Extended Static Checking for Haskell
(ESC/Haskell)

Dana N. Xu

University of Cambridge

advised by Simon Peyton Jones
Microsoft Research, Cambridge

Program Errors Give Headache!

Module UserPgm where

f :: [Int]->Int
f xs = head xs max™ 0

. £ []

Module Prelude where

head :: [a] -> a
head (x:xs) = x
head [] = error “empty list”

Glasgow Haskell Compiler (GHC) gives at run-time
Exception: Prelude.head: empty list

Preconditions

head xs @ requires { not (null xs) }
head (x:xs’') = x

. . A precondition
f Xs = head xs max O P Z:]

(ordinary Haskell

Warning: £ [] calls head
which may fail head’s precondition!

f ok xs = if null xs then 0
else head xs max 0

null :: [a] -> Bool not :: Bool -> Bool
null [] = True not True = False
null (x:xs) = False not False = True

Postconditions

rev Xs @ ensures { null S$Sres ==> null xs }

rev [] = []
rev (x:xs’') = rev xs’ ++ [x]

A postcondition
(ordinary Haskell)
. case (rev xs) of
[] -> head xs

(x:xs8’) -> ..
Crash! :]

(==>) :: Bool -> Bool -> Bool
(==>) True x = x
(==>) False x = True

—!

Expressiveness of
the Specification Language

data T =Tl Bool | T2 Int | T3 T T

sumT :: T -> Int

sumT x @ requires { noTl x }

sumT (T2 a) = a

sumT (T3 tl t2) = sumT tl + sumT t2

noTl :: T -> Bool

noTl (Tl) = False

noTl (T2) = True

noTl (T3 tl t2) = noTl tl && noTl t2

—!

Expressiveness of
the Specification Language

sumT :: T -> Int
sumT x @ requires { noTl x }
sumT (T2 a) = a
sumT (T3 tl t2)

sumT tl1 + sumT t2

rmTl :: T -> T
rmTl x @ ensures { noTl Sres }

rmTl (Tl a) = if a then T2 1 else T2 0
rmTl (T2 a) = T2 a

rmTl (T3 tl1 t2)

T3 (rmTl1l tl) (rmTl1l t2)

For all crash-free t: : T, sumT (rmT1l t) will not crash.

Functions without Annotations

data T =Tl Bool | T2 Int | T3 T T

noTl :: T -> Bool
noTl (Tl) = False
noTl (T2) = True

noTl (T3 tl t2) = noTl tl && noTl t2

(&&) True x X
(&&) False x = False

No abstraction is more compact than
the function definition itself!

—————
Higher Order Functions

all :: (a -> Bool) -> [a] -> Bool
all £ [] = True
all £ (x:xs) = £ x && all £ xs

filter p xs @ ensures { all p $res }
filter p [] = []
filter p (x:xs’) = case (p x) of
True -> x : filter p xs’
False -> filter p xs’

—!

Various Examples

zip Xs ys @ requires { samelen xs ys}
zip Xs ys @ ensures { samelen $res xs }

samelen [] [] = True

samelen (x:xs) (y:ys) = samelen Xxs ys
samelen @ = False

f91 n @ requires { n <= 101 }

£f91 n @ ensures { Sres == 91 }

f91 n = case (n <= 100) of

True -> £91 (£f91 (n + 11))
False -> n - 10

——————————————————
Sorting

sorted [] = True
sorted (x:[]) = True
sorted (x:y:xs) = x <=y && sorted (y : xs)

insert i xs @ ensures { sorted xs ==> sorted S$res }
insertsort xs @ ensures { sorted S$res }

merge xs ys @ ensures { sorted xs & sorted ys
==> sorted $res }

mergesort xs @ ensures { sorted S$res }

bubbleHelper :: [Int] -> ([Int], Bool)
bubbleHelper xs @ ensures { not (snd S$res) ==
sorted (fst S$res) }

bubblesort xs @ ensures { sorted S$res }

e —
What we can’t do

gl x @ requires {True}

gl x = case (prime x > square x) of
True -> X
False -> error “urk”

g2 xs ys = xi Crash! J

case (rev (xs ++ ys) == rev ys ++ rev xs) of
True -> Xs

False -> error “urk”

Hence, three possible outcomes:
(1) Definitely Safe (no crash, but may loop)
(2) Definite Bug (definitely crashes)
(3) Possible Bug

Language pom € Program

pgm = def1,...,defn

S ntaX def € Definition
y def = fzr=e
| fT@requires {e}
| fZ@ensures{e}
a,e £ Expression
a,e .= BAD [bl A crash
| OKe Safe expression
| UNR Unreachable
| lNoInlinee No inlining
(] ’ .
foll()Wlng Haskell S I iis;.de [bl loc e A call trace
o | e1es An application
| let z=e1 1n e2
| Cei...en Constructor
| = Variable
| = Constant
alts = alty .. . alt,
alt = p — € Case altemnative
T = C'x.. .Zn Fattern
val £ Value

val 1= n|Cet...en|Aze

—!

Preprocessing

1. Filling in missing pattern matchings.

— head (x:xs) = x
head [] = BAD “head”

head (x:xs) = x

2. Type checking the pre/postconditions.

head xs @ requires { xs /= [] }
head :: [a] -> a :><:

head (x:xs) = x

head :: Eq a => [a] -> a

Symbolic Pre/Post Checking

At the definition of each function f,
assuming the given precondition holds,

we check
1. No pattern matching failure

2. Precondition of all calls in the body of
f holds

3. Postcondition holds for f'itself.

Given fx = e, f.pre and f.post

fox £ = case f.pre z of
True — let $res = e|fi#/f1,..., fn#/fr]
in case f.post 7 $res
True — $res
False — BAD "post"

Goal: show £, is crash-free!

Theorem: if so, then given precondition of f holds:
1. No pattern matching failure

2. Precondition of all calls in the body of f holds

3. Postcondition holds for fitself

—!

The Representative Function

iNo need to look inside OK calls

Qll crashes in f are exposed in f#

f#xr = <casef.pre of
False — BAD " f"
True — let $res = (0K f) &
in case f.post & $res of
True — $res

Simplifier

letz =rinb
(Az.e1) ea
(case eg of {C',- T; — ci}] a

case (case eg of {C':- I; — 6:‘}] of alts

case Cjé; of {Ci Ti — e}
case eg of {C,- T; — ei; 0 T — U]']'R}

case eg of {C; i — e;}

case eg of {Ci I; — E}
case Ci Ji of {Ci Zi — ei}

case ep of {C:' I; — ...case eg of{Ci T; — ﬂ:‘} . }

LU

I

l

bl

l

b[r/z]
e1le2/z]
case eg of {C; Z; — (e;a)} fu(a)nz; =0

case e, of {C':- I; — casee; of affs}

folalts)Nz; =10

UR ¥:.C; # C;
case eg of {C; z; — &}
e1 patterns are exhaustive and

ep 15 crash-free and

forall ¢,fv(e;) Nz; = Dand e1 = &
= ep € {BAD [bl,UNR}
eilyi/ zi]

case ep of {Ci I; — ...E:‘...}

(INLINE)
(BETA)

(CASEOUT)

(CASECASE)
(NoMATCH)

(UNREACHABLE)

(SAMEBRANCH)

(STOP)
(MATCH)

(SCRUT)

Expressive specification does not

increase the complication of checking

filter £ xs @ ensures { all f Sres }

filter,, £ xs =
case xs of
[] -> True
(x:xs’) -> case (all £ (filter £ xs’)) of
True -> ... all £ (filter £ xs’) ..

Arithmetic

via External Theorem Prover

f :: Int -> Int -> Int

fgg i j 8 requlﬁes { 1n> j } >>ThmProver

foo#} i j = case i > j of“ ; i+8>i
True > .. o0 [»>Valid!

goo i = foo (i+8) 1i

goo,, i = case (i+8 > i) of |>>ThmProver
False -> BAD “foo” |push (i>j)

True -> .. push (not (3j<0))
_ _ (i>0)
case i > j of >>Valid!

True -> case j < 0 of
False -> case i1 > 0 of
False -> BAD “f”

e —
Counter-Example Guided Unrolling

sumT :: T -> Int

sumT x @ requires { noTl x }

sumT (T2 a) = a

sumT (T3 tl t2) = sumT tl + sumT t2

After simpliftying sumT_,,, we may have:

case ((OK noTl) x) of
True -> case x of
Tl a -> BAD “sumT”
T2 a -> a
T3 tl1 t2 -> case ((OK noTl) tl) of
False -> BAD “sumT”
True -> case ((OK noTl) t2) of
False -> BAD “sumT”
True -> (OK sumT) tl1 +
(OK sumT) t2

.
Step 1:
Program Slicing — Focus on the BAD Paths

case ((OK noTl) x) of
True -> case x of
Tl a -> BAD “sumT”
T3 tl t2 -> case ((OK noTl) tl) of
False -> BAD “sumT”
True -> case ((OK noTl) t2) of
False -> BAD “sumT”

———————————
Step 2: Unrolling

case (case x of
Tl a -> False
T2 a -> True
T3 t1 t2 -> (OK noTl) tl1l s&s&

(OK noTl) t2) of
True -> case x of
Tl a -> BAD “sumT”
T3 t1 t2 -> case ((OK noTl) tl) of
False -> BAD “sumT”
True -> case ((OK noTl) t2) of
False -> BAD “sumT”

Keeping Known Information

case (case (NoInline ((OK noTl) x)) of
True -> case x of
Tl a’ -> False
T2 a’ -> True
T3 t1’ t2’ -> (OK noTl) tl1 &g

(OK noTl) t2)) of

True -> case x of
Tl a -> BAD “sumT”
T3 t1 t2 -> case ((OK noTl) tl) of
False ->/ BAD “sumT”
True ->/case ((OK noTl) t2) of

case (NoInline ((OK noTl) tl1l)) of False -> BAD/ “sumT”
True -> ...

case (NoInline ((OK noTl) t2)) of
True -> ...

Counter-Example Guided Unrolling
— The Algorithm

escHrhs 0 = “Counter-example :” ++ report rhs
escHrhs n =
let rhs’ = simplifier rhs
b = noBAD rhs’
in case b of
True — “No Bug.”
False — let s — slice rhs’
in case noFunCall s of
True — let eg — onekg s
in “Definite Bug :” ++ report eg
False — let s’ — unrollCalls s
inescHs' (n—1)

Tracing

f#r = casef.prexof
False — BAD " f"
True — let $res = (0K f) &
in case f.post $res of
True — $res

fttx = ‘Inside"f" loc
case f.pre x of

False — BAD " f"
True — let $res = (0K f) &
in case f.post T $res of
True — $res)

LIIIE!

Counter-Example Generation

fl x z Q@ requires { x < z } £3 [1z=20
F2 x z =1+ fl x 2 £f3 (x:xs) z = case x > z of
True -> £f2 x z
£33, Xs z = False -> ...
case xs of
[1] -> O

(x:y) -> case x > z of
True -> Inside “£f2” <12>
(Inside “fl1” <11> (BAD “f1”))
False -> ..

Warning <13>: £3 (x:y) z where x>z
calls f2
which calls fl
which may fail f1’s precondition!

Contributions

O Checks each program in a modular fashion on a per function
basis. The checking is sound.

O Pre/postcondition annotations are in Haskell.
= Allow recursive function and higher-order function

O Unlike VC generation, we treat pre/postcondition as boolean-
valued functions and use symbolic simplification.
» Handle user-defined data types
= Better control of the verification process

O First time that Counter-Example Guided approach is applied
to unrolling.

Produce a trace of calls that may lead to crash at compile-time.

Our prototype works on small but significant examples
= Sorting: insertion-sort, merge-sort, bubble-sort
= Nested recursion

O O

e
Future Work

O Allowing pre/post declaration for data types.
data A where
Al :: Int -> A
A2 :: [Int] -> [Bool] -> A
A2 x y @ requires { length x == length y}

O Allowing pre/post declaration for parameters in higher-
order function.
map f xs @ requires {all f.pre xs}
map £ [] = []
map £ (x:xs’) = £ x : map £ xs’

O Allowing polymorphism and support full Haskell.

