∈ C where
‖·‖ is the Frobenius norm. Therefore, we want to ensure that X is such that

exp−‖vi−vj‖2/σm is close to 1 if (vi, vj) ∈M and exp−‖vi−vj‖2/σc is close to 0 if
(vi, vj) ∈ C. We now encode the set of all constraints in a matrix form. Let us
first consider the K-dimensional vector σ ∈ {1/σm, 1/σc}K

Let 1 be the m-dimensional vector of all ones. Notice that [(A − B)X]21,
is the vector whose components are equal to the distance between pairs of con-
strained nodes in the transformed space. Let ◦ be the Hadamard product. Then
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Fig. 2: Normalization effect on a simple example. 900 data points in R2 were
drawn using a normal distribution N (0, 1). Only 1h must and cannot-links have
been uniformly drawn to separate data in two groups of positive and negative
points. These figures plot F (X) in the neighborhood of X?. The two dimensions
of X? in this example are referred by X1 and X2.

exp−[(A−B)X]21◦σ is the vector whose components equal the corresponding must-
link or cannot-link similarity depending on whether the associated pairs of nodes
are in M or C. The values in X are not bounded in this expression. So, we pro-
pose to add a regularization term on X. This gives the optimization problem:

min
X

F (X) =
∥∥∥exp−[(A−B)X]21◦σ −q

∥∥∥2 + γ ‖X‖2 (1)

The effect of this regularization step is depicted in Figures 2a and 2b. In this
toy example, data points where drawn using a normal distribution with mean
0. Constraints are added in order to separate positive and negative points in
two clusters. Only 1h must and cannot-links have been uniformly drawn. We
can see that in both non regularized and regularized cases, global optimums are
identical. However, Figure 2a shows that far away from the global optimum, the
non regularized objective function is not smooth. The regularization handles this
issue, see figure 2b.

3.1 Algorithm

Our algorithm for learning the transformation X is presented in Algorithm 1.
It takes as input a weighted adjacency matrix of a graph, and two matrices for
must-link and cannot-link constraints. Parameters are the number k of clusters
as usual in k-means, but also the widths of the Gaussian functions σm and σc
and the dimension m of X.

The target dimension m is related to the amount of contradiction between the
graph and the constraints. Remember that eigenvectors of Lsym are functions



which maps nodes from the manifold of the graph to real lines and the associ-
ated eigenvalues provides us with an estimate of how far apart these functions
maps nearby points [3]. When the pairwise constraints do not contradict the
manifold of the graph, i.e. must-link pairs are already close on the manifold and
cannot-link pairs are already far apart, m does not need to be large, because the
eigenvectors associated with smallest eigenvalues will provide eigenmaps which
do not contradict the constraints. Hence, a solution can be found in the very first
eigenvectors. However, when the pairwise constraints contradict the manifold of
the graph: must-links that are initially far apart on the manifold or cannot-links
that are close, we need to consider a larger number of eigenvectors m, because
the eigenvectors providing the eigenmaps that will not contradict the constraints
will be later dimensions of the embedded space, describing smaller details.

Our algorithm is a typical gradient descent and its initialization can be at
random. However, we propose to initialize it close to unconstrained spectral
clustering X0 = (V>mLsymVm)−1/2. We stop the descent after imax iterations

or when the Frobenius norm of the partial derivative ∂F (X)
∂X is less than ε.

Algorithm 1: fgpwc

Input: W ∈ Rn×n,M ∈ Rn×n,C ∈ Rn×n,m, k, σm, σc

Output: X? ∈ Rm×d,P partition of V
1 begin

2 Lsym ← I−D−1/2WD−1/2

3 Vm ← first m smallest eigenvectors of Lsym

4 X0 ← (V>mLsymVm)−1/2

5 i← 0, α← 1
6 repeat
7 i← i+ 1, Xi ← Xi−1 − α∂F (Xi−1)/∂X
8 if F (Xi) >= F (Xi−1) then
9 α← α/2

10 else
11 X? ← Xi

12 until ‖∂F (Xi)/∂X‖2 < ε or i > imax
13 P ← k-means(VmX, k)
14 return P

4 Related Work

The use of supervision in clustering tasks has been addressed in many ways.
A first related approach is that of [33], which is inspired by distance learning.
Constraints are given through a set of data point pairs that should be close. The
authors then consider the problem of learning a weighted matrix of similarities.



They derive an optimization problem of high complexity, which they solve by
doing alternate gradient ascent on two objectives, one bringing closer points that
are similar and the other putting off the other points. Similarly, in [13] learning
spectral clustering is the problem of finding weighted matrix or the spectrum
of the Gram matrix given a known partition. A related field is supervised clus-
tering [9], the problem of training a clustering algorithm to produce desirable
clusterings: given sets of items and complete clusterings over these sets, we learn
how to cluster future sets of items.

Another set of related approaches are constrained versions of the k-means
clustering algorithm. In [30], it is proposed that, at each step of the algorithm,
each point is assigned to the closest centroid provided that must-link and cannot-
link constraints are not violated. It is not clear how the choice of the ordering
on points affects the clustering. Moreover, constraints are considered as hard
constraints which makes the approach prone to noise effects. Kulis et al improve
on the work of [30] in [16]. Their algorithm relies on weighted kernel k-means
([8]). The authors build a kernel matrix K = σI + W + S, where W is a sim-
ilarity matrix, S is a supervision matrix such that Sij is positive (respectively
negative) when nodes i and j must link (respectively cannot link) or zero when
unconstrained. The addition of σI ensures the positive semi-definiteness of K
(otherwise, K would not be a kernel, would not have any latent Euclidean space,
a requirement for k-means to converge and for theoretical justification).

Introducing constraints in spectral clustering has received a lot of attention
in the last decade ([34,14,5,19,32]). In many cases, the proposed approaches rely
on a modification of the similarity matrix and then the resolution of the associ-
ated approximated normalized cut. For instance, in [14], weights in the similarity
matrix are forced to 0 or 1 following must-link and cannot-link constraints. But
this kind of weights may have a limited impact on the result of the clustering, in
particular when the considered two nodes have many paths that link them to-
gether. [34] consider three kinds of constraint and cast them into an optimization
problem including membership constraints in a 2-partitioning graph problem. To
guarantee a smooth solution, they reformulate the optimization problem so that
it involves computing the eigen decomposition of the graph Laplacian associated
with the data. The approach relies on an optimization procedure that includes
nullity of the flow from labeled nodes in cluster 1, to labeled nodes in cluster
2. The algorithm closely resembles the semi-supervised harmonic Laplacian ap-
proach developed for instance in [35]. But this approach is also limited to the
binary case. In [19], pairwise constraints are used to propagate affinity informa-
tion to the other edges in the graph. A closed form of the optimal similarity
matrix can be computed but its computation requires one matrix inversion per
cannot-link constraint.

In [18], constrained clustering is done by learning a transformation of the
spectral embedding into another space defined by a kernel. The algorithm at-
tempts to project data points representing nodes onto the bound of a unit-
hypersphere. The inner product between vectors describing nodes that must
link is close to 0, and the inner product between vectors describing nodes that



cannot-link is close to 1. That way, if a node vi belongs to the cluster j, then
the vector vi describing vi will be projected to 1j where ej is a vector of length
k full of zeros except on the jth component where it is equal to 1. The number
of dimensions of the hypersphere is directly related to the ability to separate
clusters. One drawback is that the algorithm uses semidefinite programs whose
size is quadratic in that number of dimensions.

Recently, [31,32] propose to include constraints by modifying directly the
optimization problem rather than modifying the Laplacian. In their algorithm
called csp, they introduce a matrix Q where Qij is 1 if i and j must-link, −1
if i and j cannot-link and 0 otherwise. Then, a constraint f>Qf > α is added
to the normalized cut objective considered in unconstrained spectral clustering.
Parameter α is considered as a way to soften constraints. Their approach out-
performs previous approaches such as the one based on kernel k-means defined
in [16]. An original approach based on tight relaxation of graph cut ([11]) is
presented in [26]. The approach deals with must and cannot-links but in the two
clusters case. It guarantees that no constraints are violated as long as they are
consistent. For problems with more than two clusters, hierarchical clustering is
proposed. Unfortunately in this case, the algorithm loses most of its theoretical
guarantees.

5 Experiments

We conducted two sets of experiments. In the first experiments, we evaluate our
algorithm on a variety of well-known clustering and classification datasets, and
compare it to four related constrained clustering approaches: ccsr [18], sl [14],
csp [32] and cosc [26]. ccsr also seeks a projection of space in which constraints
are satisfied. sl modifies the adjacency matrix and puts 0 for cannot-link pairs
and 1 for must-link pairs. csp modifies the minimum cut objective function
introducing a term for solving a part of the constraints. cosc is based on a
tight relaxation of the constrained normalized cut into a continuous optimization
problem.

In a second set of experiments, we apply our algorithm to the problem of
noun phrase coreference resolution, a very important problem in Natural Lan-
guage Processing. The task consists in determining for a given text which noun
phrases (e.g., proper names, pronouns) refer to the same real-world entity (e.g.,
Bill Clinton). This problem can be easily recast as a (hyper-)graph partitioning
problem [24,6]. We evaluate our algorithm on the CoNLL-2012 English dataset
and compare it to the unconstrained spectral clustering approach of [6], a sys-
tem that ranked among the top 3 systems taking part in the CoNLL-2012 shared
task.

5.1 Clustering on UCI and Network Data sets

Dataset and preprocessing We first consider graphs built from UCI datasets
and networks. Table 1 summarizes their properties and the characteristics of



the associated clustering problem. Graph construction uses a distance that is
computed based on features. First, continuous features are normalized between
0 and 1 and nominal features are converted into binary features. Second, given
feature vectors x and x′ associated with two datapoints, we consider two kinds
of similarities: either RBF kernels of the form exp(−‖x− x′‖2 /2σ2) or cosine
similarity x ·x′/(‖x‖×‖x′‖). In the case of cosine similarity we also apply k-NN
and weight edges with similarity. For instance, from the imdb movie dataset we
extract records in which Brad Pitt, Harrison Ford, Robert De Niro and Sylvester
Stallone have played. The task is to determine which of the four actors played
in which movie. The movies in which more than one of these actors have played
are not part of the dataset so that classes do not overlap. We have collected all
the actors (except for the four actors that serve as classes) who played in 1606
movies. Each movie is described by binary features representing the presence or
absence of an actor in its cast. The similarity measure between movies is the
cosine similarity.

Evaluation metric We use Adjusted Rand Index (ARI) [12] as our main evalu-
ation measure. The standard Rand Index compares two clusterings by counting

correctly classified pairs of elements. It is defined as: R(C, C′) = 2(TP+TN)
n(n−1) where

n is the number of nodes in the graph and TP, TN are true positive and true
negative pairs. By contrast, the Adjusted Rand Index which is the normalized
difference of the Rand Index and its expected value under the null hypothesis.
This index has an expected value of zero for independant clusterings and maxi-
mum value 1 for identical clusterings. We report the mean over the 10 runs corre-
sponding to 10 sets of constraints of the ARI computed against the ground truth.
As an additional measure, we also report the number of violated constraints in
the computed partition and the computation time for each algorithm.

System settings For each dataset, 10 different sets of constraints were selected
at random. The number of constraints is chosen to avoid trivial solutions. Indeed,
if the number of must-link constraints is high, a transitive closure quickly gives
a perfect solution. So, the interesting cases are when only a few number of
constraints is considered. Given a graph with n nodes, a set of pairs is added to
the set of constraints with probability 1/n. A pair forms a must-link constraint
if the two nodes have the same class and a cannot-link constraint otherwise.

All algorithms (except cosc) rely on a k-means step which is non determinis-
tic. So, we repeat 30 times each execution and select the partitions that violates
a minimal number of constraints. The results evaluated on unconstrained pairs
are averaged considering the 10 different sets of constraints.

All experiments were conducted using octave with openblas. For ccsr and
cosc, we use the code provided by the authors on their webpages. We are using
k-means with smart initialization [1]. Finally, note that we found that initializing
gradient descent so that it is close to unconstrained spectral clustering performs
better than random initialization.

Results and discussion Results for the first set of experiments for 22 datasets
are presented in Table 1. Empty cells corresponds to the case where the algorithm
did not terminate after 15 minutes.



D
a
ta

set
size

k
S
im

ila
rity

m
f
g
p
w
c

sl
v
io

l.
c
sp

v
io

l.
c
o
sc

v
io

l.
c
c
sr

v
io

l.
tu

n
in

g
v
io

ls.
n
o

tu
n
in

g
v
io

ls.

b
rea

sttissu
e

1
0
6

6
R

B
F

2
0

0
.3

0
8
8

3
0
.3

2
7
1

2
−

0
.0

0
5
0

3
5

0
.1

3
3
9

5
2

0
.0

6
9
5

9
0
.2

1
0
4

5

g
la

ss
2
1
4

6
R

B
F

2
0

0
.2

5
5
2

1
6

0
.1

4
6
1

2
3

0
.0

1
1
5

7
3

0
.0

1
8
2

1
2
4

0
.0

3
4
7

2
0

0
.1

8
7
2

2
6

h
ay

es-ro
th

1
3
2

3
C

o
sin

e
2
0

0
.2

7
8
3

3
0
.1

7
3
6

1
3
−

0
.0

1
4
6

3
5

0
.0

1
7
0

7
8

0
.0

0
7
9

1
2

0
.0

8
4
2

2
1

h
ep

a
titis

8
0

2
R

B
F

1
0

0
.1

9
1
0

1
0

0
.1

2
2
0

1
1

0
.0

8
2
2

1
7

0
.0

1
0
6

4
2

0
.0

1
8
4

0
−

0
.0

1
2
7

1
7

im
d
b

1
6
0
6

4
C

o
sin

e
4
0
0

0
.1

3
8
5

9
3

0
.1

5
5
8

7
4
−

0
.0

0
0
1

6
4
8

-
-

0
.0

1
8
1

2
9
8

-
-

in
terla

ced
circles

9
0
0

3
R

B
F

6
0

0
.6

4
5
8

5
3

0
.3

0
2
3

1
3
1

0
.1

2
6
0

2
0
8

0
.0

0
0
2

5
7
4

0
.0

1
1
0

1
7
2

-
-

io
n
o
sp

h
ere

3
5
1

2
R

B
F

5
0

0
.5

0
4
1

3
7

0
.4

0
3
7

1
1

0
.0

0
4
5

6
8

0
.0

0
4
5

1
7
2

0
.0

8
8
9

1
9

-
-

iris
1
5
0

3
R

B
F

1
0

0
.9

4
1
0

1
0
.8

8
4
1

2
0
.5

6
5
7

1
6

0
.0

1
4
2

6
8

0
.0

7
9
7

0
0
.8

4
8
5

4

m
o
o
n
s

9
0
0

2
R

B
F

1
0

0
.9

2
1
5

1
9

0
.9

0
4
5

2
2

0
.0

6
4
3

2
3
1

0
.0

0
0
0

4
6
8

-
-

0
.6

6
8
4

7
2

p
h
o
n
em

e
4
5
0
9

5
R

B
F

2
0
0

0
.7

0
7
3

1
2
6

0
.0

4
6
1

7
4
6
−

0
.0

0
0
2

1
8
4
2

-
-

-
-

-
-

p
ro

m
o
ters

1
0
6

2
C

o
sin

e
1
0

0
.7

1
8
2

3
0
.4

3
0
7

3
0
.0

0
0
7

2
1

0
.0

0
4
3

7
0

0
.0

3
4
1

0
0
.5

9
4
6

8

sp
a
m

4
6
0
1

2
R

B
F

2
0

0
.9

7
8
3

2
1

0
.0

0
0
2

1
1
2
7

0
.0

0
0
2

1
0
6
7

-
-

-
-

0
.9

7
8
3

2
6

tic-ta
c-to

e
9
5
8

2
R

B
F

2
0
0

1
.0

0
0
0

0
0
.9

5
4
1

5
0
.0

0
3
7

2
4
2

0
.0

0
5
6

4
0
4

-
-

-
-

v
eh

icles
8
4
6

4
R

B
F

1
0
0

0
.3

1
7
5

5
5

0
.3

4
5
6

9
2

0
.0

0
0
1

3
1
6

0
.0

0
0
0

7
2
8

0
.0

0
3
8

1
1
6

-
-

w
d
b

c
5
6
9

2
R

B
F

1
0

0
.8

5
6
8

1
4

0
.8

6
9
9

1
9

0
.0

0
2
4

1
2
6

0
.0

0
2
4

2
6
4

-
-

0
.7

2
5
5

3
5

w
eb

k
b
-co

rn
ell

1
9
5

5
C

o
sin

e
1
0

0
.4

8
6
8

1
3

0
.1

1
6
6

2
−

0
.0

0
2
1

7
7
−

0
.0

0
7
9

1
3
4

0
.0

5
7
7

1
3

0
.3

3
1
7

1
3

w
eb

k
b
-tex

a
s

1
8
7

5
C

o
sin

e
1
0

0
.4

7
0
5

1
1

0
.2

5
2
5

4
−

0
.0

0
8
7

6
8

0
.0

0
4
5

1
2
2

0
.0

7
0
7

9
0
.2

8
4
8

2
5

w
eb

k
b
-w

isco
n
sin

2
6
5

5
C

o
sin

e
1
0

0
.6

7
1
9

2
1

0
.1

0
1
8

1
0

0
.0

1
3
1

7
7

0
.0

0
7
2

1
6
4

0
.0

2
2
6

2
3

0
.3

3
4
6

3
2

w
ik

ip
ed

ia
8
3
5

3
N

etw
o
rk

1
0

0
.6

2
9
8

4
9

0
.0

1
0
5

2
3

0
.4

6
2
1

1
1
1

0
.0

0
0
1

4
7
4

0
.6

9
6
0

3
3

0
.5

4
0
9

7
6

w
in

e
1
7
8

3
R

B
F

1
0

0
.9

6
4
9

0
0
.9

0
4
0

1
0
.0

0
0
4

7
0

0
.0

0
3
1

8
4

0
.0

0
9
1

4
1

0
.8

5
6
6

1
0

x
o
r

9
0
0

2
R

B
F

1
0

1
.0

0
0
0

0
1
.0

0
0
0

0
−

0
.0

0
1
1

2
2
3

0
.0

0
0
0

4
7
0

-
-

1
.0

0
0
0

0

zo
o

1
0
1

7
C

o
sin

e
1
0

0
.9

2
1
8

0
0
.6

5
3
6

0
0
.1

3
2
6

2
5

0
.0

0
9
2

5
0

0
.1

4
4
7

1
0
.7

0
2
5

2

T
ab

le
1:

S
u

m
m

ary
of

d
ata

sets.
F

irst
5

colu
m

n
s

sh
ow

th
e

d
a
ta

set
p

ro
p

erties:
n
u

m
b

er
o
f

n
o
d

es
in

th
e

grap
h

,
n
u

m
b

er
of

classes,
h

ow
th

ey
h

av
e

b
een

con
stru

cted
an

d
n
u

m
b

er
of

d
im

en
sio

n
s

in
th

e
sp

ectra
l

em
b

ed
d

in
g

u
sed

for
th

e
ex

p
erim

en
ts.

T
h

e
follow

in
g

co
lu

m
n

s
rep

o
rt

p
erform

a
n

ces
fo

r
th

e
variou

s
alg

o
rith

m
s.

C
o
lu

m
n

s
c
sp

a
n

d
sl

rep
o
rt

p
o
o
r

resu
lts.

T
h

is
is

m
ain

ly
d

u
e

to
th

e
fa

ct
th

at
th

e
su

p
erv

isio
n

b
y

m
u

st-lin
k

con
strain

ts
is

very
w

ea
k
.

T
h

ey
d

o
n

o
t

fu
lly

ex
p

lo
it

th
e

can
n

ot-lin
k

con
strain

ts.
In

ou
r

ex
p

erim
en

ts,
g
rap

h
s

a
re

n
ot

sp
a
rse

b
u

t
con

stra
in

ts
a
re

sp
a
rse.

c
o
sc

is
ex

p
ectin

g
a

sp
a
rse

grap
h

as
an

in
p

u
t

an
d

satisfy
all

th
e

co
n

strain
ts

w
h

en
th

e
n
u

m
b

er
o
f

clu
sters

is
eq

u
a
l

to
2
.

W
h
en

th
e

n
u

m
b

er
o
f

clu
sters

is
greater

th
an

tw
o,

c
o
sc

lo
oses

its
gu

aran
tees.

M
o
reover,

w
h

en
con

stra
in

ts
are

very
sp

a
rse,

th
ere

is
m

a
n
y

d
iff

eren
t

w
ay

s
to

satisfy
th

em
,

an
d

th
e

h
ierarch

ical
2-w

ay
clu

sterin
g
c
o
sc

is
p

erfo
rm

in
g

for
m

ore
th

a
n

tw
o

clu
sters

ca
n

a
ch

ieve
very

p
o
o
r

resu
lts

w
h

en
th

e
earliest

cu
ts

are
w

ron
g.



The column fgpwc “no tuning” is the case where hyperparameters have
been set to the following values: σm = .15, σc = 1.5 and m equals the number of
eigenvalues lower than .9. The complete spectral embedding of the graph is row
normalized, thus the original space is bounded by the unit-hypersphere. Con-
sequently, in the spectral embedding before transformation, distances between
data points are less than one. In the column fgpwc “tuning”, we tune the σm
and σc parameters using an exhaustive search in the interval [0.01, 1] for σm and
in the interval [0.01, 2] for σc both uniformly splited in 10 equal-size parts.

Without tuning hyperparameters any further, we obtain better results than
other approaches in 12 cases. We can also see that our approach is capable of
returning a result within a few minutes, whereas some other methods will not
within 15 minutes on large data sets. When we tune hyperparameters, we observe
that fgpwc outperforms all methods on all datasets while keeping a reasonnable
computational time.

We can see that cosc is able to return partitions with 0 violated constraints
when the number of clusters k = 2, however, the partitions are not necessarily
close to the ground-truth partition. An explanation of this phenomenon is that
we are providing very few constraints to the different algorithms. Hence, there
are many different ways to fullfill the constraints. Columns csp and sl give
poor results. This is mainly due to the fact that the supervision by must-link
constraints is very weak. They do not fully exploit the cannot-link constraints.
In our experiments, graphs are not sparse but constraints. cosc is expecting
a sparse graph as an input and satisfy all the constraints when the number of
clusters is equal to 2. When the number of clusters is greater than two, cosc
looses its guarantees. Moreover, when constraints are very sparse, there are many
different ways to satisfy them, and the hierarchical 2-way clustering cosc is
performing for more than two clusters can achieve very poor results when the
earliest cuts are wrong. It is particularly interesting to compare fgpwc to ccsr,
since the the approaches developped in the two algorithms are both based on
a change of representation of the spectral embedding. ccsr is competitive with
fgpwc w.r.t. the ARI measure in many cases. However, we can see that ccsr
becomes intractable as the size of the embedding m increases, while this is not
a problem for fgpwc. This is also confirmed by the computational time.

Small graphs can be harder if constraints contradict the similarity W, be-
cause in this case m needs to be larger, but for a large enough m, our algorithm
will over-fit. It is related to the degree of freedom in solving a system of K equa-
tions, where K is the fixed number of constraints, with more and more variables
(as m increases).

5.2 Noun Phrase Coreference Resolution

Dataset and preprocessing For the coreference resolution task, we use the
English dataset used for the CoNLL-2012 shared task [25]. Recall that the task
consists, for each document, in partitioning a set of noun phrases (aka mentions)
into classes of equivalence that denote real-wold entities. This task is illustrated
on the following small excerpt from CoNLL-2012:



Was Sixty Minutes unfair to [Bill Clinton]1 in airing Louis Freeh’s charges
against [him]1 ?

In this case, noun phrases “Bill Clinton” and “him” both refer to the same entity
(i.e. William Jefferson Clinton), encoded here by the fact that they share the
same index3. The English CoNLL-2012 corpus contains over over 2K documents
(1.3M words) that fall into 7 categories, corresponding to different domains (e.g.,
newsiwre, weblogs, telephone conversation). We used the official train/dev/test
splits that come with the data. Since we were specifically interested in comparing
approaches rather than developing the best end-to-end system, we used the gold
mentions; that is, we clustered only the noun phrases that we know were part
of ground-truth entities.

The mention graphs are built from a model of pairwise similarity, which
is trained on the training section of CoNLL-2012. The similarity function is
learned using logistic regression, each pair of mentions being described by a set
of features. We re-use features that are commonly used for mention pair classi-
fication (see e.g., [23],[4]), including grammatical type and subtypes, string and
substring matches, apposition and copula, distance (number of separating men-
tions/sentences/words), gender and number match, synonymy/hypernym and
animacy (based on WordNet), family name (based on closed lists), named entity
types, syntactic features and anaphoricity detection.
Evaluation metrics The systems’ outputs are evaluated using the three stan-
dard coreference resolution metrics: MUC [29], B3 [2], and Entity-based CEAF
(or CEAFe) [20]. Following the convention used in CoNLL-2012, we report a
global F1-score (henceforth, CoNLL score), which corresponds to an unweighted
average of the MUC, B3 and CEAFe F1 scores. Micro-averaging is used through-
out when reporting scores for the entire CoNLL-2012 test. Additionally, we are
reporting the adjusted rand index.

In order to analyze performance for different cluster sizes, we also computed
per-cluster precision and recall scores. Precision pi and recall ri are computed
for each reference entity class Ci for all documents. Then, the micro-averaged
F1-score score is computed as follows:

p̄ =
∑
i

|Ci| pi∑
j |Cj |

r̄ =
∑
i

|Ci| ri∑
j |Cj |

F1 =
2p̄r̄

p̄+ r̄

System settings Following the approach in [6], we first create for each doc-
ument a fully connected similarity4 graph between mentions and then run our
clustering algorithm on this graph. Compared to the tasks on the UCI dataset,
the main difficulties are the determination of the number of clusters and the fact
that we have to deal with many small graphs (documents contain between 1 and
300 mentions).

3 Note that noun phrases like “Sixty Minutes” and “Louis Freeh” also denote entities,
but such singleton entities are not part of the CoNLL annotations.

4 Pamameter estimation for this pairwise mention model was performed using Limited-
memory BFGS implemented as part of the Megam package http://www.umiacs.

umd.edu/~hal/megam/version0_3/. Default settings were used.

http://www.umiacs.umd.edu/~hal/megam/version0_3/
http://www.umiacs.umd.edu/~hal/megam/version0_3/


The same defaut values were used for the σm and σc parameters, as in the
previous experiments (that is, 0.15 and 1.5, respectively). In our aglorithm we
need to fix parameter m. We fix a value that is a tradeoff between the dimension
of Lsym and the number of constraints. Indeed, we want to keep structural infor-
mation comming from the graph through the eigendecomposition of Lsym. Also,
we reject the situations where m is much larger than the number of constraints
because they can lead to solutions that are non satisfactory. In that latter case,
the optimization problem can be solved without any impact on non-constrained
pairs and therefore without any generalization based on the given constraints.
Because the multiplicity of eigenvalue 1 is large in this dataset, m is estimated
by m = |{λi : λi ≤ 0.99}| where λi are the eigenvalues of Lsym. The number of
clusters k is estimated by k =

∣∣{λi : λi ≥ 10−5}
∣∣ where λi are the eigenvalues of

X>X.

As for the inclusion of constraints, we experimented with two distinct set-
tings. In the first setting, we automatically extracted based on domain knowledge
(setting (c) in the results below). Must-link constraints were generated for pairs
of mention that have the same character string. For cannot-link constraints, we
used number, gender, animacy, and named entity type dismatches (e.g., noun
phrases with different values for gender cannot corefer). These constraints are
similar to some of the deterministic rules used in [17] and overlap with the infor-
mation already in the features. This first constraint extraction generates a lot of
constraints (usually, more than 50% of all available constraints for a document),
but it is also noisy. Some of the constraints extracted this way are incorrect as
they are based on information that is not necessarily in the dataset (e.g., gender
and number are predicted automatically). The precision of these constraints is
usually higher than 95%. In a second simulate interactive setting, we extracted
a smaller set of must-link and cannot-link constraints directly from the ground-
truth partitions, by drawing coreferential and non-coreferential mention pairs
at random according to a uniform law (setting (b) below). In turn, all of these
constraints are correct. Each mention pair has a probability 1/n to be drawn,
with n the mention count.

Results and discussion We want to show that fgpwc works better on large
graphs and larger clusters. We perform per-cluster evaluation, this is summarized
in Figure 3. All plots represent the F1-score, averaged on runs all documents per
cluster size. Plot (a) reports results for the unconstrained spectral clustering ap-
proach of [6]. Their method uses a recursive 2-way spectral clustering algorithm.
The parameter used to stop the recursion has been tuned on a development
set. The other plots are obtained using (b) fgpwc with constraints generated
uniformly at random from an oracle and (c) fgpwc with constraints derived
automatically from text based on domain knowledge.

In the latter case (c) fgpwc has not been able to improve the results ob-
tained by (a). We think that constraints extracted from text does not add new
information but change the already optimized measure in the similarity graph.
However, even adding less constraints at random from an oracle using a uniform
distribution is more informative. When we are using constraints that do not
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Fig. 3: Averaged F1-score vs minimum cluster size for fgpwc with CoNLL
2012 data set: (a) method in [6], (b) fgpwc uniformly distributed from

reference; (c) fgpwc All extracted must/cannot-links

comes from the features used for the similarity construction step, we see that
fgpwc outperform other methods for clusters larger than 5. However, we can
see that fgpwc can degrade smallest clusters. There are two explanations for
this: we obtain better performance on larger clusters because the way we select
random constraints. Using a uniform distribution, there is more chance to add
constraints for larger clusters. And moreover, clusters with few or no constraints,
in our case: small clusters, are usually scattered around the space, because fg-
pwc globally transforms the space to fit the constraints. We can also see that (b)
outperforms (c) on small clusters. Probably because more constraints are being
added for small clusters in (b). All of this supports the idea that constraints in
this kind of task should be generated from another set of features applicable to
all mentions, regardless of the size of the clusters they belong to.

Overall, we obtain a CoNLL score of 0.71 (0.80 MUC, 0.75 B3, 0.57 CEAFe,
0.48 ARI), for [6], 0.56 (0.76 MUC, 0.57 B3, 0.36 CEAFe, 0.31 ARI) using our
method along with extracted constraints and 0.58 (0.67 MUC, 0.58 B3, 0.49
CEAFe, 0.40 ARI) with ground-truth random constraints. That is, we see a
clear drop of performance when using the constraints, be they noisy or not.
Closer examination reveals that this decrease stems from poor performance on
small clusters, while these clusters are the most representative in this task.

The F1-score is lower than for the state of the art. But interestingly, in
presence of uniformly distributed pairwise constraints, our algorithm can sig-
nificantly improve clustering results on clusters larger than 5, compared to the
state of the art [6]. This suggests that active methods can lead to dramatic im-
provements and our algorithm easily supports that through the introduction of
pairwise constraints. Moreover, our method can be used to detect larger clusters,
and leave the smaller cluster to another method.



6 Conclusion

We proposed a novel constrained spectral clustering framework to handle must-
link and cannot-link constraints. This framework can handle both 2 clusters
and more than 2 clusters cases using the exact same algorithm. Unlike previous
methods, we can cluster data which require more eigenvectors in the analysis.
We can also handle cannot-link constraints without giving up on computational
complexity. We carried out experiments on UCI and network data sets. We
also provide an experiment on the real task of noun-phrase coreference and
discuss the results. We discuss the relationship between Laplacian eigenmaps and
the constraints, that can explain why adding constraints can degrade clustering
results. We empirically show that our method, that involves a simple and fast
gradient descent, outperforms several state of the art algorithms on various data
sets. For noun-phrase coreference, the challenge ahead will be to find rules to
generate constraints from the text which are more uniformly distributed. We
also want to find a way to better handle small clusters. A step in that direction
is to investigate better adapted cut criteria and active learning methods.
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