Hybrid Contract Checking vi

Dana N

INRIA

a Symbolic Simplification

. Xu

na.xu@inria.fr

Abstract

Program errors are hard to detect or prove absent. Allowing pro-
grammers to write formal and precise specifications, especially in
the form of contracts, is one popular approach to program veri-
fication and error discovery. We formalize and implement a hy-
brid contract checker for a subset of OCaml. The key technique
we use is symbolic simplification, which makes integrating static

and dynamic contract checking easy and effective. Our technique

statically verifies that a function satisfies its contract or blames the
function violating the contract. When a contract satisfaction is un-
decidable, it leaves residual code for dynamic contract checking.

Categories and Subject Descriptors D.3 [Softward: Program-
ming Languages

General Terms symbolic simplification, functional language,
verification, debugging

Keywords contract semantics, static, dynamic, hybrid, contract
checking

1. Introduction

Constructing reliable software is difficult even with functional lan-
guages. Formulating and checking (statically or dynamically) log-
ical assertions [2, 5, 16, 18, 37], especially in the form of con-
tracts [7, 13, 14, 30, 41], is one popular approach to error disgover
Static contract checking can catch all contract violations but may
give false alarm and can only check restricted properties; dynamic

checking can check more expressive properties but consumes run

time cycles and only checks the actual executed paths, thus is no
complete. Static and dynamic checking can be complementary. In
this paper, we formalize hybrid (i.e. static followed by dynamic)

contract checking for a subset of OCaml. Thus, no (potential) con-

The contract off1 says that iff1 takes a function that returns a
non-negative number when given a non-negative number, the func
tion £1 itself returns a non-negative number. Both a static checker
and a dynamic checker are able to report thiafails its postcon-
dition: the static checker relies on the invalidity @§ : int —

int, (g 1) > 0 = (g 1) — 1 > 0 while the dynamic checker
evaluates(((fun x -> x - 1) 1) - 1) to -1, which violates

the contrac{z | z >= 0}. However, a dynamic checker cannot
tell that the argumen¢fun x -> x - 1) fails £1's precondition
because there is no witness at run-time, while a static checker can
report this contract violation because- 1 > 0 does not hold for

all z of int to satisfy the postconditiofly | y > 0}. On the other
hand, a static checker usually gives three outcomes: (a) definitely
no bug; (b) definitely a bug; (c) possibly a bug. Here, a bug refers
to a contract violation. If we get many alarms (c), it may take us
a lot of time to check which one is a real bug and which one is a
false alarm. We may want to invoke a dynamic checker when the
outcome is (c).

Following the formalization in [41], but this time for a strict
language. We first give a denotational semantics to contract satis-
faction. That is to define what it means by an expressisatisfies
its contractt (written e € t) without knowing its implementation.
Next, we define a wrapperthat takes an expressierand its con-
tractt and produces a term> ¢ such that contract checks are in-
serted at appropriate placesdnlf a contract check is violated, a
special constructoBAD' signals the violation. As the term ¢ is
a term in the same language@asll we have to do is to check the
reachability ofBAD'. If a BAD is reachable, we know a contract is
violated and the labélprecisely captures the function at fault. We

ymbolically simplify the terne > ¢ aiming to simplifyBADs away.

n case there is anyAD left, we either report it as a compile-time
error or leave the residual code for dynamic checking. We make the
following contributions:

tract violations can escape and yet expressive properties can be ex-

pressed.
Consider an OCaml program augmented with a contract decla-
ration:

int -> int -> int *)

x| x>0} >{y | y>o0}
> {z | z >= 0}

g1 -1

1 (fun x > x - 1)

(x val f1 :
contract f1

let f1

g
let f2 =

£

[Copyright notice will appear here once "preprint’ option is removed.]

¢ We clarify the relationship between static contract checking and
dynamic contract checking?). A new observation is that, af-
ter static checking, we should prune away some more unreach-
able code before go on dynamic checking. Such unreachable
code however is essential during static checking. We prove the
correctness of this pruning) with the telescoping property
studied (but not used for such purpose) in [7, 41].

We definee € t ander-t and prove a theorenet¢ is crash-free
<= e € t"(8§4). The “crash-free” mean®4D is not reachable
under all contexts”. Such a formalization is tricky and its cor-
rectness proof is non-trivial. We re-do the kind of proofs in [42]
for a strict language.

We design a novel SL machine that augments symbolic sim-
plification with contextual information synthesis for checking
the reachability oBAD statically §5). The difficulty lies in the
reasoning about non-total terms. The checking is automatic and
modularand we prove is soundness. Moreover, the SL machine

2011/10/20

producesesidualcode for dynamic checking. We compare our
framework with other approaches§i.

¢ We design dogicizationtechnique that transforms expressions
to logical formulae, inspired by [19, 20] and axiomatization
of functions that interactive theorem provers perform before
calling SMT sovlers. However, we have to deal with non-total
terms and that is the key contribution of tlogicization(§5).

2. Overview

SCC is modular and performed at definition site of each func-
tion. For example(Av.v + 1) > ¢4 €xpands to:

Azi. lety= (Avw+1)
(let © = x1 in if & > 0 then z else UNR') in
if y > 0 then y else BAD(%% “11C™)

At the definition site of a functionf = e, we assumef’s
precondition holds and assert its postcondition. IBabs ine > ¢
are not reachable, we knoyvsatisfies its contract One way to
check reachability oBAD is to symbolically simplify the fragment.

Assertions [18] state logical properties of an execution state at arbi- In the above case, inlining, we get:
trary points in a program; contracts specify agreements concerning . N
the values that flow across a boundary between distinct parts of a A%1- 1€ty = (Av.v +1) (if 21 2>50;°I}11:n a1 else UNR') in
program (modules, procedures, functions, classes). If anagree if y > 0 then y else BAD(>%)

is violated, contract checking is supposed to precisely blame the j,jike [39] in a lazy setting, we cannot apply beta-reduction in a

function at fault. Contracts were first introduced to be checked at
run-time [13, 30]. To perforndynamic contract checkindpCC), a
function must be called to be checked. For example:

1l x>0->{y | y>0}
=funv ->v +1
inc O

contract inc
let inc
let t1

A dynamic checker wraps thiawc in t1 with its contract ; ,:

BADI
let t1 = (inc pq tipc) O
apl’
wherel is (2, 5, “inc”) indicating the source location whetec is
defined (row:2,col:5) and is (3, 10, “t1”) indicating the location
of the call site with caller’s name. This wrappetl expands to:

(Az1. lety = inc: (letz ==z in
- if 2 > 0 then z else BA

D(3,10,“t 1"’))

In the upper box, the argument afic is guarded by the check
x > 0; in the lower box, the result afnc is guarded by the check
y > 0. If a check succeeds, the original term is returned; otherwise,
the special construct®aD is reached and a blame is raised. In this
caset1 callsinc with 0, which failsinc’s precondition. Running
the above wrapped code, we gatp®1%“t1") \which precisely
blamest1.

The DCC algorithm is like this. Given a functiofi and a
contractt, to check that the calle¢ and its caller agree on the
contractt dynamically, a checker wraps each call fowith its
contract:

BAD !

feqt

BAD*
which behaves the same gisexcept that (a) iff disobeyst, it
blamesy, signaled byBAD?; (b) if the context useg in a way not
permitted by, it blames the caller of, signaled byBAD’ where
“?" is filled with a caller name and the call site location.

Later, [7, 41] give formal declarative semantics for contract
satisfaction that not only allow us to prove the correctness of DCC
w.r.t. this semantics, but also to check contracts statically.

The essence dtatic contract checkin¢SCC) is:

e BADf . BADf

splitting g into halfie>t =e q

BAD* UNR*

tandeat = " ¢

e =e .

st

Ther (“ensures”) and the (“requires”) are dual to each other. The
special constructdrNR (pronounced “unreachable”), does not raise
a blame, but stops an execution. (One, who is familiar aitkert
andassume, can think of £ p then e else BAD) as @assert p; e)
and @f p then e else UNR) as @ssume p; ¢).)

strict language if an argument is not a value as it may not preserve
the semantics. In this paper, besides symbolic simplification, we
collect contextual information in logical formula form and consult
an SMT solver to check the reachability BAD. An SMT solver
usually deals with formulae in first order logic (FOIgh gives the
details of the generation of formulae in FOL. As an overview, we
present formulae in higher order logic (HOL). For the two subex-
pressions of the RHS af, we have:

v+ 1
if 1 > 0 then x; else UNR’

| Fxa, (Yo, 22(v) =v +1)
dxs, (171 >0=x3 = :cl)\/
(not(z1 > 0) = false)
One can think of the existentially quantified (andx3) denoting
the expression itself. For the RHS sfwe have logical formula:
Yy, za, Vv, z2(v) = v+ 1) A (Fz3, (21 > 0= 23 = 1)

A(not(z1 > 0) = false) Ny = x2(x3)) [Q1]

We check the validity o¥/z1, Q1 = y > 0 by consulting an SMT
solver. AsVz1, Q1 = y > 0 is valid, we know thesap(?:5 “18C™)
is not reachable, thuimc satisfies its contract.

Consider the functiofil and its contracte in §1. Sof1>tsq
is(Ag-(g1) —1)>({z |z 20} = {y|y=0}) = {z]z=0},
which expands to:

Az (Ag-(g1)—1)
(Az2. lety=z1(letx =221in
if x > O thenx
else BAD* /1)) i
if y > 0 then y else UNR’) in
if z > 0 then z else BAD(45: 17

let z =

After applying some conventional simplification rules, we have:

R1: Azj. letz= lety=x11lin
if y > 0 then y — 1 else UNR’

if z > 0 then z else BAD(5: /1)

We see that the inn@aAD*® “/1") has been simplified away, be-
causer = o = 1 and (if 1 > 0 then 1 else BAD(*% 1)) s
simplified to 1. As we cannot provér:,Vz, (Jy,y = z1 1A (y >
0= 2=y—1)) = z > 0to be valid, the otheBaD*?> /1"
remains. We can either report this potential contract violation at
compile-time or leave this residual code R1 for DCC to achieve
hybrid checking.

Hybrid contract checkindHCC) performs SCC first and runs
theresidualcode as in DCC. In SCG1 > t£1 checks whethef1
satisfies its postcondition by assuming its precondition holds. At
each call site of 1, we wrap the function witki. For example:

contract £3 = {v | v >= 0}
let £3 = f1 zut

2011/10/20

where zut is a difficult function for an SMT solver andut’s
contract is{x | true}. Sayzut < {« | true} = zut, we then
have the ternt3 > t¢g to be:

((f1<tgq) zut) > {v | v >0}

which requires £3 to satisfy £1's precondition and assumest
satisfies its postcondition because > ¢f1 has been checked.

3. Thelanguage

The language presented in this paper, named M, is pure and strict,
a subset of OCaml, including parametric polymorphism.

During SCC,a top-level function is never inlinetVe do not have
to know its detailed implementation at its call site as it has been
guarded by its contract witli « ¢. Thef3 > ¢3 expands to:

f1
(Az2.lety = zut (letz =2z in
if x > Othenx
else UNR("10:"17)) ip
if y > 0 then y else BAD("10"f37)) in
if z > 0 then z else UNR(710:%f17)
if v > 0 then v else BAD(-10:"f3")

letv= letz=

As <« is dual tor, the RHS ofv is actually a copy of the earlier
£1 > t£q but swapping th&AD andUNR and substitutinge; with
zut. We now know the source location of the call site fof
and its caller's name, theNR’ becomesBAD(™**:"/3") and the
BAD™% /1) becomewNR("1%:*/17) | At definition site where the
caller is unknown, we use the locationff, i.e. (4, 5, “f1”). Once
its caller is known, we usé€7, 10, “f,1”). It is easy to get source
location, which is for the sake of error message reporting. So we
do not elaborate the source location further.

As an SMT solver saysalid for Vv.(3z.z > 0 Av = 2) =
v > 0, thef3 > t¢3 can be simplified to (say R2):

f1
(Az2. lety =zut (letxz =z2in
if x > O thenx
else UNR(1: 1)) in
if y > 0 then y else BAD(T1%"/37)) ip
if z > 0 then z else UNR(7-10,/17)

let z =

OneBAD remains. We can either report this potential contract viola-
tion at compile-time or continue a DCC. For SCC, we have checked
fip>tsq, butfor DCC, to invoket1>t¢4, we must use the residual
code R1. However, theiR clauses are useful for SCC, but redun-
dant for DCC. We can remov@&Rs with a simplification rule:

3.1 Syntax
. T € Type constructors
z, [€ Variables K € Data constructors
pgm == defr,...,defy Program
T = int|bool | 7T |7 — 7 Types
t € Contracts
t = {z|p} predicate contract
| it >t dependent function contract
| (z:t1,t2) dependent tuple contract
| Any polymorphicAnycontract
def € Definitions
_>
def == type'aT = K of 7
| contract f=t
| letfZ =e top-level function
| 1let rec f ¥ =e top-level recursive function
a,e,p € Exp Expressions
a,e,p = n integers
| r blame
| x| Xa").e|er e
| matcheo withalt pattern-matching
| K€ constructor
alt = K (z*,...,z") — e Alternatives
r = BAD' | UNR' Blames
l := (n1,n2,String) Label
_)
val == n|xz|r|Kwval|A(z").e Values
tv = n|z| Kt
tval == tv|A(z7).e Trivial values

(if eo then e; else UNR) = e; [rmUNR]

(We shall explain why it is valid to apply this rule evereif may
diverge or crash i§6. Intuitively, UNR is indeed unreachable and
eo has been checked before this program point.) Applying the rule
[rmUNR] to R1 and R2 and simplify a bit, we get:

fif = Az1. let z=(lety=(x11)iny— 1) in
if z > 0 then z else BAD(5“f17)
foff = f1f (Axz2.lety = zut z2 in
if y > 0 then y else BAD("10:"/3™)

respectively, which is theesidualcode being run. We show i§6
that HCC blames a functiofi iff DCC blamesf;.

Summary Given a definitionf = e and a contract, to checke
satisfiest (written e € t), we perform these steps. (1) Construct
e > t. (2) Simplify e > t as much as possible td, consulting an
SMT solver when necessary. (3) If BaD is in €', then there is no
contract violation; if there is 8AD in e’ but no function call ire’,
then it is definitely a bug and report it at compile-time; if there is
aBAD and function call(s) ire’, then it is a potential bug. (4) For
each functionf, create its residual codgi by simplifying e’ with

the rule [rmUNR], and run the program with eaghbeing replaced

by /4.

Figure 1: Syntax of the language M

Figure 1 gives the syntax of language M. A program contains
a set of data type declarations, contract declarations and function
definitions. Expressions include variables, lambda abstractions, ap-
plications, constructors amtht ch-expressions. Base types such as
int andbool are data types with no parameter. We have top-level
let rec, but for the ease of presentation, we omit lotet rec.

(It is possible to allow locallet rec by either assuming that a
local recursive function is given a contract or using contract in-
ference [22] to infer its contract. Even if [22] is not modular, it is
good enough to infer a contract for a local function.) Pairs are a
special case of constructed terms, (g, e2) iSPair (e1, e2) with
type (’a,’b) product = Pair of ’a * ’b. A local let-
expressiorlet z = e; in ey IS @ syntactic sugar fofAz.ez) e1.

An if-expressionif ep then e; else es IS syntactic sugar for
match ep with {true — e;;false — es}.

We assume all top-level functions are given a contract. Contract
checking is done after the type checking phase in a compiler so we
assume all expressions, contexts and contracts are well-typed and
use its type information (presented as a superscripteé.grt™)
whenever necessary. Type checking material is omitted, but can be
found in [40].

2011/10/20

The two contract exceptions (also called blan®ag) anduNgR!
are adapted from [41]. They are for internal usage, not visible to
programmers. The labélcontains information such as function
name and source location, which is useful for error reporting as
well as for examination of the correctness of blaming. But we may
omit the label when it is not the focus of the discussion.

It is possible for programmers to write:

match xs with
[0 -> raise Emptylist
| x::1 > x

let head xs =
I

whereraise : V. Exception — «. TheException is a built-
in data type for exceptions arBhptylist has typeException.
As we do not havery-with in language M (leaving it as future
work), a preprocessing conversise Emptylist toBADR®2d,

We have four forms of contracts. Thein a predicate con-
tract {x | p} refers to a boolean expression in the same lan-
guage M. Dependent function contracts allow us to describe de-
pendency between input and output of a function. For example,
z:{y | y > 0} — {z | z > =z} says that, the input is greater

Definition 3 (Diverges) A closed expressiandivergeswrittenet,
iff eithere —™ UNR, or there is no valueal such thate —* val.

At compile-time, one decidable way to check the safety of a
program is to see whether the program is syntactically safe.

Definition 4 (Syntactic safety) A (possibly-open) expressianis
syntactically safeff BAD ¢, e. Similarly, a context is syntacti-
cally safe iffBAD ¢ C.

The notatiorBAD ¢, e meansBAD does not syntactically appear
anywhere ine, similarly for BAD ¢, C. For example \z.z is
syntactically safe while\x. (BAD, z) is not.

Definition 5 (Crash-free Expression)A (possibly-open) expres-
sione is crash-free iff :

VC. BAD ¢, Cand(C[e])”°°Y = C[e] 4 BAD

The notation(C[[e])P°°1 meansC[e] is closed and well-typed.
The quantified context serves the usual role of a probe that tries to
provokee into crashing. Note that a crash-free expression may not

than 0 and the output is greater than the input. We can use a shortPe syntactically safe, e.gz.if z * z > 0 then z + 1 else BAD.

hand{z | > 0} — {2z | # > z} by assumingr scopes over
the RHS of—. The — is right associative. Similarly, dependent

tuple contracts allow us to describe dependency between two com-

ponents of a tuple. For example;: {y | y > 0},{z | z > z}) has
shorthand{z | > 0},{z | # > z}). ContractAny is a universal
contract that any expression satisfies. We support higher order con
tracts, e.gk: ({z |z >0} = {y|y>=z}) = {z| k5> z} for
afunctionlet £ g = g 2.

3.2 Operational semantics

The semantics of our language is given by reduction rules in Fig-
ure 2. For a top-level function, we fetch its definition from the eval-
uation environment\. We adapt some basic definitions from [41].
Definition 1 defines the usual contextual equivalence. Two expres-
sions are said to be semantically equivalent, if and only if under
all (closing) contexts, if one evaluates to a blaméhe other also
evaluates to the same

Definition 1 (Semantically Equivalent) Two expressions; and
eo are semantically equivalent, namely =, e», iff for all closing
C, forallr, Clei] ="r <= C(Cle]—="r

let (rec) f=e€ A

T>e [E-top]
(Az.e) val — e[val/x] [E-beta]
H
match K val with K @ — e — e[val/x] [E-match]
€L= [E-ctx] C[r] —r [E-exn]

Clei] — Cle2]

ContextsC

[o]|Ce] vazﬂK@c?
| matchC with alt

Figure 2: Semantics of the language M

We useBAD to signal that something has gone wrong in a
program, which can be a program failure or a contract violation.

Definition 2 (Crash) A closed terne crashesff e —* BAD.

Our framework only guaranteesrtial correctness. A diverging
program does not crash.

Lemma 1 (Syntactically safe expression is crash-free)
e is syntactically safe = e is crash-free

For ease of presentation, when we do not give labeBAD or
UNR, we mearBAD or UNR for any{. Moreover, expressior&D’
andunR! are closed expressions everl i§ not explicitly bound.

4. Contracts

Inspired by [41], we design contract satisfaction and checking al-
gorithm for a strict language. As diverging contracts make dynamic
contract checking unsound (explained§#h.3) and we do hybrid
checking, we focus on total contracts.

Definition 6 (Total contract) A contractt is total iff
tis{z | p} andz.p is total (i.e. crash-free, terminating)

or tisx:t1 — t2 and t is total and
for all valy € t1,t2[vali /] is total
or tis(xz:t1,t2) and t; is total and
for all valy € t1,t2[valy /2] is total
or tisAny

Our definition of total contract is different from that in [7], but
close to the crash-free contract in [41] with an additional condition
thatAz.p is a terminating function. For example, contréet| = #

[1} — {y | headz > y} istotal in our framework becaugsead =
does not crash for alt satisfying{z | = # [1}. Such a contract
is not total in [7] because a crashing functinead is called in a
predicate contract.

4.1 A semantics for contract satisfaction

We give the semantics of contracts by definiegétisfies” (writ-
tene € t) in Figure 3 inspired by [7, 41]. Here are some con-
sequences: (1) a divergent expression satisfies any contrace hen
all contracts are inhabited; (2) only crash-free expression satisfies
a predicate contract; (3) any expression satisfies conteggt(4)
BAD only satisfies contradiny.

One difference from [41] is that, we do not allge/x] in [Al]
to diverge while [41] allows because they only do static checking.
We support dependent tuple contracts, that are not in [7, 41]. One
difference from [7] is that, they say that a crashing expression
does not satisfy any contract; we say that a crashing expression
satisfy the universal contraghy. Having a top ordering contract is
debated in [12] where a subcontract ordering is defined below.

2011/10/20

For a well-typed expression definee € ¢ thus:

e€{z|p} <= et or(eiscrash-freeand [Al]
ple/x] = true)
e€x:th >t <= el or(e—=" Az.ep and [A2]

Yoaly € t1. (evali) € ta[vali/x])

e€ (x:t1,t2) <= et or(e—" (vali,valz) [A3]
andval; € t1 andvals € ta[valy/x])
e € Any <= true [A4]

Figure 3: Contract Satisfaction

Definition 7 (Subcontract) For all closed contracts; andts, t;
is a subcontract ofz, writtent; < ¢, iff Ve.e € t1 = e € t2

It is obvious thatAny is useful in a lazy language [41] as we

may want to ignore some subcomponents of a constructor. It is also

useful to have contradny for a strict language. Consider:

contract fail
let fail =

= Any
raise Error

whereError has typeException. One can think oiny asvVa.a.

In [7] and other refinement type checking framework [5, 25, 37],
they give function likefail a function contrac{z | false} —

{z | true} so that the preconditiofxz | false} allows their
system to blame all the callers 8&i1. This is somewhat ad hoc.
More discussion on the contrakiy can be found in [40].

4.2 The wrappers

As mentioned in§2, the essence of contract checking is the two
wrappers- and<, which are dual to each other (defined in Figure 4).
We omit the labels for and< whose full versions areﬁ1 and<1§1

respectively. The wrapped expressm@q t expands to a particular

expression, which behaves the same except that it raises blame
r1 if e does not obey and raise;, if the wrapped term is used in a
way disobeying.

Bap'! unr'2
edt=e pq t edt=e pg t
unR'2 BAD!1
esq{z|p} = letz=einif pthenzelser; [P1]
T2
epgzits =ty =lety =ein [P2]
2
Az1.((y (@1 pa 1) b t2((@r b4 t1) /)
1 T2 1
e b (z:t1,t2) = match e with [P3]
2
(x1,22) = (21 - t1, w2 - ta[(x1 b t1)/x])
T2 T2
1
€ >q Any =72 [P4]
2

Figure 4: Contract checking with the wrappers

From [P1] to [P3], ife crashes, the wrapped term crashes; if
diverges, the wrapped term diverges. Whenever;ais reached,
we know the property does not evaluate terue (as in [P1]).

Theorem 1 (Sound-and-completeness of contract checkirigyr
all closed expressioa™, closed and total contraaf’,

(e>t)iscrash-free < e€t

The superscript says bothe andt are well-typed and have the
same typer. The full proof of Theorem 1 is in [40]. Basically, we
re-do the kind of proofs in [42] but for a strict language. In practice,
we only need Theorem 2, i.e. one direction of There-om 1.

Theorem 2 (Soundness of contract checkingjor all closed ex-
pressiore”, closed and terminating contract,

(e>t)iscrash-free = ee€t

Note that ift is terminating anc: > ¢ is crash-free, then is
total. Unlike [13], which assumes there is no exception from a
contract itself, our contract checking algorithm helps programmers
to ensure it by detecting exceptions in contracts themselves. The

term ¢o[(v o t1/x] in [P2] and [P3] says that, we wrap each
T1

(function) callin a contractwith its contract so that, if there is any
contract violation in a contract, we report this error. For example:

=k:({fx | x>0}y >{yly>0D}
> {z | k0>-1}

g 2
= f (fun x -> x)

contract f

let £ g =
let t2

a contract violation occurs ifiz | k 0 > -1} because the call
k 0 failsk’s precondition{x | x > 0}. As addressed in [10], we
should blame the contract. We omit passing around the name of the
contract in this paper as our focus is to check the reachability of
BAD. Instead, we use; to indicate that the label of; is replaced
by the name of the contract. In [7], they use an ad hoc fix, i.e. using
UNR instead ofr; in order to make their proof go through. Our
proof [40] is different from that in [7].

Given f = e, wheree is open, and a (possibly open) contract
to checkI" I~ e € t whereT is an environment mapping a variable
to its contract, we check[(f; < ts,)/fi] > t[(fi < ts,)/f:] where
fi are free variables im (or t) and are in the domain df. Note
that f; can also be a recursive cdllandf <t ine[(f <t)/f]>tis
like an induction hypothesis. Ag(f; <ty,)/ fi] > t[(fi <ty;)/ fi]
is closed, we only have to reason close expressions and contracts,
similar to [41].

4.3 Terminating contracts

We wantpin {z | p} to be terminating becausadivergent contract
hides crashed~or example:

let rec loop x = loop x
contract fb = {x | loop x} -> {y | truel}
let fb x = head []

b >ty IS Az1.((Az.head []) (if loop x1 then x; else BAD)),
which diverges whenever applied because ofltbep. However,
the functionfb is not crash-free.

We only have to prove termination of functions used in con-
tracts, not all the functions in a program. We can adapt ideas
in [4, 28, 36] to build an efficient automatic termination checker.

5. Static contract checking and residualization

Thanks to the ground-breaking higher order contract wrappers
(first introduced in [13]), which makes the analysis of higher order
program much easier. From Theorem 2, all we need is to show that
e >t is crash-free. That is to check the reachabilitygab as each
BAD signals a contract violation. We can symbolically simpéfyt
as much as possible t and check occurrence BAD in ¢’.

We introduce an SL machine (Figure 5) which combines sym-

Contents in Figure 3 and 4 are defined such that Theorem 1 holds.bolic simplificationand contextual information (ctx-info) synthesis

2011/10/20

H|n|S|L) ~ (H|n]|S|L) [S-const]
(H|r|S|L) ~ (H|r|S|L) [S-exn]
(Hlxz = tval] |z | S|L) ~ (H]z— tval] | tval | S| L)) [S-varl]
If o ¢ H, (Hlz|S|L) ~ (H|z|S|L) [S-var2]
(HlXxTe|S|L) ~ (Hle|(Az.e):S|L,Ve:[7]) [S-lam]
(Hlevea| S|L) ~ (H|er|(ee2):: S|L) [S-app]
(H |match eg withalts|S| L) ~» (H]|eo| (match e withalts):: S|L) [S-match]
. (H|K (a1,....€i...,en)|S|L) ~ (Hle| (K (a1,...,o,...,eﬂ)]) =S| L) [S-K]
ifx & fuo(e), (H|letz=eiinez|(oe)::S|L) ~ (7—{.|1etx—el ines e|S| L) [S-letL]
) s (match ep with =
if fo(e)Nz; =0, (H] m) [(ee):S|L) ~ (H|matcheowith K @ —e;e|S|L) [S-matchlL]
if x & fu(a), (H]|val|(e (let mZ: erines)) = S|L) ~ (H|letz=eiinvales |S|L) [S-letR]
if fo(val) N2 =0, I -
(H | val %o (matcheg with K 7 —€)) = S| L) ~ (H|matcheowith K Z — vale |S|L) [S-matchR]
if fu(alts)N@ =0,
match eg with . . . match eg with [S-match
(H] K—>? . | (match e withalts) :: S| L) (H | K2 5 match o with alts |S|L) -match]
if z & fu(alts),
(H|let z =e; iney | (match e withalts):: S|L) ~» (H|letz =e; inmatches withalts|S|L) [S-match-lef]
(Hlal[]1L) ~ a [R-done]
if (s #matchewith K @ — (0,5,L)), (H|r]|s:S|LY ~ (H]|r|S|L) [R-1]
(Hlal(Az.0) : SIL) ~ (H]|Az.alS|L) [R-lam]
Rules belowa ¢ {BAD', UNR'} by default
(Hla|(ee2) = S[L) ~ (H|ex|(ae)::S]|L) [R-fun]
(H] tval | (M. al) o) =S|L) ~ (H[z—tval]|ai]|S]|L) [R-beta]
if a1 # A\x.a’ ora # tval, (Hla|(are) =S|L) ~ (H]a gJ S| L) [R-app]
<<’H lan |(Kar...0): S| L) ~ (H|K d|S]|L) [R-K]
(H|K d | (match @ with {...; K @ —e;...}) = S|L) ~ (H|letz=adine|S|L) [R-K-match]
if exists (K ') such thatC = (3 : [r], [[a Il [olgre =),
(H|a| (match o with K K e)= S|L) ~ (HlelS|LVr: [[al =) [R-s-match]

if for all (K ') such thatC % (Jz [[TT], la](x =), . —
(H|a| (match o with K 2@ —¢) = S| L) ~ (H|e| @atchawithKaz® | L Vz: [,) [R-s-save]
— (0,5, L)) =[] la] (x =)
(#|a| (match ao with K @ — (¢,8,£)) = S"| L)) ~ (H|matchaowith K 7 — a|S|L) [R-match]
for someS’ and£’ anda can ber
(Hla]|(leta™ =eines) = S|L) ~~ (H|ea|(letz=aine)::S|L,Vz: [7],[a].) [R-let-save]

Figure 5: SL machine

(letz =e1inex)e = letz =e;jinese [letL]

) _— —_—
if fu(e)N T = 0, (matchegwith K T - e;)e —> matcheowith K T - (eie) [matchy
if x & fu(e), wval (letxz =e; ine;) = letz =e; invales [letR]

) B B
if fo(val) ¢ @, wval (matcheowith K 2 — e) =—> matcheowith K @ — val e [matchR

if fo(alts) N2 =0,
_

match (match eg with K @ — €) withalts = matche,with K @ — matchewithalts [match-match
if x ¢ fu(alts), match (let x =e; ines)withalts = letz = e; inmatch e; with alts [match-let
match K ay...apwith{.. ;K z1...2, 5 e;...} = letzy=aiin ... letz, =a,ine [K-matcH

Figure 6: Simplification Rules

with logical formulae. The novelty of our work is to combine them go. The SL machine takes an expressi@nd produces its seman-
in a way to achieveerification blamingandresidualizatiorin one- tically equivalent and simplified version. A 4-tuplél | e | S| £)

6 2011/10/20

is pronouncedimplifyand a 4-tuplé(# | e | S | £)) is pronounced a sequence afq, ..., z,. We uselet instead of lambda for easy
rebuild where reading. Rules [letL] and [matchL] push the argument into the let-
body and match-body respectively. Rules [letR] and [matchR] push

* H is an environment mapping variables to trivial values; the function into the let-body and match-body. The rules [match-

* ¢ is the expression under simplification (or being rebuilt), match] and [match-let] are to make an expression less nested. Rule
e S is a stack which embodies the simplification context, or [K-match] allows us to simplify

continuation that will consume a simplified expression; match Some e with {Some 2 — 5;None — BAD}
* L is a logical store which contains the ctx-info in logical for- (wheree is a crash-free expression, not a value)és = = ¢ in 5

mula form; its syntax is which is crash-free.

Lo=0|Vz:7,L]|¢ L _ What doegebuild do? If the s_taclg _is empty ([R-done]), which
)) o indicates the end of the whole simplification process, we return the
whereg is a predicate in Figure 7. expression. Otherwise, we examine the stackframe. By [E-exn], the

The job of the SL machine is to simplify an expression as much transition [R-r] rebuildsUNR (or BAD) with the rest of the stack.
as possible, consulting the logical store when necessary; when it After we finish simplifying one subexpression, we start to simplify

cannot simplify the expression further, it rebuilds the expression. another subexpression (e.g. [R-fun]). When all subexpressians
simplified, we rebuild the expression (e.g. [R-lam] and [R-app]). If

Theorem 3 (SL machine terminates)For all ei(pressione, there current simplified expression is a trivial value and we have stack

exists an expressiansuch that@ | e [[] | 0) ~" a. frame lambda orS, we use [R-beta]; together with [S-varl], they
Intuitively, SL machine behaves like CEK machine [15], but implement a beta-reduction [E-beta]. Bound variables are renamed

rebuilds an expression amibes not inline top-level functionds when necessary. .

we do not have localet rec in our language, only inline trivial The logical storeC captures all the ctx-info up to the program

values and also call SMT solver Alt-ergo with an option “-stop POInt being simplified. (We usef-expression to save space, but
(time-bound” or “-steps (bound” to make sure the SMT solver 'efer tomatch-transitions.) Consider:
terminates, there is no element causing non-termination. (Az. ifz >O0then (ifz+1>0

Theorem 4 (Correctness of SL machineJor all expressiore, if (H] Lse UNR then5elseBAD) |[]|0)
@e|[110) ~" a, thene =, a. else UNR)

The SL is designed in a way such that the simplifiegre- The [S-lam] puts7z : int in £, whichis initially empty:

serves the semantics of the original expressioimhe proof of (if z > 0 then
Theorem 4 (in [40]) uses the fact that, if there exisfssuch that (H] (ifz+1>0 | (Az.e) :: []|Vz : int)
MHler|STL) ~»" Hles|S|L)and(H |ex | S| L) ~" then 5 else BAD) else UNR)
(H]es| S| L), thener =, e». (See Definition 1 foe,.) The [S-match] starts to simplify the scrutinee> 0, which is being
Theorem 5(Soundness of static contract checkingpr all closed rebuilt after a few trivial steps.
expressiore, and closed and terminating contrait (if o then (ifz+1>0
0lewt 0) ~* ¢ andBAD ¢, ¢/ = ct {(H]z>0] then 5 else BAD) |Vz : int))
@lext1[119) ¢ Fae ¢ else UNR) :: (Az.e) :: []
Proof. By Theorem 4, Lemma 1 and Theorem 2. O Before applying the transition [R-s-save], we check whether

51 The SL hi x > 0 ornot(x > 0) is implied by L to see whether the transition
) € L machine [R-s-match] can be applied. The transition [R-s-match] implements
In Figure 5, the constamtand blame- cannot be simplified further, [E-match], where the side condition “H(K 27), £ = [a] x ="
thus being rebuilt as shown in [S-const] and [S-exn] respectively. checks if there is any brancki 2 that matches the scrutinee
One might ask why we rebuild rather than return a blame. There are But the current information i€ is not enough to show the validity
two reasons: (a) it gives more information for static error reporting, of eitherz > 0 or not(z > 0). By [R-s-save], we convert this
i.e. we know conditions leading to a reachabl®; (b) as we do scrutinee to logical formula witffa] x -, (explained later) and
hybrid contract checking, we want to send the residual code with put it in £ and simplify both branches. Note that we put> 0 in

undischarged blames to a dynamic checker. L for thetrue branch whilenot(z > 0) for thefalse branch.
As we perform symbolic simplification rather than evaluation . 150 £ 0 Ve - i
(as in CEK machine [15]), we only put a variable in the environ- [(3/| *f*t1> |\ (if z > 0 then) | VEAnt, .

mentH if it denotes a trivial value. A variable denoting a top-level thenbelse BAD | :: (Az.e)::[] x>0

function is not put in#. Variables in# are inlined by [S-varil] (H|UNR| (if 2 > Oelse) :: S|V : int, not(z > 0))]

while variables not i are rebuilt by [S-var2]. In the true branch, after a few steps, we rebuild the scrutinee
Each element on the stack is callestack framavhere the hole xz + 1 > 0.Inthiscaseyz : int,z > 0 = x + 1 > 0is valid.

e in a stack frame refers to the expression under simplification or By [R-s-match], we take therue branch, which is a constant

being rebuilt. We use to represent an expression that has been As both 5 andINR cannot be simplified further, we rebuild them by

simplified. the syntax of a stack framsen S is [S-const] and [S-unr] respectively and obtain:

)

s = ec)::s|(ee)::s| (Ar.e)::s|letz=eine if £ > O thene Vx :int,x > 0,

| [(}ne'iigch)o wi|t}(1 ali) $ s| \(let 32 = e|in;c [(# 151 ((Az.o) :: []) I (x4+1>0))
(ifz > 0elsee) |, Vz:int,
i (Az.e) i [] I not(z > 0) M

By [R-match], we combine both simplified branches to rebuild
the match-expression:

| (match eg with K @ — (e, S, L)) :: s (H | UNR |

The transitions [S-app], [S-match] and [S-Kjplement the con-
text reduction in Figure 2. The transitions [S-letL], [S-matchL], [S-
letR], [S-matchR], [S-match-match], [S-match-letjplement the
conventional simplification rules in Figure 6. Her&, abbreviates (H]if x > 0then 5 else UNR| (Az.e) :: []|V : int))

7 2011/10/20

We continue to rebuild the expression by [R-lam]:
{(H|Ax.if > O then 5 else UNR|[]|Vx : int))
and terminate (by [R-done]) with a syntactically safe expression:
Azx. if x > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves ctx-infbigo
[R-let-save]. Consider an example:

Av. lety =v+1inif y > v then y else BAD
After a few simplification steps, we have:
(Hlv+1] (Qlety=einify>wv
then y else BAD) :: (Av.e) :: []
The rule [R-let-save] saves the informatigr= v + 1 to £, which
allows us to check the validity of the scrutinge> v later.

| Vo : int))

ify>w . Vv : int
lety=v+1line)
<H H theny | (()\xy.) .. H) ” Vy . int, >
else BAD h R y=v+1
SinceVv : int,Vy : int,y = v+ 1 = y > v is valid, by

[R-s-match], we only need to simplify therue branch:

ol SRS

which leads to the final resultv. let y = v + 1 in y, which is
syntactically safe.

| Yov : int,Vy : int,)
y=v+1ly>v

5.2 Logicization

z,s,i,f € Identifier
file == decl,...,decl,
bty == int |bool |i| ’¢|btyi Base type
Ity == bty|ty->bty Logic type
ty = ol (tyr,...,tyn) s Types
decl = type s
| logici :lty|axiomi:¢|goali: ¢
& u= 4=/
= =|<I<|>]=
Op u= ->|<->|or|and
m u= nlxz|m ® mo|-m|fni Term
¢ = true| false| f m Predicate
| mi O ma | d1 Op P2 | not(d)
| forall@:ty.¢ |exists &:ty.¢

Figure 7: Syntax of logic declaration

We now explain the mysterious conversipfi;, which we calll
logicization Figure 7 gives the abstract syntax of the logical for-
mula supported by an SMT solver named Alt-ergo [8], which is an
automatic theorem prover for polymorphic first order logic modulo

theories. It uses classical logic and assumes all types are inhabited.

First, Alt-ergo allows data type declaration e.g.
type ’a list = Nil | Coms of ’a * (’a list)
to be converted to Alt-ergo code witlype andlogic declarations:

type ’a list
logic nil
logic coms :

’a list

’a , ’a list -> ’a list

As Alt-ergo supports only first order logic (FOL), arguments of a

logical function are a tuple, e.ga , ’a list. The type variable

’a is assumed universally quantified at top-level. The conversion

algorithm for an arbitrary user-defined data type is in Figure 8.
Moreover, we introduce a first order function type:

Data type in language M:
— — —
type ’as=Kiof t1 | -+ | Kp of ty
Corresponding alt-ergo code:ype ’a s
. —
logic K1 :t1 ->’as

Do = =
logic Ky, : tp, => ’a s

Figure 8: Converting data type to Alt-ergo code

type (’a, ’b) arrow

which allows us to encode the function type in the language M to
Alt-ergo’s first order type where thea and’ b refer to a function’s
input type and output type respectively. We also introduce a logical
functionapply:

logic apply : (’a, ’b) arrow , ’a -> °’b

where encoding witlpply is conventional [23]. Converting types
in the language M is straight forward (Figure 9).

[[7'1 e Tn Tﬂ
[[’7'1 —)7'2]]

[m]. . [m=]T
([1], [2]) arrow

Figure 9: Converting higher order type to first order type

We now give an example to show what logicization can do.

(* val len :
contract len =
let len s =

’a list -> int *)
{x | true} -> {y | y >= 0}
match s with | [] -> 0

| x::u > 1 + len u

(*x val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}
-> {len rs = len xs + len ys}
let append xs ys = match xs with
' O ->ys
| x::u -> x @

append u ys

The functionlen computes the length of a list and the function
append appends two lists. Leta andta stand for the definition
and contract okppend respectively. Applying only simplification
rules (including reduction rules) & > ta, we get (R3):

Avi.Avz.match v1 with
| [] — if len vs = len vy + len vz then vy else BAD!!
|z::u— if (len (z =
(if len (append u v2) = lenu + len vo
then append u vz else UNR))
= lenv; + len v2)
then x :: append u v2 else BAD'2

The simplification approach in [39] and the model checking ap-
proach in [34] involve inlining top-level functions, while we do not.
Instead, we axiomatize top-level function definitions called in con-
tracts and lift expressions under checking to logic level and consult
an SMT solver. The chanllenge is to deal with non-total expres-
sions (e.gBAD) in our source code. In the literature of convert-
ing functional code (in an interactive theorem prover) to SMT for-
mula[l, 6, 9, 29], they convert expression to a logical form directly.
In [1], given a non-recursive function definitioh = e, they first
n-expande to getf = Ax1...z,.¢’ wheree’ does not contain;
if it is a recursive function, they assuneeis in a particular form
such that all lambdas are at top-level and the function performing
an immediate case-analysis over one of its arguments. Then, they

2011/10/20

formVZ, f(z1,...,x,) = [¢'] where[.] converts an expression
to logical form. (On the other hand, [6] usgdifting method: \- ® € [+, —%,/] O €[> < =
abstractions are translated from inside out, eaebstraction is . : Expression — Formula
replaced by a call to a newly defined functions. That is to form | [Llet (rec) f=e]; = [e]; top-leveldefn
VI, fulr,. .. xn) = [€];...;Var, f = fi(z1) .) This is fine A, — true for axioms
for converting total terms, e.d5] = 5 and[z] = =z, etc., but o= false for goals
what are[BAD] and [UNR]? Our key idea is not to convert an ex- [NR']; = false
pression directly to a corresponding logical term, but form equal- [z]lf = f==
ity with [.]; recursively (defined in Figure 10). The subscrjpt [nly = f=n
in [e] ; denotes the expressienMoreover, we perform neither [el* ®e]; = 3x1:[n], Jxa: [r2],
expansion (which does not preserve semantics in the presence of lei]zy Afe2]ss A f = 21 © 22
non-total terms) noA-lifting, and yet we allow arbitrary forms of [el* ®e?ly = Fz1:[n], [e1]z A
recursive functions. We have such flexibility because we convert Azs : [12], [e2]zaA
abstraction and partial application directly with the helgpply. ((z1 Ot z2 A f = true)V
(Note that our logicizatior.] can also produce HOL formula for (not(x1 O x2) A f = false))
interactive proving by replacingapply(f, z)) by (f(x)) and not \z".e]; = Va:][r], [[e]](apply(f’ﬁ))
converting the types.) No logicization work in the literature (in- | [1et 2™ = ¢, ines]; = 3z :[r], [er]= A Jea]s
cluding [6, 9, 29, 35]) deal with non-total terms. The work [6] uses [er 2]y = 3ar:[n], [er] A
approaches in [9, 29] to deal with polymorphism while Alt-ergo Jza ¢ [2], [ea]enA
itself supports polymorphism. f = apply(z1, 22)

Our framework can systematically generate Alt-ergo code, like [Kel'...er]y = 3a:[n], [er]ey A--- A
below, to show that thosgADs in R3 are unreachable. 3z : [Tal, [en]en A

logic len: (’a list, int) arrow b ™ with Hf :?(]?17[[--1]7%/3

logic append: (’a list, match €,” wi Zo : [To]; [€0]zo

& FP (’a list,’a list) arrow) arrow [—= Iy = ﬁ
’ Kz" —e (/\Vx:[[T,(xo:K?)éﬂeﬂf)

axiom len_def_1 : forall s:’a list. s = nil ->
apply(len,s) = 0
axiom len_def_2 : forall s:’a list. forall x:’a.

Figure 10: Convert expression to logical formula

forall 1:’a list. s = cons(x,1) -> example, in the goakpp_1, the ctx-info vi=nil is from the
apply(len,s) = 1 + apply(len,l) pattern matchingratch vi with {[1 ->3}; the query is
apply(len,v2) = apply(len,vl) + apply(len,v2). The
goal app_1 : forall vi,v2:’a list. vl = nil -> goal app_1 states the ctx-infoC implies the scrutinee. We have
apply(len,v2) = apply(len,vl) + apply(len,v2) £ = Vo1 : ’a list,Vuvs : ’a list,v; = nil by [S-lam] and
[R-s-save]. The scrutinnee [3en v2 = len v1 + len v2 }true-
goal app_2 : forall vi,v2,1:’a list.forall x:’a. That is, we want to check whethgen vo = len vi + len vs IS
vl = cons(x,1) —> equivalent totrue. Alt-ergo saysvalid for both goals. Thus, we
apply(len,apply(apply(append,1),v2)) know bothBAD'! andBAD'? are not reachable.
= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,1),v2) Theorem 7 (Validity preservation: logicization for goalsyor all
and apply(len,cons(x, y)) (possibly open) expressiaer, 3f : 7, if Vfv(e) : T, [e] s is valid
= apply(len,vl) + apply(len,v2)) ande — ¢’ for somee’, thenVfuv(e') : 7, [e']; is valid.

To make an SMT solver's life easier (i.e. multiple small axioms are ~ There are a few things to note about logicization.
better than one big axiom), we have two axioms Xen, one for

each branch, which are self-explanatory. As a constructor is always Syntax abbreviation - The Alt-ergo syntax

fully applied, we do not encode its application wipply. The-> logic z : lty; axioma, : ¢i; goal g; : ¢,
(in axioms and goals) is a logical implication. o N
For example, the axiormmen_def_1, is generated by: is semantically the same &s : lty, ¢; = ¢; where ¢ means a
'a list . . conjunction of a set of logical formulae.
[As .match s with {Nil — 0}]jen
s : : : Only functions called in contracts are converted to Alt-ergo ax-
vs ,a l?St'[[matC.h’s Wlfch {Nil = OHapp1ycien.s) ioms To check a function (sagppend) satisfies its contract, we
Vs:’a list. dxo: a.llst'[[sﬂxo A do not convert its definition to axioms. As the wrappers have
(zo = nil => [0] app1y(len,s)) inserted contract checking obligation appropriately such that func-
= Vs:’a list. dro:’a list. 2o =5/ tion calls (including recursive calls) are guarded by their contracts.

(zo = nil -> apply(len,s) = 0)

Crashing functions called in contracts In Figure 10, there are
two conversions foBAD, true for axioms andfalse for goals. For
example, we may have:

Let zo be s, we get a more readable version (axiaen_def _1).
An algorithm that partially eliminates redundant existentially quan-
tified variables can be found in [40].

Theorem 6 (Logicization for axioms) Given definitionf = e”, contract g = {x | x /= [I} -> {y | head x > y}

3f: 7, [e]s is valid. In this case, the contract gfis total even if a partial functiohead

Next, what query (i.e. goal) shall we make? All we want is is called in the contract. The logicizationnéad gives:

to check if the branch leading tBAD is reachable or not. So logic head : (’a list, ’a) arrow
our task is to examine the scrutinee ofhatch-expression. For axiom head_def_1 : forall x:’a list. x=[] -> true

9 2011/10/20

axiom head_def_2 :
X

forall x,1:’a list.forall y:’a.
cons(y,1) -> apply(head, x) =y

The key thing is that the axioiead_def_1 is not afalse axiom,
it just does not give us any information, which is what we want.

Contracts that diverge Suppose divergent functiorsoop and
nloop are used in a contract.

let rec loop x
let rec nloop x

loop x
not (nloop x)

Logicization gives:

’a

forall x:’a.
apply(loop, x)

-> bool

forall x:bool.

not (apply(nloop, x))

logic loop : ’a —->
axiom loop_def_1 :
apply(loop, x) =
logic nloop : bool
axiom nloop_def_1 :
apply(nloop, x)

Axiom loop_def_1 is same as stating-ue, which does not hurt.
But axiomnloop_def_1 is same as statinflse, which we must
not allow. Fortunately, we only convert functions used in contracts
that can be proved terminating (f#.3) to axioms. We will not
generate the axiomloop_def_1.

BAD and UNR For goals, thee]; collects ctx-infobefore a
scrutinee of amatch-expression, thugBAD]; = [UNR]; = false,
which implies everything. For example:

fun x -> let y = if x > O then x else UNR in
if y + 1 > 0 then y + 1 else BAD

The ctx-infoL beforey + 1 > 0isVx: int,Vy: int, (z > 0 =
y = z) A (not(z > 0) = false). SOL = y+1 > 0is
Vz: int,Vy: int, (z > 0 = y = z) A (not(z > 0) = false) =
y+1 > 0, whichis valid. It means, ifiot(z > 0) holds,y+1 > 0
will not be reached. Similar reasoning applies if we replacéiire
by BAD in the above example.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under lambda
and the body ofhatch-expression while we do not have such ex-
ecution rules in Figure 2. As we rebuild blames and do not inline
recursive functions (i.e. no crashing and no looping during simpli-
fication), SL machine does not violate call-by-value execution.
One might worry that the rule [match-match] causes exponential

code explosion for static analysis (although no run-time overhead).

For exampleh; = if (if a then b else ¢) thend else ¢, where
a,b,c,d,e are expressions. At program poidt the ctx-info is
(a = b) A (not(a) = ¢)*. Applying [match-match] td;, we get:
hs = if a then (if bthendelse e) else (if cthend elsee).
Thed is duplicated and the ctx-info for the firgtis a A b while for
the second! is not(a) A c. With [match-match], we send smaller
formula to an SMT solver (which is good for an SMT solver), but
we may communicate with the SMT solver more often. From our
current observation, it is quite often that this BAD or UNR, the SL
machine immediately rebuilds the blame with the rest of the stack,
and we getif a then (if b then d else e) else c. S0d is not
duplicated and we have smaller formula for the SMT solver.

One advantage of the SL machine is to allow adding or remov-
ing a rule easily. In thenc example in§2, with rule [matchR], we
can simplify

(A.v 4+ 1) (if 1 > 0 then z; else UNR')

170 illustrate the idea with less cluttered form, we omit thevession
notation[.] s for a, b, ¢, d, e.

10

toif 21 > 0 then (\v.v + 1) z1 else (\v.v + 1) UNR’. As the
variablez; and the contract exceptiodNR’ are values, performing
beta-reduction, we getf z; > 0 then z; + 1 else UNR’. Now,
we have a logical formula (denoted by Q2):

Jy, (z1 > 0=y =z1 + 1) A (not(z1 > 0) = false) [Q2]

which is equivalent but smaller than the Q1§

We have implemented a prototypbased on the source code
of ocamlc-3.12.1. Table 1 shows the results of preliminary experi-
ments, which are done on a PC running Ubuntu Linux with quad-
core 2.93GHz CPU and 3.2GB memory. We take some examples
from [27] and OCaml stdlib and time the static checking. The col-
umn Ann gives the LOC for contract annotations.

Table 1. Results of preliminary experiments

program total LOC | Ann LOC | Time (sec)
intro123, neg 23 4 0.08
McCarthy’s 91 4 1 0.02
ack, fhnhn 12 2 0.06
arith, sum, max 26 4 0.20
zipunzip 12 2 0.10
OCaml stdlib/list.ml 81 16 0.72

The preliminary result is promising: it checks a hundred lines of
code (LOC) in a few seconds. This paper focuses on the theory of
hybrid contract checking, we leave more optimization and rigorous
experimentation on tuning the strength of symbolic simplification
and the frequency of calling an SMT solver as future work.

6. Hybrid contract checking

We have explained with examples how SCC, DCC, HCC work
in §2. Programmers may choose to have SCC only, DCC only,
or HCC. In this section, we summarize their algorithm. Given a
programf; € t;, fi = e; for 1 < ¢ < n. Supposef; is the
current function under contract checkingj; is a function called
in f; (including f;’s recursive call);s1 is the SL machinetmUNR
implements the rulérmUNR] (mentioned earlier i§2).

(if eo then e; else UNR) = e; [rmUNR]
We have:

[SCCy:
[DCC]: ei[(f; > tr;)/ fil

[HCC]: fit = A?.xmUNR(s(es [((f5 “fi7) <}/ t1,)/ fi]>0 1)

In [HCC], the residual codg; #'s parameter “?” waits for a caller’s
name. For exampléf, an STM solver cannot prove the gealp_2
in §5.2 (although it can), recalling R3 6.2, the residual code
append{ is:

sl(eil(f; <f tr,)/ fi] 04)

B’

A?.\v1.\vg.match v with

| []— v2;

| x :: 1 — if len (z :: append t v2) = len v1+1len v
then x :: append t v2 else BAD!

which says that we only have to check postcondition for the second
branch. (If alBADs are simplified away during SCC, a residual code
of a function is its original definition.)
Lemma 2 (Telescoping property [7, 41])For all expressione,
total contractt, blamesry, ra, 73,74, (e pgt) pat = e pa t.

T2 T4 T4

2 http://gallium.inria.fr/"naxu/research/hce.html

2011/10/20

Precondition of a function is checked at caller sites. Afis
the simplifiedf; D;’ ty,, inspecting [HCC], eaclf; at caller sites

is replaced by(f; I>;Z ty;) <1;Z_'

anli wnri

ty., whichis(f; "q ty, ty .
. 5 (fi bg tr;) bg by
By the telescoping property, we have:

BaD”J unr’i san’i

f
: tr te = f; tr
(fi 5 ;) gL, i > L,

which is the same as in DCC. This shows that [HCC] blarhéfs
and only if [DCC] blamesf.

Moreover, [T1] justifies the correctness of applying the rule
[rmUNR] because alUNRs are indeed unreachable B&' is in-
voked befor@NR' for the samé. Thatis, (£ p then e; else BADY)
is invoked beforeif p then e else UNR') for the same, maybe
differente. So itis safe to apply the rulermUNR] even ifp diverges
or crashes because the sgmie (if p then e; else BAD) diverges
or crashes first. Itis easy to seé = {x | p}. If t = t1 — t2, then

pap’ o’

(6 D? t1 — tz) D? t1 — to expands tdety =ein
UNR ¢ BAD/ 4

(T1]

pap’i sapTi el
t t v t t
1)) i 2) (v2 oy 1)) g 2
Focusing on th@&ADs andUNRs abovex, inspecting [P1] in Fig-
ure 4,BADY/ is invoked befora@/NR/i andBAD” is invoked before
UNR':. This holds inductively on the size 6{40].

Avz.((Av1.(y (1 m%fi

Bap’J

7. Related work
Contract semantics were first formalized in [7, 12] for a strict

language and later in [41] for a lazy language. This paper adapt
and re-formalize some of their ideas on contract satisfaction and

contract checking. Detailed design deference is explainéd.in
Pre/post-condition specification using logical formulae [2, 16,
18, 35] allows programmers to existentially quantify over infinite

domains or express meta-properties that are not expressible in con

the logical store for checking at the appropriate program point.
The [24] does not generate residual code while we do. Moreover,
their symbolic expression is in linear arithmetics, which is more
restrictive than ours.

Our approach is different from [37], which extracts proofs of
refinement types from an SMT solver and injects them as terms in
the generated bytecode RDCIL (like proof carrying code) during
refinement type checking. It is for security purpose.

Some work [26, 27, 33, 34] suggest to convert program to
higher order recursive scheme (HORS), which generates (possibly
infinite) trees, and specify properties in a form of trivial automaton
and do model checking to know whether HORS satisfies its desired
property. Our approaches are completely different although we
both do reachability checking. They work on automaton while
we work on program directly. Our approachri®dular (no top-
level function is inlined) while theirs is not. They deal with local
let rec (i.e. invariant inference) while we do not, but we could
infer local contract with method in [22] or inline the local let
rec function for a fixed number of times. They deal with protocol
checking while we do not unless a protocol checking problem can
be converted to checking the reachabilityBa. SL machine (in
§5) can be used for any problem that checks the reachabilgymf
in general.

The contextual information synthesis and conversion of expres-
sion to logical formula is inspired by the use of the applica#on
in [19, 20], which makes conversion of higher order functions eas-
ier. But we use the technique in different contexts.

Many papers on program verification [2, 11, 16, 31, 32, 38]
focus on memory leak, array bound checks, etc. and few handle
higher order functions and recursive predicates. Our work fonus o
more advanced properties and blame precisely functions at fault.
Contract checking in the imperative world is lead by [11], which
statically checks contract satisfaction at bytecode CIL level and run
dynamic checking separately. Residualization has not been done
in [11]. We may adapt some ideas in [21] to extend our framework

for program with side effects.
tracts. However, such property cannot be converted to program prog

code for dynamic checking. As automatic static checking always .
has its limitation, being able to convert some difficult checks to 8. Conclusion
dynamic checks is practical. Refinement types and contracts canWe have formalized a contract framework for a pure strict higher
be enhanced in many ways like we did for types, e.g. subcon- order subset of OCaml. We propose a natural integration of static
tract relation [12, 42], recursive contracts [7], polymorphic con- contract checking and dynamic contract checking. With SL ma-
tracts [3]. Contracts also enjoy interesting mathematical properties chine, our approach gives precise blame at both compile-time and
[7, 12, 40, 41]. We like the idea of ghost refinement in [37] that run-time in the presence of higher order functions. In near fu-
separates properties that can be converted to program code fronture, besides rigorous experimentation and case-studies, we plan
the meta-properties logical formulae. to add user-defined exceptions; allow side-effects in program and
One might recall the hybrid refinement type checking (HTC) [14, hidden side-effects in contracts; do contract or invariant inference
25]. In theory, [17] shows that (picky/indy, i.e. our) contractddec as [11, 22, 31] are inspiring.
ing is able to give more blame than refinement type checking in
the presence of higher order dependent function contracts. That iSAcknowIedgments
partly why [37] invents &Kind checker to report ill-formed refine-
ment types. As discussed §4.2, we checle > ¢ to be crash-free
in one-go and do not have to chetcio be crash-free separately. In
practice, theH{ and £ in the SL machine serve the similar purpose
as the typing environment in HTC. But the symbolic simplification
gives more flexibility such as teasing out the path sensitivity anal-
ysis with the rule [match-match], etc. We hope this work opens a
venue to compare HCC and HTC in practice, such as the kind of with first-order decision procedures. Unpublished, 200BLWttp:
properties we can verify, the speed of static checking, the size and //www.lri.fr/~filliatr/publis/coq-dp.ps.
speed of the residual code generated, etc. Notably, VeriFast [21] [2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pesgming
(for verifying C and Java code) suggests that symbolic execution is system: An overviewCASSISLNCS 3362, 2004.

I would like to thank Xavier Leroy, Francois Pottier, Nicolas Pouil-
lard, Martin Berger, Simon Peyton Jones, Michael Greenberg for
their feedback.

References
[1] N. Ayache and J.-C. Filliatre. Combining the Coq proofistsst

faster than verification condition generation method [2, 16].
The work [24] mixes type checking and symbolic execution.

[3] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Piercelyforphic
contracts. IlESOR pages 18-37, 2011.

However, [24] requires programmers to place block annotations [4] A. M. Ben-Amram and C. S. Lee. Program termination analjisis

{+ ¢} for type checking and s} for symbolic execution while

our SL machine systematically simplifies subterms and consults

11

polynomial time. ACM Trans. Program. Lang. Sys9:5:1-5:37,
January 2007.

2011/10/20

[5] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and&feis.
Refinement types for secure implementatioA&M Trans. Program.
Lang. Syst.33:8:1-8:45, February 2011.

[6] J. C. Blanchette, S.&@me, and L. C. Paulson. Extending Sledgeham-
mer with SMT solvers. IICADE, pages 116-130, 2011.

[7] M. Blume and D. A. McAllester. Sound and complete models of
contracts.J. Funct. Program.16(4-5):375-414, 2006.

[8] S. Conchon, E. Contejean, and J. Kanig. Ergo : a theoreyaepr
for polymorphic first-order logic modulo theories, 2006. URttp:
//ergo.lri.fr/papers/ergo.ps.

[9] J.-F. Couchot and S. Lescuyer. Handling polymorphismutomated
deduction. INCADE pages 263-278, 2007.

[10] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleis&@orrect
blame for contracts: no more scapegoating. Phaceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming language$?OPL'11, pages 215-226, New York, NY,
USA, 2011.

[11] M. Fahndrich and F. Logozzo. Static contract checking withralost
interpretation. InFoVeOOS'10: International Conference on Formal
Verification of Object-Oriented Softwaneages 10-30, 2010.

[12] R. B. Findler and M. Blume. Contracts as pairs of projtsi. In
Functional and Logic Programmingages 226—241. Springer Berlin
/ Heidelberg, 2006.

[13] R. B. Findler and M. Felleisen. Contracts for highed@r functions.
In ICFP '02: Proceedings of the seventh ACM SIGPLAN intermatlio
conference on Functional programmingages 48-59, 2002.

[14] C. Flanagan. Hybrid type checking. ROPL '06: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Priesipl
of programming languagepages 245-256, 2006.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. Téserce of
compiling with continuations. IfProceedings of the ACM SIGPLAN
1993 conference on Programming language design and impiteme
tion, PLDI '93, pages 237-247, New York, NY, USA, 1993. ACM.

C.Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,B. Saxe, and

R. Stata. Extended static checking for JavaPLiDI '02: Proceedings

of the ACM SIGPLAN 2002 Conference on Programming language
design and implementatippages 234-245, 2002.

M. Greenberg, B. C. Pierce, and S. Weirich. Contractsenadni-
fest. InProceedings of the 37th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languag®OPL '10, pages
353-364, New York, NY, USA, 2010. ACM.

C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM12:576-580, October 1969. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/363235.363259. URitp: //doi.acm.
org/10.1145/363235.363259.

K. Honda and N. Yoshida. A compositional logic for polymor
phic higher-order functions. IRPPDP '04: Proceedings of the 6th
ACM SIGPLAN international conference on Principles andaqtice
of declarative programmingpages 191-202, 2004.

K. Honda, M. Berger, and N. Yoshida. Descriptive andatige
completeness of logics for higher-order functions. the 33rd In-
ternational Colloquium on Automata, Languages and Prograny
(ICALP), pages 360-371, 2006.

[21] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Rekxj and
F. Piessens. VeriFast: A powerful, sound, predictable Vasfier for
C and Java. IINASA Formal Methodpages 41-55, 2011.

[22] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verityifunc-
tional programs using abstract interpreters.tha 15th international
conference on Computer Aided Verification CAAges 262-274,
2011.

[23] M. Kerber. How to prove higher order theorems in first atdgic. In
1JCAI, pages 137-142, 1991.

[24] Y. P. Khoo, B.-Y. E. Chang, and J. S. Foster. Mixing tyfeecking
and symbolic execution. IRroceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implenientat
PLDI '10, pages 436—447, New York, NY, USA, 2010. ACM.

(18]

[16]

[17]

(18]

[19]

[20]

12

[25] K. Knowles and C. Flanagan. Hybrid type checkingCM Trans.
Program. Lang. Syst.32:6:1-6:34, February 2010. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/1667048.1667QHL http:
//doi.acm.org/10.1145/1667048.1667051.

[26] N. Kobayashi. Types and higher-order recursion scheforegerifi-
cation of higher-order programs. Rroceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languagesPOPL '09, pages 416-428, 2009.

[27] N. Kobayashi, R. Sato, and H. Unno. Predicate abstlacnd cegar
for higher-order model checking. IRroceedings of the 32nd ACM
SIGPLAN conference on Programming language design andeimpl
mentation PLDI '11, pages 222—-233, New York, NY, USA, 2011.

[28] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. IRroceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan
guagesPOPL '01, pages 81-92, New York, NY, USA, 2001. ACM.

[29] K. R. M. Leino and P. Rmmer. A polymorphic intermediate verifi-
cation language: Design and logical encoding.16th International
Conference on Tools and Algorithms for the Construction Andly-
sis of Systems (TACA®Rges 312-327, 2010.

[30] B. Meyer. Eiffel: the language Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992. ISBN 0-13-247925-7.

[31] M. Might. Logic-flow analysis of higher-order programs.Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Prin
ciples of programming languageBOPL '07, pages 185-198, 2007.

[32] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorpimsand sepa-

ration in Hoare type theory. In J. H. Reppy and J. L. Lawalltad,
ICFP, pages 62—-73. ACM, 2006.

[33] C.-H. L. Ong. On model-checking trees generated by higheer
recursion schemes. InICS, pages 81-90. IEEE Computer Society,
2006.

[34] C.-H. L. Ong and S. J. Ramsay. Verifying higher-orderdtional
programs with pattern-matching algebraic data types$roteedings
of the 38th annual ACM SIGPLAN-SIGACT symposium on Priesipl
of programming language®OPL '11, pages 587-598, 2011.

[35] V. Régis-Gianas and F. Pottier. A hoare logic for call-by-vaiurec-
tional programs. In P. Audebaud and C. Paulin-Mohring, esljto
MPC, volume 5133 of_ecture Notes in Computer Scienpages 305—
335. Springer, 2008.

[36] D. Sereni and N. D. Jones. Termination analysis of higitder
functional programs. lproceedings of the 3rd Asian Symposium on
Program. Lang. and Systems (APLAS)ges 281-297, 2005.

[37] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargasad,J. Yang.
Secure distributed programming with value-dependent tyjseBro-
ceedings of the 16th ACM SIGPLAN international conferenge o
Functional programming2011.

[38] H. Xi and F. Pfenning. Dependent types in practical paogming. In
POPL '99: Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languagesages 214-227, 1999.

[39] D. N. Xu. Extended static checking for Haskell. fmoceedings of the
ACM SIGPLAN workshop on Haskgtlages 48-59, 2006.

[40] D. N. Xu. Hybrid contract checking. INRIA research re-
port, 2011. URLhttp://gallium.inria.fr/~naxu/research/
hcc-tr.pdf.

[41] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contreecking
for Haskell. InProceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languaB&PL
'09, pages 41-52, 2009.

[42] N. Xu. Static Contract Checking for HaskefPh.D. thesis, Aug. 2008.

2011/10/20

