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Module UserPgm where

f :: [Int] -> Int
f xs = head xs `max` 0 

:
… f [] …

Program Errors Give Headache!

Glasgow Haskell Compiler (GHC) gives at run-time

Exception: Prelude.head: empty list

Module Prelude where

head :: [a] -> a
head (x:xs) = x
head [] = error “empty list”
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From Types to Contracts 
head (x:xs) = x

head :: [Int] -> Int

…(head 1)…

head 2 {xs | not (null xs)} -> {r | True}

…(head [])…

Bug!

Bug!
Contract

(original Haskell 

boolean expression)

Type not :: Bool -> Bool

not True = False

not False = True

null :: [a] -> Bool

null [] = True

null (x:xs) = False
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What we want?

Contract Haskell 

Program

Glasgow Haskell Compiler (GHC)

Where the bug is Why it is a bug
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Contract Checking
head 2 {xs | not (null xs)} -> {r | True}

head (x:xs’) = x

f xs = head xs `max` 0

Warning: f [] calls head

which may fail head’s precondition!

f_ok xs = if null xs then 0

else head xs `max` 0

No more warnings from the compiler!
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Satisfying a Predicate Contract

e 2 {x | p} if   (1)   p[e/x] gives True and

(2)  e is crash-free.

Arbitrary boolean-valued 

Haskell expression

Recursive function, 

higher-order function, 

partial function

can be called!
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Expressiveness of 

the Specification Language

data T = T1 Bool | T2 Int | T3 T T

sumT :: T -> Int 

sumT 2 {x | noT1 x} -> {r | True}

sumT (T2 a)     = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

noT1 :: T -> Bool

noT1 (T1 _) = False

noT1 (T2 _) = True

noT1 (T3 t1 t2) = noT1 t1 && noT1 t2
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Expressiveness of 

the Specification Language

sumT :: T -> Int

sumT 2 {x | noT1 x} -> {r | True}

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

rmT1 :: T -> T

rmT1 2 {x | True} -> {r | noT1 r}

rmT1 (T1 a) = if a then T2 1 else T2 0

rmT1 (T2 a) = T2 a

rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

For all crash-free t::T,   sumT (rmT1 t) will not crash.
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Higher Order Functions

all :: (a -> Bool) -> [a] -> Bool

all f [] = True

all f (x:xs) = f x && all f xs

filter :: (a -> Bool) -> [a] -> [a]

filter 2 {f | True} -> {xs | True} -> {r | all f r}

filter f [] = []

filter f (x:xs’) = case (f x) of

True -> x : filter f xs’

False -> filter f xs’
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Contracts for Higher-order 

Function’s Parameter

f1 :: (Int -> Int) -> Int

f1 2 ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

f1 g = (g 1) - 1

f2 :: {r | True}

f2 = f1 (\x -> x – 1)

Error: f1’s postcondition fails

when (g 1) >= 0 holds

(g 1) – 1 >= 0 does not hold

Error: f2 calls f1

which fails f1’s precondition

[Findler&Felleisen:ICFP’02, Blume&McAllester:ICFP’04]
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Various Examples
zip :: [a] -> [b] -> [(a,b)]

zip 2 {xs | True} -> {ys | sameLen xs ys}

-> {rs | sameLen rs xs }

sameLen [] []         = True

sameLen (x:xs) (y:ys) = sameLen xs ys

sameLen _ _           = False 

f91 :: Int -> Int

f91 2 {n | True} -> {r | (n<=100 && r==91)                                                                 
|| r==n-10}

f91 n = case (n <= 100) of

True -> f91 (f91 (n + 11))

False -> n – 10
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Sorting

sorted [] = True

sorted (x:[]) = True

sorted (x:y:xs) = x <= y && sorted (y : xs)

insert :: Int -> [Int] -> [Int]

insert 2 {i | True} -> {xs | sorted xs} -> {r | sorted r}

merge :: [Int] -> [Int] -> [Int]

merge 2 {xs | sorted xs}->{ys | sorted ys}->{r | sorted r}

bubbleHelper :: [Int] -> ([Int], Bool)

bubbleHelper 2 {xs | True} 

-> {r | not (snd r) ==> sorted (fst r)} 

insertsort, mergesort, bubblesort 2 {xs | True} 

-> {r | sorted r}

(==>) True x = x

(==>) False x = True



AVL Tree
balanced :: AVL -> Bool

balanced L = True

balanced (N t u) = balanced t && balanced u && 

abs (depth t - depth u) <= 1

data AVL = L | N Int AVL AVL 

insert, delete :: AVL -> Int -> AVL

insert 2 {x | balanced x} -> {y | True} -> 

{r | notLeaf r && balanced r     &&

0 <= depth r - depth x      &&

depth r - depth x <= 1  }

delete 2 {x | balanced x} -> {y | True} -> 

{r | balanced r && 0 <= depth x - depth r && 

depth x - depth r <= 1}

(&&) True x = x

(&&) False x = False
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Functions without Contracts
data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool

noT1 (T1 _)     = False

noT1 (T2 _)     = True

noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

(&&) True x  = x

(&&) False x = False

No abstraction is more compact than 

the function definition itself!



Lots of Questions

 What does “crash” mean?

 What is “a contract”?

 What does it mean to “satisfy a contract”?

 How can we verify that a function does 

satisfy a contract?

 What if the contract itself diverges? Or 

crashes?

It’s time to get precise...
15



What is the Language?

 Programmer sees Haskell

 Translated (by GHC) into Core language

 Lambda calculus

 Plus algebraic data types, and case expressions

 BAD and UNR are (exceptional) values

 Standard reduction semantics e1 ! e2

16
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Two Exceptional Values
 BAD is an expression that crashes.

error :: String -> a

error s = BAD

head (x:xs) = x

head [] = BAD

 UNR (short for “unreachable”) is an expression that gets 
stuck. This is not a crash, although execution comes to a 
halt without delivering a result. (identifiable infinite loop)

div x y = 

case y == 0 of

True -> error “divide by zero”

False -> x / y

head (x:xs) = x

Real Haskell 

Program



Crashing

Definition (Crash). 

A closed term e crashes iff e !* BAD

Definition (Crash-free Expression)

An expression e is crash-free iff

8 C. BAD 2s C, ` C[[e]] :: (), C[[e]]  !* BAD

Non-termination is not a crash 

(i.e. partial correctness).



Crash-free Examples

Lemma:  For all closed e, 

e is syntactically safe    ) e is crash-free.

Crash-free?

(1,BAD) NO

(1, True) YES

\x -> x YES

\x -> if x > 0 then x else (BAD, x) NO

\x -> if x*x >= 0 then x + 1 else BAD Hmm.. YES
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What is a Contract
(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06,Flanagan:POPL06]) 

Full version:  x’:{x | x >0} -> {r | r > x’}

Short hand:  {x | x > 0} -> {r | r > x}

k:({x | x > 0} -> {y | y > 0}) -> {r | r > k 5}

t 2 Contract

t ::= {x | p}    Predicate Contract

|  x:t1 ! t2 Dependent Function Contract

|  (t1, t2)    Tuple Contract

|  Any        Polymorphic Any Contract
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Questions on e 2 t
3 2 {x | x > 0}

5 2 {x | True}

(True, 2)    2 {x | (snd x) > 0}  ?

(head [], 3) 2 {x | (snd x) > 0} ? 

BAD 2 ?

? 2 {x | False}

? 2 {x | BAD}    

\x-> BAD     2 {x | False} -> {r | True} ?

\x-> BAD     2 {x | True} ->  ?

\x-> x       2 {x | True} ?
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What exactly does it mean 
to say that

e “satisfies” contract t?

e 2 t
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Contract Satisfaction
(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06])

e" means e diverges or e !* UNR

e 2 {x | p}      , e" or (e is crash-free and                
p[e/x]!*{BAD, False}           [A1]

e2 x:t1! t2 , e" or (e !*¸x.e’ and [A2]

8 e1 2 t1. (e e1) 2 t2[e1/x])

e 2 (t1, t2)       , e" or (e !*(e1,e2) and [A3]

e1 2 t1 and e2 2 t2)

e 2 Any    , True                                                   [A4]

Given ` e ::  and `c t :: , we define e 2 t as follows:



Only Crash-free Expression 

Satisfies a Predicate Contract 
e 2 {x | p}      , e" or (e is crash-free and p[e/x]!*{BAD, False}           

e2 x:t1! t2 , e" or (e !*¸x.e’ and 8 e1 2 t1. (e e1) 2 t2[e1/x] )                

e 2 (t1, t2)       , e" or (e !*(e1,e2) and e1 2 t1 and e2 2 t2)

e 2 Any    , True

YES or NO?

(True, 2)    2 {x | (snd x) > 0} YES

(head [], 3) 2 {x | (snd x) > 0} NO

\x-> x       2 {x | True} YES

\x-> x       2 {x | loop} YES

5            2 {x | BAD} NO

loop 2 {x | False} YES

loop 2 {x | BAD} YES
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All Expressions Satisfy Any

fst 2 ({x | True}, Any) -> {r | True}

fst (a,b) = a

g x = fst (x, BAD)

YES or NO?

5 2 Any YES

BAD 2  Any YES

(head [], 3) 2 (Any, {x | x> 0}) YES

\x -> x      2 Any YES

BAD 2  Any -> Any NO

BAD 2 (Any, Any) NO

Inlining may help, but 
breaks down when function
definition is big or recursive



All Contracts are Inhabited
e 2 {x | p}      , e" or (e is crash-free and p[e/x]!*{BAD, False}           

e2 x:t1! t2 , e" or (e !*¸x.e’ and 8 e1 2 t1. (e e1) 2 t2[e1/x])                 

e 2 (t1, t2)       , e" or (e !*(e1,e2) and e1 2 t1 and e2 2 t2)

e 2 Any    , True

YES or NO?

\x-> BAD     2 Any ->  Any YES

\x-> BAD     2 {x | True} ->  Any YES

\x-> BAD     2 {x | False} -> {r | True} NO

Blume&McAllester[JFP’06]

say YES
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What to Check?

Does function f satisfy its contract t (written f2 t)?

At the definition of each function f,

Check f 2 t assuming all functions called in f 

satisfy their contracts.

Goal:  main 2 {x | True}

(main is crash-free, hence the program cannot crash)



How to Check?
Define

e 2 t

Construct

e B t 

(e “ensures” t)

Grand Theorem 
e 2 t    , e B t is crash-free  

(related to Blume&McAllester:JFP’06)

some e’

Simplify (e B t)

If e’ is syntactically safe,

then Done!

Part I

Part II
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What we can’t do?
g1, g2 2 Ok -> Ok

g1 x = case (prime x > square x) of

True -> x

False -> error “urk”

g2 xs ys = 

case (rev (xs ++ ys) == rev ys ++ rev xs) of

True -> xs

False -> error “urk”

Hence, three possible outcomes: 

(1) Definitely Safe (no crash, but may loop)

(2) Definite Bug (definitely crashes)

(3) Possible Bug

Crash!

Crash!
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Wrappers  B and  C
(B pronounced ensures C pronounced requires)

e B {x | p} = case p[e/x] of
True -> e

False -> BAD

e B  x:t1 ! t2
=  v. (e (vC t1)) B    t2[vCt1/x]

e B (t1, t2) = case e of

(e1, e2) -> (e1 B t1, e2 B t2)

e B Any = UNR

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]
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Wrappers  B and  C
(B pronounced ensures C pronounced requires)

e C {x | p} = case p[e/x] of
True -> e

False -> UNR

e C  x:t1 ! t2
=  v. (e (v B t1)) C    t2[v B t1/x]

e C (t1, t2) = case e of

(e1, e2) -> (e1 C t1, e2 C t2)

e C Any = BAD

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]



Example

head  { xs | not (null xs) } -> Ok

head {xs | not (null xs)} -> Ok

= \v. head (v  {xs | not (null xs)})  Ok

e  Ok  = e

= \v. head (v  {xs | not (null xs)})

= \v. head (case not (null v) of
True -> v
False -> UNR)

head:: [a] -> a

head []     = BAD

head (x:xs) = x



\v. head (case not (null v) of
True -> v
False -> UNR)

null :: [a] -> Bool

null []     = True

null (x:xs) = False

not :: Bool -> Bool

not True  = False

not False = True

= \v. head (case v of
[] -> UNR
(p:ps) -> p)

Now inline ‘not’ and ‘null’

Now inline ‘head’

= \v. case v of
[]     -> UNR
(p:ps) -> p

So head [] fails 
with UNR, not 

BAD, blaming the 
caller



Higher-Order Function

f1 B ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

= … B C B
=  v1. case (v1 1) >= 0 of

True -> case (v1 1) - 1 >= 0 of

True -> (v1 1) -1

False -> BAD

False -> UNR  

f1 :: (Int -> Int) -> Int

f1 2 ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

f1 g = (g 1) - 1

f2:: {r | True}

f2 = f1 (\x -> x – 1)



e B {x | p} = case p[e/x] of
True -> e

False -> BAD

loop 2{x | False} 

loop B{x | False} 
= case False of {True -> loop; False -> BAD}

= BAD, which is not crash-free

BAD 2 Ok -> Any

BAD B Ok -> Any 
= \v -> ((BAD (v C Ok)) B Any

= \v -> UNR, which is crash-free

Grand Theorem 
e 2 t    , e B t is crash-free  





e B {x | p} = e `seq` case p[e/x] of
True -> e

False -> BAD

loop 2{x | False} 

loop B{x | False} 
= loop `seq` case False of {…}

= loop, which is crash-free

BAD 2 Ok -> Any

BAD B Ok -> Any 
= BAD `seq` \v -> ((BAD (v C Ok)) B Any

= BAD, which is not crash-free

Grand Theorem 
e 2 t    , e B t is crash-free  

e_1 `seq` e_2 = case e_1 of {DEFAULT -> e_2}





Contracts that Diverge

\x->BAD 2 {x | loop} ?  NO

But 

\x->BAD B {x | loop}

= \x->BAD `seq` case loop of

True -> \x -> BAD

False -> BAD

e B {x | p} = e `seq` case fin p[e/x] of

True -> e

False -> BAD

fin converts divergence to True

crash-free



Contracts that Crash

 … much trickier 

 ()) does not hold, (() still holds

 Open Problem

 Suppose fin converts BAD to False

 Not sure if Grand Theorem holds because

NO proof, and NO counter example either.

38

Grand Theorem 
e 2 t    , e B t is crash-free  



Well-formed Contracts

Grand Theorem 
e 2 t    , e B t is crash-free  

Well-formed t

t is Well-formed (WF) iff
t = {x | p} and p is crash-free 

or t = x:t1 ! t2 and t1 is WF and 8e12 t1, t2[e1/x] is WF
or t = (t1, t2) and both t1 and t2 are WF
or t = Any
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Properties of B and C
Key Lemma:
For all closed, crash-free e, and closed t,
(e C t) 2 t

Projections:  (related to Findler&Blume:FLOPS’06)

For all e and t, if e 2 t, then 
(a) e ¹ e B t
(b) e C t ¹ e

Definition (Crashes-More-Often):
e1 ¹ e2 iff   for all C, ` C[[ei]] :: () for i=1,2 and

C[[e2]] !
* BAD ) C[[e1]] !

* BAD
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More Lemmas 

Lemma [Monotonicity of Satisfaction ]:

If e1 2 t and e1 ¹ e2, then e22 t

Lemma [Congruence of ¹]:

e1 ¹ e2     ) 8 C. C[[e1]] ¹ C[[e2]]

Lemma [Idempotence of Projection]:

8 e, t.   e B t B t ≡ e B t 

8 e, t.   e C t C t ≡ eC t 

Lemma [A Projection Pair]:

8 e, t.  e B t C t ¹ e

Lemma [A Closure Pair]:

8 e, t.  e ¹ eC t B t 
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How to Check?
Define

e 2 t

Construct

e B t 

(e “ensures” t)

Grand Theorem 
e 2 t    , e B t is crash-free  

(related to Blume&McAllester:ICFP’04)

Normal form e’

Simplify (e B t)

If e’ is syntactically safe,

then Done!

Part I

Part II
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Simplification Rules



Arithmetic 

via External Theorem Prover

goo B tgoo = \i -> 
case (i+8 > i) of
False -> BAD “foo”
True -> …

>>ThmProver

i+8>i

>>Valid!

case i > j of 

True -> case j < 0 of

False -> case i > 0 of

False -> BAD “f”

>>ThmProver

push(i>j)

push(not (j<0))

(i>0)

>>Valid!
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Counter-Example Guided Unrolling
sumT :: T -> Int

sumT 2 {x | noT1 x } -> {r | True}

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

After simplifying (sumT B tsumT) , we may have:

case (noT1 x) of

True -> case x of

T1 a -> BAD 

T2 a -> a

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD 

True -> sumT t1 + sumT t2                            



46

Step 1:

Program Slicing – Focus on the BAD Paths

case (noT1 x) of

True -> case x of

T1 a -> BAD

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD 
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Step 2: Unrolling

case (case x of

T1 a -> False

T2 a -> True

T3 t1 t2 -> noT1 t1 && noT1 t2) of

True -> case x of

T1 a -> BAD 

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD
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Counter-Example Guided Unrolling 

– The Algorithm
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Tracing 
(Achieve the same goal as [Meunier, Findler, Felleisen:POPL06]

g 2 tg

g = …

f 2 tf

f = …g …

f B tf = …g C tg …

(\g ! …g …) B tg ! tf

Inside “g” lc (g C tg) 

case fin p[e/x] of

True  -> e

False -> BAD “f”
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Counter-Example Generation

f3 B Ok = \xs -> \z ->

case xs of

[] -> 0

(x:y) -> case x > z of

True -> Inside “f2” <l2>

(Inside “f1” <l1> (BAD “f1”))

False -> …

Warning <l3>: f3 (x:y) z where x>z

calls f2

which calls f1

which may fail f1’s precondition!

f3 [] z = 0

f3 (x:xs) z = case x > z of

True -> f2 x z

False -> ...

f1 2 x:Ok -> { x < z } -> Ok

f2 x z = 1 + f1 x z 
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Conclusion

Contract Haskell 

Program

Glasgow Haskell Compiler (GHC)

Where the bug is Why it is a bug



Summary

• Static contract checking is a fertile and under-researched 

area

• Distinctive features of our approach

– Full Haskell in contracts; absolutely crucial

– Declarative specification of “satisfies”

– Nice theory (with some very tricky corners)

– Static proofs

– Modular Checking

– Compiler as theorem prover
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Contract Synonym
contract Ok = {x | True}

contract NonNull = {x | not (null x)}

head :: [Int] -> Int

head 2 NonNull -> Ok

head (x:xs) = x

{-# contract Ok = {x | True} -#}

{-# contract NonNull = {x | not (null x)} #-}

{-# contract head :: NonNull -> Ok #-}

Actual Syntax



Recursion
f Bt
=\f->f B t->t

= …

=(… (f C t)…) B t  

Suppose t = t1 -> t_2

f B t1 -> t2
= \f->f B(t1 -> t2) -> (t1 -> t2)
= …

=(… (f C t1 -> t2)…) B t1 -> t2  

=\v2.((…(\v1.((f (v1 Bt1)) C t2)) (v2C t1) …) B t2)

54


