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Abstract We define a framework of probabilistic contracts for constructing component-

based embedded systems, based on the formalism of discrete-time Interactive Markov

Chains. A contract specifies the assumptions a component makes on its context and

the guarantees it provides. Probabilistic transitions represent allowed uncertainty in

the component behavior, for instance, to model internal choice or reliability. Action

transitions are used to model non-deterministic behavior and communication between

components. An interaction model specifies how components interact with each other.

We provide the ingredients for a component-based design flow, including (1) con-

tract satisfaction and refinement, (2) parallel composition of contracts over disjoint,

interacting components, and (3) conjunction of contracts describing different require-

ments over the same component. Compositional design is enabled by congruence of

refinement.

Keywords component · probabilistic contract · refinement · composition

1 Introduction

Embedded and distributed systems often encompass unreliable software or hardware

components, as it may be technically or economically impossible to make a system

entirely reliable. As a result, system designers have to deal with probabilistic specifi-

cations such as “the probability that this component fails at this point of its behavior

is less than or equal to 10−6”. More generally, uncertainty in the observed behavior
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is introduced by abstraction of black-box behavior of components, the environment,

or the execution platform. In this paper, we introduce a framework for the design of

correct systems from probabilistic, interacting components.

(a) Client – Link – Server.
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Fig. 1: An example of IMC: a Client-Link-Server.

Figure 1(a) shows a Link system that transmits data between a Client and a Server.

The Link receives a request from the Client and encodes the request before sending

it to the Server. The encoding process fails with probability 0.02. After receiving a

response from the Server, it decodes the data before delivering it to the Client. To model

components, we use a variant of Interactive Markov Chain (IMC) framework [9] with

discrete time semantics, which combines labeled transition systems (LTS) and Markov

chains. Figure 1(b) shows an IMC describing the Link component of Figure 1(a). From

its initial state ℓ0, the Link goes to state ℓ1 as soon as it receives (rec) a request from

a Client; the probability that it delivers (del′) this request to the Server is 0.98 and

the probability that it fails to deliver it to the Server is 0.02. The Link goes to state ℓ4
immediately after receiving a response (rec′) from the Server; the probability that it

delivers (del) the response to the Client is 0.95 and the probability of failing to do so

is 0.05. In state ℓ8, the Link may still communicate with the Server regarding other

services, but will not deliver any response to the Client.

Components communicate through interactions, that is, synchronized action transi-

tions. Interactions are essential in component frameworks because they allow the mod-

eling of how components cooperate and communicate. We use the BIP framework [8]

to model interactions between components.

Since the deploying context of a component is not known at design time, we use

probabilistic contracts to specify and reason about the correct behaviors of a component.

Contracts were first introduced in [13]. They allow the designer to specify what a

component can expect from its context, what it must guarantee, and explicitly limit

the responsibilities of both.

The framework we propose here allows us to model components, their interactions,

and the uncertainty in their observed behavior (§2). It supports the different steps

classically found in a design flow: refinement, satisfaction, and projection (§3), parallel

composition (§4.1), and conjunction (shared refinement) (§4.2). We prove that these op-

erations satisfy the desired properties of independent implementability and congruence

for parallel composition, and soundness for conjunction. The features of our framework

are thus the following:
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• refinement is compositional, that is, contracts over different components can be

refined and implemented independently;

• the parallel composition of two contracts is satisfied by the parallel composition of

any two implementations of the contracts; and

• several contracts Ci over the same component may be used to independently spec-

ify different requirements, possibly over different subsets of the component inter-

actions. The conjunction is a common refinement of all Ci.

As pointed out in [2], the conjunction of probabilistic specifications is non trivial,

since a straight-forward approach would introduce spurious behaviors.

2 Components and Contracts

We use Interactive Markov Chains [9] with discrete-time semantics to model the be-

havior of components.

Definition 1 (Probability distribution) A probability distribution over a finite

set X is a function f : X → [0, 1] such that
∑

x∈X

f(x) = 1.

Definition 2 (Interactive Markov Chain (IMC)) An IMC is a tuple

(Q,A,→, ∆, s0) where:

• Q is a nonempty finite set of states, partitioned into Qp, the set of probabilistic

states, and Qa, the set of action states;

• A is a finite alphabet of actions;

• → ⊆ Qa ×A×Q is an action transition relation;

• ∆ : Qp → (Q → [0, 1]) is a transition probability function such that, for each

s ∈ Qp, ∆(s) is a probability distribution over Q;

• s0 is the initial state.

Each action state in Qa may have outgoing action transitions — also called non-

deterministic transitions in the literature — like those in a labeled transition system

(LTS). Each probabilistic state in Qp has outgoing probabilistic transitions like those

in a Markov chain. Probability distributions on states are memoryless, i.e., the future

of an IMC depends only on the current state, not on past choices. For example, in

Figure 1(b), the probabilistic choice that the Link delivers the response to the Client

(i.e., ∆(ℓ4)(ℓ5) = 0.95) is independent from the probabilistic choice of delivering a

request to the Server (i.e., ∆(ℓ1)(ℓ2) = 0.98).

Notation: For convenience, we sometimes write the transition probability function

∆ as a transition relation 99K ⊆ Qp × [0, 1]×Q such that:

99K = {(s, p, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ p = ∆(s)(s′)}

Graphically, we only depict the 99K transitions labeled with a non null probability (see

Figure 2(a)).

We introduce contracts as a finite specification for a possibly infinite number of

components modeled by IMCs. In contrast to IMCs, the probabilistic transitions of

a contract are labeled with probability intervals, similar to the formalism of [10,17].

Moreover, two distinct states ⊤ and ⊥ are used to distinguish the assumptions on the

use of the component from the guarantees it provides.
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Fig. 2: Contract Examples

Definition 3 (Contract) A contract is a tuple (Q,A,→, σ, t0) where:

• Q is a nonempty finite set of states, partitioned into Q = Qp ∪Qa ∪{⊤,⊥}, where

Qp is the set of probabilistic states, Qa is the set of action states, and ⊤ and ⊥ are

distinct states without any outgoing transitions;

• A is a finite alphabet of actions;

• → ⊆ Qa ×A×Q is the action transition relation;

• σ : Qp → (Q → 2[0,1]) is a transition probability predicate, associating with each

pair of states in Qp ×Q an interval of probabilities;

• t0 is the initial state.

Let C⊥ = ({⊥}, ∅, ∅, ∅,⊥) be the inconsistent contract.

Notations: We also write σ as a transition relation 99K ⊆ Qp × 2[0,1] × Q such

that 99K = {(s, P, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ P = σ(s)(s′)}. We write q
>0
99K q′ if

∃p > 0 : p ∈ σ(q, q′) and denote by
>0
99K

+

the transitive closure of
>0
99K. Graphically, we

only depict the
>0
99K transitions (see Figure 2(b)). Let = →∪

>0
99K, and let ∗ be the

reflexive and transitive closure of  . A state q ∈ Q is reachable if and only if t0  
∗ q.

A contract is consistent if ⊥ is not reachable.

The meaning of a contract C over a component M is the following:

• a transition s
a
→ ⊤ specifies the assumption of the componentM that an interaction

involving action a does not occur in state s;

• in an action state s, an action a labeling a transition not leading to ⊤ specifies the

guarantee of the component M that a is enabled in s; conversely, the absence of

any outgoing transition labeled with a specifies the guarantee that an interaction

involving a will not occur;

• the ⊤ state represents the fact that the assumption has been violated, and hence-

forth, the component M can behave arbitrarily;

• the ⊥ state stands for “inconsistent” and means that M cannot satisfy the con-

tract C any more;

• a transition s
[a,b]
99K t specifies an interval of allowed transition probabilities, i.e., the

component M has a transition s
p
99K t with any p ∈ [a, b].

Hypothesis 1 We require that the target states of probabilistic transitions are action

or probabilistic states: if q
>0
99K q′ then q′ /∈ {⊤,⊥}.

Example 1 The contract Cs in Figure 2(b) specifies that, after the Server receives a

request req′, the probability that it reaches state t3 is within [0, 0.1]; in state t3, it
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assumes that the environment does not provide req ′; if this occurs, its implementation

is not bound by Cs any more; the probability that it reaches t2 from t1 is within [0.9, 1];

in state t2, it guarantees to send a response (res′). In §3, we show how to check that

the IMC Ms (in Figure 2(a)) satisfies the contract Cs.

∀α ∈ A, ⌊s1
α
−→ s2⌋ = s1

α
−→ s2

∀p ∈ [0, 1], ⌊s1
p
99K s2⌋ = s1

[p,p]
99K s2

Fig. 3: Rules for lifting an IMC to a contract.

From the definitions of IMC and contract, we can see that an IMC can be trivially

converted into a contract. For this, we define a lifting operator ⌊.⌋ (Figure 3). We use

the same notation 99K to represent both kinds of probabilistic transitions (i.e., those

in an IMC and in a contract).

⌈n⌉ = if n > 1 then 1 else n

[ℓ1, u1] + [ℓ2, u2] = [ℓ1 + ℓ2, ⌈u1 + u2⌉] [F1]
[ℓ1, u1] ∗ [ℓ2, u2] = [ℓ1 ∗ ℓ2, u1 ∗ u2] [F2]

k ∗ [ℓ, u] = [k ∗ ℓ, k ∗ u] for k ∈ [0, 1] [F3]

Fig. 4: Operations on probability intervals.

In Figure 4, we define some useful operations related to probability intervals. When

summing up the upper bounds, the ceiling for a probability value is 1, so if the sum-

mation is greater than 1, we let the result be 1 (operator ⌈.⌉).

Definition 4 (Delimited contract) A contract C = (Q,A,→, σ, t0) is delimited [6]

iff ∀s ∈ Qp, ∀s′ ∈ Q, and ∀p ∈ σ(s)(s′): 1− p ∈
∑

s′′∈Q\{s′}

σ(s)(s′′).

Definition 4, borrowed from [6], states that, for any probability chosen in any

probabilistic transition’s interval, it is always possible to choose probabilities in the

intervals of all the remaining transitions outgoing from the same state such that the

sum is 1.

t2

t1

t0 [0.7, 0.8] b

[0.2, 0.3]

a

t2

t1

t0 [0.7, 0.9] b

[0.2, 0.3]

a

(a) Delimited. (b) Non-delimited.

Fig. 5: Delimited contract and non-delimited contract.
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Example 2 Figure 5(a) shows a delimited contract: for all p ∈ [0, 2, 0.3], we can find

p′ ∈ [0.7, 0.8] such that p + p′ = 1 and vice versa. Figure 5(b) shows a contract that

is not delimited. However, we can cut [6] the redundant sub-interval [0.8,0.9] from the

interval [0.7,0.9] to obtain the delimited contract of Figure 5(a).

3 Contract Refinement

System synthesis involves refining a contract until an implementation is obtained. We

therefore define formally the notion of contract refinement.

3.1 Refinement and Satisfaction

We first define contract refinement, and give thereafter some explanations.

Definition 5 (Contract refinement) Let C1 = (Q1,A,→1, σ1, s0) and C2 = (Q2,A,

→2, σ2, t0) be two contracts. A relation � ⊆ Q1 × Q2 is a simulation if for all s � t

we have:

1. s = ⊤ =⇒ t = ⊤.

2. t = ⊥ =⇒ s = ⊥.

3. If (s, t) ∈ Qa
1 × (Qa

2 ∪ {⊤}) then

(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ � t′);

(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ � t′).

4. If (s, t) ∈ Qp
1 × Qp

2 then there exists a function δ : Q1 × Q2 → [0, 1], which, for

each s′ ∈ Q1, gives a probability distribution δ(s′) over Q2, such that for every

probability distribution f over Q1 with f(s′) ∈ σ1(s)(s
′) and ∀t′ ∈ Q2,

∑

s′∈Q1

f(s′) ∗ δ(s′)(t′) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1 :

(

δ(s′)(t′) > 0 =⇒ s′ � t′
)

5. If (s, t) ∈ Qa
1 ×Qp

2 then ∃ta ∈ Qa
2 : t

>0
99K

+

2 ta ∧ s � ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s � t′

)

.

6. If (s, t) ∈ Qp
1 ×Qa

2 then ∃sa ∈ Qa
1 : s

>0
99K

+

1 sa ∧ sa � t and ∀s′ ∈ Q1,
(

s
>0
99K1 s′ =⇒ s′ � t

)

.

It can be shown that a greatest simulation relation, called refinement and noted ≤,

exists. C1 refines C2 (written C1 ≤ C2) iff s0 ≤ t0.

In Definition 5, conditions (1) and (2) ensure that C1 makes no stronger assump-

tions on the context than C2, and that the inconsistent state ⊥ is only refined by itself.

Since Definition 5 defines ≤ as the greatest relation, this implies that for any state s,

⊥ ≤ s and s ≤ ⊤.

Condition (3a) says that any action transition accepted by C2 must also be accepted

by C1. In contrast, action transitions leading to⊤ (i.e., violating the assumption) do not

need to be present in the refinement C1. This is why we have ∀t′ 6= ⊤ in condition (3a).
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On the other hand, condition (3b) says that each action transition of C1 must also be

enabled in C2, unless C2 is in the ⊤ state. Condition (4), adapted from [10], deals with

refinement among probabilistic states. Intuitively, s � t if there exists a function δ that

distributes the probabilities of transitions from s to all successor states s′ onto the

transitions from t to its successors t′, such that the sum of the probability fractions

(i.e., f(s′) ∗ δ(s′)(t′)) is in the range σ2(t)(t
′); this is illustrated in Example 4.

Condition (5) says that an action state s refines a probabilistic state t if it refines

all action states reachable with a path of positive probabilities from t. Finally, condi-

tion (6) is symmetrical to condition (5).

In Section 2, we gave an intuitive explanation of contracts: transitions leading

to ⊤ model the violation of the assumption, whereas action transitions not leading

to ⊤ model the guarantee that the transition has to be offered. The following example

shows that Definition 5 is consistent with the usual contravariant notion of contract

refinement requiring that the refining contract has a weaker assumption and a stronger

guarantee.

⊤ t2

t3

t0 t1
a

[0.5, 0.9]

[0.1, 0.5]

b

a

b

(a) Contract C2

s1

s3

s2

s0

a

b

[0.2, 0.4]a

[0.6, 0.8]

⊤

u3

u2u1u0

u4

a

a

c

[0.6, 0.8]

[0.2, 0.4]

b

b

a

(b) Contract C1a (c) Contract C1b

Fig. 6: Stronger guarantee and weaker assumption

Example 3 In Figure 6(a), the contract C2 says that, in the state t0, the action b is

assumed not to occur; if an interaction involving b occurs (and the environment violates

the assumption of C2), then a component implementing C2 is no longer bound by C2;

i.e., it can do anything after the action b is synchronized. The contract C2 also says

that, in the state t0, the action a is guaranteed to be offered. It follows that a contract

can refine C2 in different ways, as shown in Figure 6:

(1) C1a ≤ C2: the contract C1a does not offer action b in state s0.

(2) C1b ≤ C2: the contract C1b offers action b in state u0. If the b is synchronized with

its environment, it reaches state u4, from which C1b can perform any action.

Both in C1a and C1b, the action a is guaranteed in state s0 and u0 respectively. It

is also easy to check that s1 ≤ t1 as the probabilistic transition leading to s2 has

a tighter interval and s2 ≤ t2, and similarly for the transition leading to s3. This

means that both C1a and C1b have stronger guarantees than C2. At the same time,
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s1
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s2

s4 t2

t3

t1
d3

[0.9, 1]d2

[0, 0.1]

[0.2, 0.2]

d1

[0.1, 0.1]

[0.7, 0.7] (1) p2 ∈ [0.1, 0.1]

(2) p3 ∈ [0.7, 0.7]

(3) p4 ∈ [0.2, 0.2]

(4) p2 + p3 + p4 = 1

(5) p3 ∗ d1 + p4 ∗ d2 ∈ [0.9, 1]

(6) p2 ∗ d3 ∈ [0, 0.1]

Fig. 7: Left: Contract refinement s1 ≤ t1. Right: Constraints to be checked.

the transition labeled by b leading from state t0 to ⊤ has been removed in C1a and

replaced with a transition leading to a state different from ⊤ in C1b, thus weakening

the assumption of C2. For instance, contract C2 assumes action b not to occur, whereas

C1a guarantees not to offer b in state s0. On the other hand, u0 accepts more behaviors

by the environment than t0 without reaching ⊤.

We define the satisfaction of a contract by an IMC as the refinement of the contract

by the lifted IMC (i.e., written in the form of a contract).

Definition 6 (Contract satisfaction) An IMC M satisfies a contract C (written

M |= C) iff ⌊M⌋ ≤ C.

Example 4 We illustrate in Figure 7 how to check that the contracts of Figure 2

are such that ⌊Ms⌋ ≤ Cs, in particular, s1 ≤ t1. It is easy to check that s3 ≤

t2, s4 ≤ t2, and s2 ≤ t3. According to Condition (4) in Definition 5, we must

find for each si ∈ {s2, s3, s4} a probability distribution δ(si) over {t2, t3} such that
∑

i∈{2,3,4},j∈{2,3}

f(si) ∗ δ(si)(tj) ∈ σ2(t1)(tj) — where f is the probability distribution

over {s2, s3, s4} with f(s2) = 0.1, f(s3) = 0.7, and f(s4) = 0.2 —, and δ(si)(tj) = 0

if si 6≤ tj . In Figure 7, δ(s3)(t2) = d1, δ(s4)(t2) = d2, δ(s2)(t3) = d3 (all three repre-

sented by dotted lines), and δ(si)(tj) = 0 for all other pairs of states. We must thus

check that for each tuple (p2, p3, p4) satisfying the constraints (1) to (4) in Figure 7,

the constraints (5) and (6) are implied. As each δ(si) is a probability distribution, we

obtain for our example d1 = d2 = d3 = 1. (Note that if we had s2 ≤ t2 as well with

weight d4 from s2 to t2, we would have another constraint d3 + d4 = 1, and (5) would

become p3 ∗ d1 + p4 ∗ d2 + p2 ∗ d4 ∈ [0.9, 1].) Condition (4) can be checked efficiently

by requiring the set inclusion to hold for the bounds of interval σ(s)(s′), using a linear

programming solver.

Definition 7 (Models of contracts) The set of models of a contract C (written

M(C)) is the set of IMCs that satisfy C: M(C) = {M | M |= C}.

It can be checked that the inconsistent contract C⊥, consisting only of the state ⊥,

does not have any model.

Definition 8 (Semantical equivalence) Contracts C1 and C2 are semantically equiv-

alent (written C1 ≡ C2) iff M(C1) = M(C2).

Lemma 1 (Reflexivity of refinement) For all contracts C = (Q,A,→, σ, s0), we

have C ≤ C, and for any state s ∈ Q, we have s ≤ s.
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Proof Definition 5 (1)–(3) are trivially satisfied for {(s, t) | s = t}. Definition 5 (4) is

satisfied with δ(s)(s) = 1 and δ(s)(t) = 0 for s 6= t. Finally, Definition 5 (5)–(6) are

irrelevant for {(s, t) | s = t}. ⊓⊔

Lemma 2 (Transitivity of refinement) For all contracts C1, C2 and C3, if C1 ≤

C2 and C2 ≤ C3, then C1 ≤ C3.

Proof See appendix A.1.

Corollary 1 For all IMC M and contracts C1 and C2, we have:

1. if M |= C1 and C1 ≤ C2, then M |= C2;

2. if C1 ≤ C2, then M(C1) ⊆ M(C2);

3. if C1 ≤ C2 and C2 ≤ C1, then C1 ≡ C2.

3.2 Bisimulation

We adapt the usual notion of bisimulation to contracts, and define reduction of a

contract with respect to bisimulation.

Definition 9 (Bisimulation ≃) Given two contracts C1 = (Q1,A,→1, σ1, s0) and

C2 = (Q2,A, →2, σ2, t0), a relation ≃ ⊆ Q1 × Q2 is a bisimulation if both ≃ and

≃−1= {(t, s) | s ≃ t} are simulations.

C1 and C2 are bisimilar (written C1 ≃ C2) iff s0 ≃ t0, where ≃ is the greatest

bisimulation.

Definition 10 (Reduction modulo ≃ and reduced contract C) Let C = (Q,A,

→, σ, s0) be a contract and ≃ be a bisimulation over Q. For all s ∈ Q, let Cs =

{q ∈ Q | s ≃ q} be the equivalence class of s. Let C = {Cs | s ∈ Q}. The reduced

contract, written C/≃, is (C,A,→≃, σ≃, Cs0) with Cp = {c ∈ C | ∀s ∈ c : s ∈ Qp} and

Ca = C \ (Cp ∪ {⊤,⊥}) such that, ∀s = {s1, . . . , sm}, t = {t1, . . . , tn} ∈ C, we have:

(a) s
α
→≃ t iff ∃i, j : si

α
→ tj , and

(b) σ≃(s, t) =
∑

1≤j≤n

σ(s1, tj) iff s ∈ Cp.

If ≃ is the greatest bisimulation then we write C for C/≃.

Notice that an equivalence class may contain both action and probabilistic states.

For each probabilistic state si ∈ s, the probabilities of transitions to states tj ∈ t are

summed up (it does not matter which of the transitions is taken since all the successors

tj are equivalent). This sum is the transition probability from si to some state in t. By

definition of ≃, the sum is the same for all si ∈ s, thus we pick σ(s1, tj).

Example 5 By Definition 10, we can reduce the contract C3 of Figure 8(a) to C3

of Figure 8(b). There are 3 equivalence classes: {s1}, {s4} and {s2, s3, s5, s6}. By

Definition 10(b), we sum up the (lower bound and upper bound of) transitions from

s1 to s2 and from s1 to s3.

Lemma 3 (Bisimilarity of reduction) For any contract C, we have C ≃ C.

Proof Let C = (Q,A,→, σ, s0) and C/≃ = (C,A,→≃, σ≃, Cs0). By Definition 10 we

have s0 ∈ Cs0 and thus s0 ≃ Cs0 and C ≃ C. ⊓⊔
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{s4}

{s2, s3, s5, s6}[0.7, 0.9]
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a

b

(a) Contract C3 (b) Reduced contract C3

Fig. 8: A reduced contract.

Definition 11 (Deadend freedom) A delimited contract C = (Q,A,→, σ, s0) is

deadend-free if any reachable state has an outgoing transition in (Q\{⊤},A,→′, σ, s0)

where →′ = {(q, a, q′) ∈ → | q′ 6= ⊤}.

In other words, C is deadend-free if all reachable action states have a successor

state other than ⊤. In particular, ⊥ is unreachable in any deadend-free contract since

⊥ has no successor at all.

Theorem 1 (Refinement preserves deadend-freedom) Let C = (Q,A,→, σ, s0)

and C′ = (Q′,A,→′, σ′, s′0) be two contracts such that C′ ≤ C, and C′ is delimited

and consistent. If C is deadend-free then so is C′.

Proof Since C′ is delimited, every reachable probabilistic state has an outgoing tran-

sition with a non-empty probability interval. For each action state in q ∈ Qa that has

a transition q
a
→ q1 with q1 6= ⊤, all action states q′ ∈ Q′ refining q have an outgoing

transition q′
a
→ ′ q2 with q2 6= ⊤. On the other hand, all reachable action states in Q′

must refine some reachable action state in Q. The claim follows. ⊓⊔

3.3 Contract Projection

The need of projection arises naturally in contract frameworks. A and B being two

alphabets of actions such that B ⊆ A, we abstract from actions in A \ B that are

not relevant by renaming them into internal τ actions. The contract over the alphabet

B∪{τ} is then projected on the sub-alphabet B by using the standard determinization

algorithm (see e.g. [1]).

Definition 12 (Projection) Let C = (Q,A,→1, σ, s0) be a contract and B ⊆ A

such that for any q ∈ Qa and α ∈ A, if q
α
→1 ⊤ or q

α
→1 ⊥ then α ∈ B. Let

C′ = (Q,B ∪ {τ},→2, σ, s0) be the contract where all transition labels in A \ B are

replaced with a new label τ . We require that C is such that act ∩ prob = ∅ where

act =
{

q ∈ Q | ∃q′ ∈ Q : q
τ∗

→2 q′ ∧
(

(∃α ∈ B ∃q′′ ∈ Q : q′
a
→2 q′′) ∨ (∀q′′ : q′

τ∗

→2 q′′ =⇒ q′′ ∈ Qa)
)}

prob = {q ∈ Q | ∃q′ ∈ Qp : q
τ∗

→2 q′}
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and
τ∗

→2 is the transitive and reflexive closure of
τ
→2.

The projection of C on B (written πB(C)) is obtained by τ -elimination (deter-

minization) of C′.

The requirement that action transitions immediately leading to ⊤ or ⊥ be kept in

the projection ensures that Hypothesis 1 is preserved. The second requirement ensures

that the states of πB(C) are partitioned into action states, probabilistic states, {⊤},

and {⊥}. More precisely, act is the set of states q from which a state q′ is reachable

by taking only τ transitions, such that either a transition with an action label in B is

enabled in q′, or no more probabilistic state is reachable. Conversely, prob is the set of

states from where a probabilistic state can be reached. Disjointness of both sets ensures

that every state of πB(C) is uniquely typed, such that πB(C) is a contract again.

Lemma 4 (Projection and refinement) For all contracts C1 = (Q1,A,→1, 99K1,

s0) and C2 = (Q2,A,→2, 99K2, t0) and for all B ⊆ A such that πB(C1) and πB(C2)

are defined, if C1 ≤ C2 then πB(C1) ≤ πB(C2).

Proof See appendix A.2.

Example 6 In Figure 2, if we do not care how the implementation handles failure cases,

we can check that πAs\{handle}(Ms) |= Cs, where As is the action alphabet of Cs.

4 Contract Composition

We introduce two composition operations for contracts: parallel composition || parametrized

with an interaction set I, and conjunction ∧ (also called shared refinement).

4.1 Parallel Composition of Contracts

Parallel composition allows the designer to build complex models from simpler compo-

nents in a stepwise and hierarchical manner. In order to reason about the composition

of components at the contract level, we define the parallel composition of contracts.

As in the BIP component framework [8], parallel composition is parametrized with a

set of interactions, where each interaction is a set of component actions occurring si-

multaneously. For instance, an interaction set
{

{a}, {a, b}, {c}
}

says that action a can

interleave or synchronize with b; action b must synchronize with a; action c is a sin-

gleton interaction that always interleaves. Whenever there is no ambiguity we simply

write a (resp. a|b) for the singleton interaction {a} (resp. for the interaction {a, b}),

therefore the symbol “|” is commutative.

Definition 13 (Parallel composition of contracts) Let C1 = (Q1,A1,→1, 99K1,

s0) and C2 = (Q2,A2,→2, 99K2, t0) be two contracts. The parallel composition of C1

and C2 with respect to an interaction set I ⊆ 2A1∪A2 (written C1||IC2) is the contract
(

Q, I,→′, 99K, (s0, t0)
)

where:

1. Q = (Q′
1 × Q′

2) ∪ {⊤,⊥} with Q′
1 = Q1 \ {⊤1,⊥1}, Q

′
2 = Q2 \ {⊤2,⊥2}, Q

a =

Qa
1 ×Qa

2 , and Qp = Q \ (Qa ∪ {⊤,⊥});
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2.

→′ = {(q, a, q′) ∈ → | q′ /∈ Q⊤ ∪Q⊥} ∪

{(q, a,⊤) | ∃q′ ∈ Q⊤ : (q, a, q′) ∈ →} ∪

{(q, a,⊥) | ∃q′ ∈ Q⊥ : (q, a, q′) ∈ →}

where → is the least relation satisfying the rules [R1]–[R3] in Figure 9; and

3. 99K is the least relation satisfying the rules [R4]–[R6] in Figure 9

where Q⊤ = (Q1 × {⊤2}) ∪ ({⊤1} × Q2) and Q⊥ = (Q1 × {⊥2}) ∪ ({⊥1} × Q2).

In other words, ⊤ (resp. ⊥) is reached in C1||IC2 as soon as one of C1 or C2 reaches

its ⊤i (resp. ⊥i) state.

q1
α
→1 q′1 α ∈ I q2 ∈ Qa

2

(q1, q2)
α
−→ (q′1, q2)

[R1]
q2

α
→2 q′2 α ∈ I q1 ∈ Qa

1

(q1, q2)
α
−→ (q1, q′2)

[R2]

q1
α
→1 q′1 q2

β
→2 q′2 α|β ∈ I

(q1, q2)
α|β
−−→ (q′1, q

′
2)

[R3]
q1

[p1,p2]
99K 1 q′1 q2

[p3,p4]
99K 2 q′2

(q1, q2)
[p1∗p3,p2∗p4]

99K (q′1, q
′
2)

[R4]

q1
P
99K1 q′1 q2 ∈ Qa

2

(q1, q2)
P
99K (q′1, q2)

[R5]
q2

P
99K2 q′2 q1 ∈ Qa

1

(q1, q2)
P
99K (q1, q′2)

[R6]

Fig. 9: Rules for the parallel composition of contracts.

Rules [R1] to [R3] are the usual parallel composition rules for LTS, while Rule [R4]

is similar to the typical parallel composition for Markov chains but on probability inter-

vals. Finally, Rules [R5] and [R6] state that probabilistic transitions, usually modeling

hidden internal behavior, have priority over action transitions. Parallel composition is

commutative since the rules are symmetrically defined.

Example 7 Figure 10 illustrates the parallel composition of contracts Cs (from Fig-

ure 2(b)) and Cℓ = ⌊Mℓ⌋ (whereMℓ is given in Figure 1(b)), with I = {rec, del, req′|del′,

res′|rec′, fail1 , fail2 }. The composed contract Cs ||I Cℓ states that a failure in the Link

component does not prevent it from continuing to deliver the request req′ to the Server,

and receiving the response res′ from the Server, but the failure prevents it from deliv-

ering the response res′ back to the Client.

We end the section on parallel composition with several useful theorems.

Theorem 2 (Congruence of refinement for ||I) For all contracts C1, C2, C3, C4

and an interaction set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.

(t2, u9)

(t1, u9)

(t2, u3)

(t1, u3)

(t0, u6)

(t0, u8)

(t3, u9)

(t0, u1)

(t0, u0)

(t0, u2)

(t0, u5)

(t0, u4)

(t0, u7)

(t3, u3)

[0.02, 0.02]

[0.9, 1]

[0, 0.1]

req′|del′

rec

[0.05, 0.05]

[0.95, 0.95]

fail2

[0, 0.1]

fail1

[0.9, 1]

res′|rec′

res′|rec′

req′|del′

del

[0.98, 0.98]

Fig. 10: Parallel composition of Cs and Cℓ.
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Proof See appendix B.1.

Theorem 3 (Independent implementability) For all IMCs M,N , contracts C1, C2,

and interaction set I, if M |= C1 and N |= C2, then M ||IN |= C1||IC2.

Proof
M |= C1 and N |= C2

⇐⇒ (By definition of |=)

⌊M⌋ ≤ C1 and ⌊N⌋ ≤ C2

⇒ (By Theorem 2 (Congruence of refinement for ||I))

⌊M⌋||I⌊N⌋ ≤ C1||IC2

⇐⇒ (By definition of ⌊.⌋ (Figure 3))

⌊M ||IN⌋ ≤ C1||IC2

⇐⇒ (By Definition 6 (|=))

M ||IN |= C1||IC2

⊓⊔

Theorem 4 (Reduction and parallel composition) For all contracts C1 and C2,

C1 ||I C2 ≡ C1 ||I C2.

Proof
(By Lemma 3 (Bisimilarity of reduction))

C1 ≤ C1 and C2 ≤ C2 and C1 ≤ C1 and C2 ≤ C2

⇒ (By Theorem 2 (Congruence of refinement for ||I))

C1||IC2 ≤ C1||IC2 and C1||IC2 ≤ C1||IC2

⇒ (By Corollary 1)

C1||IC2 ≡ C1||IC2

⊓⊔

4.2 Conjunction of contracts

A single component may have to satisfy several contracts that are specified indepen-

dently, each of them specifying different requirements on the component, such as safety,

reliability, or quality of service. Therefore, the contracts may use different, possibly

overlapping, sub-alphabets of the component. The conjunction of contracts computes

a common refinement of all contracts. Prior to conjunction, we define similarity of

contracts as a test whether a common refinement exists.

Definition 14 (Similarity (∼)) Let C1 = (Q1,A1,→1, 99K1, s0) and C2 = (Q2,

A2,→2, 99K2, t0) be two contracts. ∼ ⊆ (Q1 \ {⊥})× (Q2 \ {⊥}) is the largest relation

such that ∀(s, t) ∈ (Q1 \ {⊥})× (Q2 \ {⊥}), s ∼ t iff (s = ⊤∨ t = ⊤) or conditions (1)

to (4) below hold:

1. If (s, t) ∈ Qa
1 ×Qa

2 then

(a) for all s′ ∈ Q1, if s
α
→1 s′, then either

i. α /∈ A2, or

ii. α ∈ A2 and ∃m ≥ 0, ∃β1, ..., βm ∈ A2 \ A1, ∃t1, ..., tm, t′ ∈ Q2 :

t
β1

→2 t1
β2

→2 . . .
βm

→2 tm
α
→2 t′ ∧ ∀i = 1, ...,m : s ∼ ti;

(b) for all t′ ∈ Q2, if t
α
→2 t′, then either
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i. α /∈ A1, or

ii. α ∈ A1 and ∃m ≥ 0, ∃β1, ..., βm ∈ A1 \ A2, ∃s1, ..., sm, s′ ∈ Q1 :

s
β1

→1 s1
β2

→1 . . .
βm

→1 sm
α
→1 s′ ∧ ∀i = 1, ...,m : si ∼ t;

2. If (s, t) ∈ Qp
1 ×Qp

2 then

(a) for all s′ ∈ Q1, if s
P1

99K s′, then t
P2

99K t′ for some t′ ∈ Q2 with P1 ∩P2 6= ∅ and

s′ ∼ t′; and

(b) for all t′ ∈ Q2, if t
P2

99K t′, then s
P1

99K s′ for some s′ ∈ Q1 with P1 ∩P2 6= ∅ and

s′ ∼ t′;

3. If (s, t) ∈ Qa
1 ×Qp

2 then for all t′ ∈ Q2 with t
P
99K2 t′, s ∼ t′;

4. If (s, t) ∈ Qp
1 ×Qa

2 then for all s′ ∈ Q1 with s
P
99K1 s′, s′ ∼ t.

Finally, C1 and C2 are similar, written C1 ∼ C2, iff s0 ∼ t0.

Each Pi in Definition 14 refers to a probabilistic interval in the form of [ℓi, ui].

Any state is similar to a top state ⊤i (where the contract does not constrain the

implementation in any way). The bottom states ⊥i are not similar to any state. Two

action states are similar if they agree on the enabled actions in the shared alphabet

A1 ∩ A2. The successor states are not required to be similar again, as they may be

made unreachable in a subsequent parallel composition. Two probabilistic states are

similar if the probabilistic transitions can be matched such that the intervals overlap

(P1 ∩ P2 = ∅) and the successor states are similar. Overall, two states are similar if

they agree on the behavior up to and including the next reachable action transition in

the shared alphabet.

Definition 15 (Unambiguous contract) A contract C = (Q,A,→, 99K, s0) is un-

ambiguous w.r.t B ⊆ A iff for all r, s, and t ∈ Q such that:
(

r
>0
99K s ∧ r

>0
99K t

)

∨
(

∃α, β ∈ (A \ B) ∪ {∅} : r
α
→ s ∧ r

β
→ t

)

we have: if s ∼ t then s = t, where q
∅
→ q for all q ∈ Q, .

C is unambiguous if it is unambiguous w.r.t A.

In other words, a contract is unambiguous if the reachable successor states of any

probabilistic state are pairwise non-similar.

s1

s3

s2

s5

s4

s7

s6

[0, 0.4]

[0, 0.3]

b

[0.8, 1]

[0.7, 1]

b

[0.4, 1]

[0, 0.6]

a

a

s1

s3

s2

b

a

[0.5, 1]

[0, 0.5]

t2

t3

t4

t1

[0, 0.2]

[0.2, 0.4]

a

a

[0.4, 0.8]

b

(a) Contract Ca (b) Contract C1 (c) Contract C2

Fig. 11: (a) An ambiguous contract Ca; (b,c) Two non-similar contracts C1 and C2.

Example 8 In Figure 11(a), the contract Ca is ambiguous because s2 ∼ s3 (highlighted

in gray) but s2 6= s3.
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We are now ready to define the conjunction of two contracts. The two contracts may

refer to different, not necessarily disjoint alphabets. Therefore, the contracts can be

used to specify requirements on two (not necessarily disjoint) aspects of a component.

Definition 16 (Conjunction of contracts (∧)) Let C1 = (Q1,A1,→1, 99K1, s0)

and C2 = (Q2,A2,→2, 99K2, t0) be two contracts such that C1 and C2 are unambiguous

w.r.t A1∩A2. The conjunction of C1 and C2 is the contract C1∧C2 =
(

Q,A1∪A2,→
′,

99K, (s0, t0)
)

where:

1. Q = {(q1, q2) ∈ Q1 × Q2 | q1 ∼ q2 ∧ (q1 6= ⊤1 ∨ q2 6= ⊤2)} ∪ {⊤,⊥}, Qp =

Q ∩
(

(Qp
1 ×Q2) ∪ (Q1 ×Qp

2)
)

, and Qa = Q \ (Qp ∪ {⊤,⊥});

2.

→′ = {(q, a, q′) ∈ → | q′ ∈ Q} ∪

{(q, a,⊤) |
(

q, a, (⊤1,⊤2)
)

∈ →} ∪

{(q, a,⊥) | ∃q′ = (q′1, q
′
2) ∈ Q1 ×Q2 : ¬(q′1 ∼ q′2) ∧ (q, a, q′) ∈ →}

where → is the least relation satisfying the rules [C1] – [LiftR] in Figure 12, and

3. 99K is the least relation satisfying the rules [C3] – [C4R] in Figure 12 (where for

all other probabilistic transitions (q1, q2)
P
99K (q′1, q

′
2), P = [0, 0]).

The ⊥ state is entered in the contract C1 ∧ C2 as soon as a pair of non-similar

states (including, by definition, pairs with at least one ⊥ state) is reached.

q1
α
→1 q′1 q2

α
→2 q′2

(q1, q2)
α
−→ (q′1, q

′
2)

[C1]

q1
α
→1 q′1

(q1,⊤2)
α
−→ (q′1,⊤2)

[C2L]
q2

α
→2 q′2

(⊤1, q2)
α
−→ (⊤1, q

′
2)

[C2R]

q1
α
→1 q′1 q2 ∈ Qa

2 α 6∈ A2

(q1, q2)
α
→ (q′1, q2)

[LiftL]
q2

α
→2 q′2 q1 ∈ Qa

1 α 6∈ A1

(q1, q2)
α
→ (q1, q′2)

[LiftR]

q1
P1

99K1 q′1 q2
P2

99K2 q′2 q′1 ∼ q′2

(q1, q2)
P1∩P2

99K (q′1, q
′
2)

[C3]

q1
P
99K1 q′1 q2 ∈ Qa

2 ∪ {⊤2} q′1 ∼ q2

(q1, q2)
P
99K (q′1, q2)

[C4L]

q2
P
99K2 q′2 q1 ∈ Qa

1 ∪ {⊤1} q1 ∼ q′2

(q1, q2)
P
99K (q1, q′2)

[C4R]

Fig. 12: Rules for conjunction of contracts.

Rule [C1] requires the contracts to agree on action transitions over their common

alphabet. According to rule [C2L] (resp. [C2R]), the conjunction behaves like the first

(resp. second) contract as soon as the other contract is in ⊤. Rules [LiftL] and [LiftR]

allow the interleaving of action transitions that are not in the common alphabet. Rules

[C3] – [C4R] define probabilistic transitions whose successor states are similar.
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s3 ⊤

s0 s2

s1

[0.02, 0.02]

rec

fail1

del′
[0.98, 0.98]

⊤

t2

t3

t0

t1 [0.95, 1]

[0, 0.05]

del

rec′

fail2

(a) Cℓ1 (b) Cℓ2

(c) Cℓ3

u1u0
rec′
del′

Fig. 13: Example: Conjunction of Contracts

Example 9 Figure 13 shows three contracts for the Link component: Cℓ1 specifies that

the implementation should receive a request (rec) from the Client and deliver it to the

Server (del′); Cℓ2 specifies that the implementation should receive a response (rec′)

from the Server and deliver it to the Client (del); Cℓ3 requires the response (rec′)

received from the Server to occur after the request (del′) delivered to the Server. We

can verify that Mℓ |= (Cℓ1 ∧ Cℓ3) ∧ (Cℓ2 ∧ Cℓ3) (where Mℓ is in Figure 1(b)).

Example 10 Since a contract that is not in reduced form may be ambiguous, con-

tracts should be reduced before performing conjunction. In Figure 11(c), contract

C2 is ambiguous, but t2 ≃ t3. If we reduce C2 by applying Definition 10, we get

t1
[0.2,0.6]
99K {t2, t3}

a
→ {t2, t3}. The reduced contract is unambiguous and s1 ∼ t1, hence

conjunction yields a common refinement of C1 and C2.

Theorem 5 (Associativity of conjunction over the same alphabet) For all un-

ambiguous contracts C1 = (Q1,A,→1, σ1, s0), C2 = (Q2,A,→2, σ2, t0), and C3 =

(Q3,A,→3, σ3, u0), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3).

Proof See appendix B.5.

Theorem 6 (Soundness of conjunction) For all unambiguous contracts C1 and C2,

if πAi
(C1 ∧ C2) is defined then πAi

(C1 ∧ C2) ≤ Ci for i = 1, 2.

Proof See appendix B.2.

⊤

t2

t3

t0

t1
[0, 0.5]

[0, 0.1]

a

a

a

[0, 0.4]

v2

v3

⊤

(t0, t0)

(t1, t1)

[0, 0.1]

a

[0, 1]

a
a

[0, 0.7]

(a) Ambiguous contract Cb (b) Cb ∧ Cb

(c) A model Mb

s1

s0

s3

s2

s5s4
b

0.2 a

a a
0.8

Fig. 14: Example where Mb |= Cb ∧ Cb but Mb 6|= Cb.
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Example 11 Figure 14 motivates the requirement of conjunction (Definition 16) for un-

ambiguous contracts. The resulting contract Cb∧Cb is reduced such that the model rela-

tion can be seen easily. In Figure 14(b), v2 denotes the equivalent class {(t1, t2), (t2, t1),

(t2, t2)} while v3 denotes the equivalent class {(t1, t3), (t2, t3), (t3, t1), (t3, t2), (t3, t3)}.

Since t1 ∼ t2 ∼ t3, duplicated intervals lead to an unsound result.

Theorem 7 (Completeness of conjunction over the same alphabet) For all de-

limited unambiguous contracts C1, C2, C3, if C1 ≤ C2 and C1 ≤ C3, then C1 ≤ C2∧C3.

Proof See appendix B.4.

Theorem 8 (Congruence of refinement for ∧ over the same alphabet) For all

delimited unambiguous contracts C1, C2, C3, and C4 over the same alphabet, if C1 ≤

C2 and C3 ≤ C4, then C1 ∧ C3 ≤ C2 ∧ C4.

Proof See appendix B.4.

5 Case Study

We study a dependable computing system with time redundancy. The system speci-

fication is expressed by the contract CS of Figure 15 (top left), which specifies that

the computation comp should have a success probability of at least 0.999. If the com-

putation fails, then nothing is specified (state ⊤). All the contracts in this section are

delimited.

The processor P the system is running on is specified by the contract CP of Fig-

ure 15 (top right). Following an execution request exe, either the processor succeeds

and replies with ok (with a probability at least p), or fails and replies with nok (with a

probability at most 1− p). The failure rates for successive executions are independent.

The probability p is a parameter of the contract.

⊤CS

success

s0
comp

[0.999, 1]

s1

s3

[0, 0.001]
s2

fail p1

CP ok

p0

[p, 1]

[0, 1− p]

p2

p3
nok

exe

CR

q2 q4

q6

q0 q1 q3

q5

ok′

exe′ nok′ exe′

nok′

ok′

success

comp

fail

Fig. 15: (Top left) Specification CS ; (top right) Processor contract CP ; (bottom) Time

redundancy contract CR.

We place ourselves in a setting where the reliability level guaranteed by CP alone

(as expressed by p) cannot fulfill the requirement of CS (that is, 0.999), and hence some
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form of redundancy must be used. We propose to use time redundancy, as expressed by

the contract CR of Figure 15 (bottom). Each computation comp is first launched on the

processor P (exe′), either followed by a positive (ok′) or negative (nok′) answer from P .

In the latter case, the execution is launched a second time, therefore implementing

time redundancy. The contract CR finally answers with success if either execution is

followed by ok′, or with fail is both executions are followed by nok′.

In terms of component-based design for reliability, we want to determine the min-

imum value of p that guarantees the reliability level of CS . To compute this minimum

value, we first compute the parallel composition CR||ICP , with the interaction set

I = {comp, exe|exe′, ok|ok′, nok|nok′, success, fail}. The reduction modulo bisimula-

tion of this parallel composition is shown in Figure 16 (top), where the interactions

exe|exe′, ok|ok′, and nok|nok′ have been replaced for conciseness by exe, ok, and

nok, respectively. We call this new contract CR||P . We then compute the projection

of CR||P onto the set B = {comp, success, fail}. The result Cπ = πB(CR||P ) is shown

in Figure 16 (bottom left).

nok

q0
comp

nok exe

q1 q2

[p, 1]

[0, 1− p]

q3

q5

q4

q6 q7

[0, 1− p]

[p, 1]

CR||P = CR||ICP

q8q9

exe

success

fail

ok

[0, 1− p]
q′3

[p, 1]

q′2q′0
comp

q′1

q′4

Cπ = πB(CR||P )

[p, 1]

[0, 1− p]
fail

success

q′′1q′′0
comp

[2p− p2, 1] q′′2

q′′3

C̃π

[0, (1− p)2]

success

fail

Fig. 16: Parallel composition CT ||P ; Projection Cπ; Transitive closure C̃π.

We are thus faced with a contract Cπ having sequences of probabilistic transitions;

more precisely, since some probabilistic states have several outgoing transitions, we have

DAGs of probabilistic transitions. We therefore compute the transitive closure for each

such DAG: that is, for each sequence of probabilistic transitions from the initial state of

the DAG (e.g., q′1 in Cπ) to one of its final states (e.g., q′2 and q′4 in Cπ), we compute the

equivalent probabilistic transition. Starting from q′1, the probability interval of reaching

q′2 (resp. q′4) is given by {p′ + (1 − p′)p′ | p′ ∈ [p, 1]} (resp. {(1 − p′)2 | p′ ∈ [p, 1]}),

that is, [2p−p2, 1] (resp. [0, (1−p)2]). The resulting contract C̃π is shown in Figure 16

(bottom right).

The last step involves checking under which condition on p the contract C̃π refines

the specification CS . We have C̃π ≤ CS ⇔ (1− p)2 ≤ 0.001 ⇔ p ≥ 0.968. This means

that, with time redundancy and a processor with a reliability level of at least 0.969,

we are able to ensure an overall reliability level of 0.999.
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To demonstrate the versatility of our contract framework, we show in Figure 17 the

alternative contract C′
R for spatial redundancy. This time, the execution is launched

both on processor 1 (exe1) and on processor 2 (exe2). We call CP1 the contract of

processor 1, which is identical to CP in Figure 15 (top right). We call CP2 the contract

of processor 2, which is identical to CP1 upto a renaming of the index. The contract

C′
R answers with success if either ok1 or ok2 is received, or with fail is both nok1 and

nok2 are received, in any order.

ok2 ∨ nok2
q5

q7

nok1

q2 q3

q6

q4

nok1

nok2

nok2

ok2

q0 q1
comp exe1 exe2

ok1 ∨ ok2

ok1

fail

success

ok1 ∨ nok1

Fig. 17: Spatial redundancy: the contract C′
R.

We leave the intermediate computations as exercises for the reader. These are:

• CA = CP1||ICP2 with I = {exe′1, ok
′
1, nok

′
1, exe

′
2, ok

′
2, nok

′
2}.

• CB = CA||I′C′
R with I′ = {comp, success, fail, exe1|exe

′
1, ok1|ok

′
1, nok1|nok

′
1,

exe2|exe
′
2, ok2|ok

′
2, nok2|nok

′
2}.

We then compute the projection πB(CB) onto the set B = {comp, success, fail}.

The reduction modulo bisimulation of the result, called C′
π, is shown in Figure 18 (left).

Like with the time redundancy contract, we compute the transitive closure for each

DAG of probabilistic transitions. The result C̃′
π is shown in Figure 18 (right).

q′2

q′4

q′5

q′3

q′6

q′7

q′0
comp

q′1

[p1, 1]

[0, 1-p1]

[p2, 1]

[p2, 1]

[0, 1-p2]

[0, 1-p2]

C ′
π = πB(CB)

fail

success

q′′3

q′′2

q′′0
comp

q′′1

[p1+p2-p1.p2, 1]

[0, (1-p1)(1-p2)]

C̃ ′
π

success

fail

Fig. 18: Projection C′
π = πB(CB) onto the set B = {comp, success, fail}; Transitive

closure C̃′
π.
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The last step involves checking under which condition on p1 and p2 the contract C̃′
π

refines the specification CS . We have C̃′
π ≤ CS ⇔ (1 − p1)(1 − p2) ≤ 0.001. This

condition is to be compared with the (1 − p)2 ≤ 0.001 condition obtained with time

redundancy.

6 Discussion

We have introduced a design framework based on probabilistic contracts and proved

essential properties for its use in component-based design. Our definition of contracts

adapts ideas from [10,17,6], although the frameworks in [10,6] do not support in-

teractions between contracts. This article extends the preliminary work of [16] with

several new results. In particular, the definition of similarity has been weakened, so

as to provide a less pessimistic definition of conjunction. This enables us to provide a

new result on completeness of conjunction if both arguments share the same alphabet

(Theorem 7).

6.1 Design choices

A fundamental syntactic choice in defining a symbolic contract framework is to de-

fine a contract either as a pair (assumption, guarantee) as in [7] — call them as-

sume/guarantee contracts — or as a single implicit transition system where the dis-

tinction of assumption and guarantee is made by means of a specific ⊤ state, as in the

present article. Whereas assume/guarantee contracts have the benefit of making ex-

plicit the assumptions of how a component is used and the guarantees provided by the

component in this case, they come at the price of introducing some redundancy when-

ever the assumptions and the guarantees refer to the same sub-alphabet of the com-

ponent. From a more technical point of view, another downside of assume/guarantee

contracts is that parallel composition and conjunction of symbolic representations usu-

ally require the computation of an equivalent implicit form of the contract, whose

definition is far from being obvious for probabilistic contracts.

A further choice is where to represent the probabilistic behavior: in the model of a

component (i.e., the implementation), in the contract (i.e., the specification), or both.

We have chosen the last option, as it allows us to model both the expected probabilistic

behavior and the behavior offered by existing components, and reason about how the

specification can be realized.

Moreover, probability distributions can be local to contract states or global. In this

work we have adopted the first option, as state-dependent distributions occur naturally

in models of physical behavior: e.g., the failure rate of a microprocessor increases as

the processor ages. The price of distinguishing local distributions are more involved

definitions of refinement and conjunction.

A final parameter of the contract framework is the definition of parallel composition.

We have chosen to support the BIP interaction model [8] for its expressiveness. In

this framework, the direction of communications is not represented; it would be quite

straight-forward, however, to add this information by typing ports as input or output

ports.
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6.2 Related work

Several authors have proposed probabilistic extensions of Hoare triples and Dijkstra’s

wp-calculus, see e.g. [14]. A trace-based theory of probabilistic system with composi-

tional semantics and refinement is introduced in [3]. Later on, shared refinement of

interfaces and conjunction of modal specifications over possibly different alphabets

have been defined in [5,15]. A framework of modal assume/ guarantee contracts is

introduced in [7], for which both parallel composition and conjunction are defined.

[11] introduces a compositional framework based on continuous time IMCs, adopting a

similar interaction model as done in this paper. [11] supports projection, parallel and

symmetric composition, but not conjunction.

A trace-based theory of probabilistic contracts has been introduced in [4], where

a contract consists of an assumption A and a guarantee G, both being sets of traces.

A trace is a sequence of valuations of global variables, a subset of which is probabilis-

tic. The probabilistic variables are supposed to obey a distribution that is indepen-

dent of the state. Two types of satisfaction of a contract C by a (non-probabilistic)

model S are defined: R-satisfaction (for reliability) is the probability that S satis-

fies C; A-satisfaction (for availability) measures the expected time ratio during which

S satisfies C. Conjunction and refinement are defined for both types of satisfaction. In

contrast to our framework, probability distributions are defined globally.

Assume/guarantee verification of probabilistic models is studied in [12]. Probabilis-

tic automata are used to model probabilistic and non-deterministic behavior. Several

assume/guarantee rules are introduced using pairs (A,G) of probabilistic safety proper-

ties, where a probabilistic safety property is itself a pair of a (non-probabilistic) regular

safety property and a probability.

The recently introduced Constraint Markov Chains (CMC) [2] generalize Markov

chains by introducing constraints on state valuations and transition probability distri-

butions, aiming at a similar goal of providing a probabilistic component-based design

framework. Whereas CMCs do not support explicit interactions among components,

they allow the designer to expressively specify constraints on probability distributions.

In this framework, conjunction is shown to be sound and complete.
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NB: we plan to publish the appendix in a companion research report.

A Contract Refinement

A.1 Transitivity of Refinement

Lemma 2 [Transitivity of ≤] For all contracts C1, C2, and C3, if C1 ≤ C2 and

C2 ≤ C3, then C1 ≤ C3.

Proof Let

C1 = (Q1,A1,→1, σ1, r0)

C2 = (Q2,A2,→2, σ2, s0)

C3 = (Q3,A3,→3, σ3, t0)

To show C1 ≤ C2 and C2 ≤ C3 implies C1 ≤ C3, by Definition 5 [Contract

Refinement], we must show r0 ≤ s0 and s0 ≤ t0 implies r0 ≤ t0. That is, for all

r ∈ Q1, s ∈ Q2, t ∈ Q3, we must show that:

r ≤ s ∧ s ≤ t ⇒ r ≤ t

We have the following induction hypothesis: for all r′, t′ which are next states of r

and t respectively,

(∃s′ ∈ Q2, r
′ ≤ s′ ∧ s′ ≤ t′) ⇒ r′ ≤ t′ [H1]

To show r ≤ t, we check conditions in Definition 5 one by one as follows.

(1)

r = ⊤

⇒ (r ≤ s, by Definition 5 (1))

s = ⊤

⇒ (s ≤ t, by Definition 5 (1))

t = ⊤

(2)

t = ⊥

⇒ (s ≤ t, by Definition 5 (2))

s = ⊥

⇒ (r ≤ s, by Definition 5 (2))

r = ⊥

(3) If (r, t) ∈ Qa
1 × (Q∪

3 {⊤}), then

(a) for all t′ 6= ⊤ ∈ Q3,

t
α
→3 t′

⇒ (s ≤ t, by Definition 5 (3a))

∃s′ ∈ Q2, s
α
→2 s′ and s′ ≤ t′

⇒ (t′ 6= ⊤ and s′ ≤ t′ implies s′ 6= ⊤, so by Definition 5 (3a))

∃s′ ∈ Q2, ∃r
′ ∈ Q1, r

α
→1 r′ and r′ ≤ s′ and s′ ≤ t′

⇒ (Since r′ ≤ s′ and s′ ≤ t′, by induction hypothesis [H1])

∃r′ ∈ Q1, r
α
→1 r′ and r′ ≤ t′
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(b) for all r ∈ Q1,

r
a
→1 r′

⇒ (By Definition 5 (3b))

s = ⊤ or ∃s′ ∈ Q2, s
α
→2 s′ and r′ ≤ s′

There are two cases to consider:

– Case s = ⊤.

s = ⊤

⇒ (By Definition 5 (1))

t = ⊤

Since any state refines ⊤, we have r ≤ ⊤.

– Case s 6= ⊤.

∃s′ ∈ Q2, s
α
→2 s′ and r′ ≤ s′

⇒ (s ≤ t,by Definition 5 (3b))

∃s′ ∈ Q2, (t = ⊤ or ∃t′ ∈ Q3, t
α
→3 t′ and s′ ≤ t′) and r′ ≤ s′

There are two subcases to consider:

• Subcase t = ⊤. Since any state refines ⊤, we have r ≤ ⊤.

• Subcase t 6= ⊤.

∃s′ ∈ Q2, (∃t
′ ∈ Q3, t

α
→3 t′ and s′ ≤ t′) and r′ ≤ s′

⇒ (Since r′ ≤ s′ and s′ ≤ t′, by the induction hypothesis [H1])

∃t′ ∈ Q3, t
a
→3 t′ and r′ ≤ t′

(4) Now, let us consider Definition 5 (4). Given C1 ≤ C2, by Definition 5 (4), we know

there is a probability distribution δ12 ⊂ Q1 × Q2 × [0, 1], such that, ∀f1(r
′) ∈

σ1(r)(r
′), s′ ∈ Q2,

(A)
∑

r′∈Q1

(f1(r
′) ∗ δ12(r

′)(s′)) ∈ σ2(s)(s
′), and ∀r′ ∈ Q1, δ12(r

′)(s′) > 0 ⇒ r′ ≤ s′

Given C2 ≤ C3, by Definition 5 (4), we know there is a probability distribution

δ23 ⊂ Q2 ×Q3 × [0, 1], such that, ∀f2(s
′) ∈ σ2(s)(s

′), t′ ∈ Q3,

(B)
∑

s′∈Q1

(f2(s
′) ∗ δ23(s

′)(t′)) ∈ σ3(t)(t
′), and ∀s′ ∈ Q2, δ23(s

′)(t′) > 0 ⇒ s′ ≤ t′

We want to establish a δ13 ⊂ Q1 ×Q3 × [0, 1] such that Definition 5 (4) holds. Let

δ13 be

δ13(r
′)(t′) =

∑

s′∈Q2

δ12(r
′)(s′) ∗ δ23(s

′)(t′)
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We want to check that δ13 satisfies the condition Definition 5 (4) for all f1(r
′) ∈

δ1(r)(r
′), t′ ∈ Q3.

∑

r′∈Q1

(

f1(r
′) ∗ δ13(r

′)(t)
)

= (By definition of δ13)
∑

r′∈Q1

(

f1(r
′) ∗

∑

s′∈Q2

δ12(r
′)(s′) ∗ δ23(s

′)(t′)
)

= (By distribution of ∗ over +)
∑

r′∈Q1

∑

s′∈Q2

f1(r
′) ∗ δ12(r

′)(s′) ∗ δ23(s
′)(t′)

= (By commutativity and associativity of +)
∑

s′∈Q2

∑

r′∈Q1

f1(r
′) ∗ δ12(r

′)(s′) ∗ δ23(s
′)(t′)

= (By (A), ∃f2 ∈ σ2(s), f2(s
′) =

∑

r′∈Q1

f1(r
′) ∗ δ12(r

′)(s′))

∑

s′∈Q2

f2(s
′) ∗ δ23(s

′)(t′)

∈ (By (B), which holds for all f2 ∈ σ2(s))

σ3(t)(t
′)

So we have the desired result
∑

r′∈Q1

(

f1(r
′) ∗ δ13(r

′)(t)
)

∈ σ3(t)(t
′).

(5) If r ∈ Qa
1 and t ∈ Qp

3 and r ≤ s and s ≤ t, then there are two subcases to consider:

s ∈ Qa
2 and s ∈ Qp

2.

– Subcase s ∈ Qa
2 .

r ≤ s and s ≤ t

⇐⇒ (By Definition 5 [Contract refinement] (5))

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ s ≤ ta and ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇒ (Since r ≤ s and s ≤ ta, by induction hypothesis [H1] r′ = r, s′ = s, t′ = ta)

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇒ (Since r ≤ s and s ≤ t′, by induction hypothesis [H1] r′ = r, s′ = s, t′ = t′)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By Definition 5 [Contract refinement] (5))

r ≤ t
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– Subcase s ∈ Qp
2.

r ≤ s and s ≤ t

⇐⇒ (By Definition 5 [Contract refinement] (5))

∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and ∀s′ ∈ Q2,
(

s
>0
99K2 s′ =⇒ r ≤ s′

)

and s ≤ t

⇐⇒ (By Definition 5 [Contract refinement] (4))

(1) ∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and

(2) ∀s′ ∈ Q2,
(

s
>0
99K2 s′ =⇒ r ≤ s′

)

and

(3) ∃δ : Q2 ×Q3 → [0, 1], ∀f(s′) ∈ σ3(s)(s
′) and

∀t′ ∈ Q3,
∑

s′∈Q2

(f(s′) ∗ δ(s′)(t′)) ⊆ σ3(t)(t
′) and

∀s′ ∈ Q2 :
(

δ(s′)(t′) > 0 =⇒ s′ ≤ t′
)

⇒ (By (1), s ≤ t and Definition 5 (4,5), we have (4); from (2) and (3), we know

∀s′, t′, r ≤ s′ and s′ ≤ t′, thus we apply

induction hypothesis [H1] where r′ = r, s′ = s′, t′ = t′, we have (5))

(1) ∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and

(4) ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ sa ≤ ta and

(5) ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇒ (From (1) and (4), we know r ≤ sa and sa ≤ ta, thus we can apply

the induction hypothesis [H1] where r′ = r, s′ = sa, t′ = ta)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By Definition 5 [Contract refinement] (5))

r ≤ t

(6) Similar to the proof in (5).

⊓⊔

Remark: The converse of Corollary 1, item 2 does not hold, as shown by the counter

example in Figure 19. There is no model for C1, i.e., M(C1) = ∅, while there are

models for C2. Thus, we have M(C1) ⊂ M(C2) and C1 6≤ C2.

s1

s2

s0

[0, 0.2]

[0.6, 0.7]

a

b

t2

t0

t1

[0.8, 1] d

[0, 0.2]

c

(a) Contract C1 (b) Contract C2

Fig. 19: Counter example for the converse of Corollary 1, item 2.

A.2 Contract Projection

Lemma 4 [Projection and refinement] For all contracts C1 = (Q1,A,→1, 99K1, s0)

and C2 = (Q2,A,→2, 99K2, t0) and for all B ⊆ A such that πB(C1) and πB(C2) are

defined, if C1 ≤ C2 then πB(C1) ≤ πB(C2).
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Proof Let πB(C1) = (Q3,A,→3, σ3, s0) and πB(C2) = (Q4,A,→4, σ4, t0).

Given states s and t in Q1 and in Q2, respectively, let s ∈ Q3 and t ∈ Q4 be

states with s ∈ s and t ∈ t. Notice that the states of Q3 and Q4 are not equivalence

classes of the states in Q1 and Q2: s may be part of several states of Q3. To show that

s0 ≤ t0 ⇒ s0 ≤ t0, we show the general case: for all s ∈ Q1, t ∈ Q2, if s ≤ t, then

s ≤ t. We prove this lemma by structural induction. We have the following induction

hypothesis: for all s′ ∈ Q1, t
′ ∈ Q2, s

′ ∈ Q3, t
′ ∈ Q4, such that s′ ∈ s′ and t′ ∈ t′,

s′ ≤ t′ =⇒ s′ ≤ t′ [H]

We have the following cases to consider:

• Case s = ⊤. Actions leading to a ⊤ state are kept in the projection. There is no

state in the projection containing other states than ⊤. Therefore, both s and t are

⊤.

• Case t = ⊥. Actions leading to a ⊥ state are kept in the projection. There is no

state in the projection containing other states than ⊥. Therefore, in both cases, s

and t are ⊥.

• Case s ∈ Qa
1 , t ∈ Qa

2 ∪ {⊤}. There are two cases to consider. The case that ∃α ∈

Q1, s
α
→1 ⊤ is taken care in case (b).

(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ≤ t′).

If α ∈ B, this action transition is kept in πB(C1) and πB(C2). So we have

s
α
→3 s′ and t

α
→4 t′. From s′ ≤ t′, by induction hypothesis [H], we have

s′ ≤ t′. So we have ∀t′ 6= ⊤ ∈ Q4, (t
α
→4 t′) =⇒ (∃s′ ∈ Q3, s

α
→3 s′∧ s′ ≤ t′)

which meets Definition 5 (≤) (3a).

If α /∈ B, this action transition does not appear in πB(C1) and πB(C2). We

have {s, s′} ⊆ s and {t, t′} ⊆ t. By induction hypothesis [H], we have s ≤ t.

(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ≤ t′). For the case

t = ⊤, since actions leading to a ⊤ state are kept in the projection, there is no

state in the projection containing other states than ⊤. Therefore, t is ⊤. By

Definition 5, any state refines ⊤, so we have s ≤ t.

For the case ∃t′ ∈ Q2, t
α
→2 t′ ∧ s′ ≤ t′, we have two subcases to consider:

• If α ∈ B, this action transition is kept in πB(C1) and πB(C1). So we have

s
α
→3 s′ and t

α
→4 t′. From s′ ≤ t′, by induction hypothesis [H], we have

s′ ≤ t′. So we have ∀s′ ∈ Q3, (s
α
→3 s′) =⇒ ∃t′ ∈ Q4, t

α
→2 t′ ∧ s′ ≤ t′,

which meets Definition 5 (≤) (3b).

• If α /∈ B, this action transition does not appear in πB(C1) and πB(C2).

We have {s, s′} ⊆ s and {t, t′} ⊆ t. By induction hypothesis [H], we have

s ≤ t.

• Case s ∈ Qp
1, t ∈ Qp

2. By Definition 5 (4), we know s
P1

99K1 s′, t
P2

99K2 t′ and s′ ≤ t′.

Projection only has effect on action states, the probabilistic transitions remain the

same (up to their target states). That is, we have (1) s
P3

99K3 s′ and (2) t
P4

99K4 t′.

From s′ ≤ t′, by induction hypothesis [H], we have (3) s′ ≤ t′. From (1), (2), (3),

by Definition 5 (4), we have s ≤ t.

• Case s ∈ Qa
1 , t ∈ Qp

2. By Definition 5 (5), ∃ta ∈ Qa
2 : t

>0
99K

+

2 ta ∧ s ≤ ta and

∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

. If we have t′ ∈ Qp
2, we have s ≤ t′. Projection

does not have effect on probabilistic transitions, by induction hypothesis [H], we

are done. If t′ ∈ Qa
2 , then we have s ≤ ta. Since s ∈ Qa

1 , this falls into the case

s ∈ Qa
1 , t ∈ Qa

2 , which has been proved above.
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• Case s ∈ Qp
1, t ∈ Qa

2 . Similar reasoning as the case s ∈ Qa
1 , t ∈ Qp

2.

⊓⊔

B Contract Composition

B.1 Congruence of Refinement for Parallel Composition

Lemma 5 (Congruence of refinement for ||I) For all contracts C1, C2, and C3,

and for all interaction set I, if C1 ≤ C2, then C1||IC3 ≤ C2||IC3.

Proof Let
C1 = (Q1,A1,→1, σ1, s0)

C2 = (Q2,A2,→2, σ2, t0)

C3 = (Q3,A3,→3, σ3, u0)

C1||I C3 = (Q13,A13,→13, σ13, (s0, u0))

C2||I C3 = (Q23,A23,→23, σ23, (t0, u0))

Let θ ⊆ Q1 ×Q2 be the refinement relation stating that s ≤ t. Let θ′ ⊆ Q13 ×Q23

be a binary relation such that ((s, u), (t, u)) ∈ θ′ if (s, t) ∈ θ. We now prove that θ′

allows us to establish that (s, u) ≤ (t, u).

Notation: For all interval σ, let σ and σ denote respectively the lower bound and the

upper bound of σ.

First, we consider the 3 cases involving the state ⊤i.

(a) Case s = ⊤1. Since s ≤ t, by Definition 5 (≤) (1), t = ⊤2. By Definition 13 (Parallel

composition), both composed states are ⊤. Since ⊤ ≤ ⊤, we have the desired result.

(b) Case t = ⊤2. By Definition 13 [Parallel composition], the composed state (t, u) is

replaced by ⊤. Since any state refines ⊤, we have the desired result.

(c) Case u = ⊤3. By Definition 13 [Parallel composition], both composed states are ⊤.

Since ⊤ ≤ ⊤, we have the desired result.

Second, we consider the 3 cases involving the state ⊥i:

(a) Case s = ⊥1. By Definition 13 [Parallel composition], the composed state (s, u) is

replaced by ⊥. Since ⊥ refines any state, we have the desired result.

(b) Case t = ⊥2. Since s ≤ t, by Definition 5 (≤) (2), s is ⊥1. By Definition 13 [Parallel

composition], both composed states are ⊥. Since ⊥ ≤ ⊥, we have the desired result.

(c) Case u = ⊥3. By Definition 13 [Parallel composition], both composed states are ⊥.

Since ⊥ ≤ ⊥, we have the desired result.

Now, we consider cases where states s, t, u are neither ⊤i nor ⊥i. We have the

following co-induction hypothesis: for all s′, t′, u′ such that s′, t′, u′ are the next states

of s, t and u respectively, and ((s′, u′), (t′, u′)) ∈ θ′,

s′ ≤ t′ ⇒ (s′, u′) ≤ (t′, u′) [H]

Given ((s, u), (t, u)) ∈ θ′, we have the following cases to consider.

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qa
3 . Since s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′; (3)

u
β
→3 u′; (4) s′ ≤ t′. There are three subcases to consider:
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(a) Subcase α|β ∈ I.

By (1), (3) and rule [R3], we have (5) (s, u)
α|β
→ 12 (s′, u′).

By (2), (3) and rule [R3], we have (6) (t, u)
α|β
→ 23 (t′, u′).

From (4), by co-induction hypothesis [H], we have (7) (s′, u′) ≤ (t′, u′). By

Definition 5 (3), we thus have (s, u) ≤ (t, u).

(b) Subcase α ∈ I.

By (1), (3) and rule [R1], we have (5) (s, u)
α
→12 (s′, u).

By (2), (3) and rule [R1], we have (6) (t, u)
α
→23 (t′, u).

From (4), by co-induction hypothesis [H], we have (7) (s′, u) ≤ (t′, u). By

Definition 5 (3), we thus have (s, u) ≤ (t, u).

(c) Subcase β ∈ I.

By (1), (3) and rule [R2], we have (5) (s, u)
β
→12 (s, u′).

By (2), (3) and rule [R2], we have (6) (t, u)
β
→23 (t, u′).

From (4), by co-induction hypothesis [H], we thus have (7) (s, u′) ≤ (t, u′).

For each subcase, from (5), (6), (7), and Definition 5 (3), we have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qp
3. Since s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′; (3)

u
P3

99K3 u′; (4) s′ ≤ t′.

By (1), (3) and rule [R6], we have (5) (s, u)
P3

99K12 (s, u′).

By (2), (3) and rule [R6], we have (6) (t, u)
P3

99K23 (t, u′).

From (4), by co-induction hypothesis [H], we have (s, u′) ≤ (t, u′). Let δ(s, u′)(t, u′) =

1. By Definition 5 (4), we thus have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qa
3 . Since s ≤ t, we have (1) s

α
→1 s′; (2) t

P2

99K2 t′; (3)

u
β
→3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta; ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

.

By (2), (3) and rule [R6], we have (t, u)
P2

99K23 (t′, u). From (4), by co-induction

hypothesis [H], we have (s, u) ≤ (t′, u). By Definition 5 (5), we have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qp
3. Since s ≤ t, we have (1) s

α
→1 s′; (2) t

[p1,p2]
99K 2 t′; (3)

u
[p3,p4]
99K 3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta; ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

.

By (1), (3) and rule [R6], we have (s, u)
[p3,p4]
→ 12 (s, u′).

By (2), (3) and rule [R4], we have (t, u)
[p1∗p3,p2∗p4]
99K 12 (t′, u′).

This yields:

(†1) σ23(t, u)(t
′, u′)

= [σ23(t, u)(t
′, u′), σ23(t, u)(t

′, u′)]

= [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

By Lemma 1 [Reflexivity of refinement], u ≤ u. This means that there exists a

probability distribution δ3 that satisfies the condition (4) of Definition 5 for all

f3(u
′) ∈ σ3(u)(u

′) and u′ ∈ Q3. By definition of f3, we have:

(†2)
∑

u′∈Q3

f3(u
′) ∗ δ3(u

′)(u′) ∈ σ3(u)(u
′)

⇐⇒
∑

u′∈Q3

σ3(u)(u
′) ∗ δ3(u

′)(u′) ⊆ σ3(u)(u
′)
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We want to check that there exists a δ that satisfies the condition Definition 5 (4) for

all f(s, u′) ∈ σ13(s, u)(s, u
′) and (t′, u′) ∈ Q23. Let δ((s, u′))((t′, u′)) ∈ σ2(t)(t

′) ∗

δ3(u
′)(u′)

(By definition [F2] in Figure 4: [a, b] ∗ [c, d] = [a ∗ c, b ∗ d])

σ2(t)(t
′) ∗ σ3(u)(u

′) ⊆ [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

⇒ (By †2 and by set theory

[a, b] ∗ [c, d] ⊆ [e, f ] ∧ [c1, d1] ⊆ [c, d] =⇒ [a, b] ∗ [c1, d1] ⊆ [e, f ])
∑

u′∈Q3

σ2(t)(t
′) ∗ σ3(u)(u

′) ∗ δ3(u
′)(u′)

⊆ [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

⇒ (By definition of δ and commutativity of ∗)
∑

u′∈Q3

(σ3(u)(u
′) ∗ δ(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

⇐⇒ (By (1), (3), rule [R6],
∑

(s,u′)∈Q13

σ13(s, u)(s, u
′) =

∑

u′∈Q3

σ3(u)(u
′))

∑

(s,u′)∈Q13

(σ13(s, u)(s, u
′) ∗ δ(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

⇐⇒ (By (†1))
∑

(s,u′)∈Q13

(σ13(s, u)(s, u
′) ∗ δ(s, u′)(t′, u′)) ⊆ σ23(t, u)(t

′, u′),

⇐⇒ (By definition of f)
∑

(s,u′)∈Q13

(f(s, u′) ∗ δ(s, u′)(t′, u′)) ∈ σ23(t, u)(t
′, u′)

So we have the desired result (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qa
3 . Similar to the case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qa

3 .

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qp
3. Similar to the case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qp

3.

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qa
3 . We have (1) s

P1

99K1 s′; (2) t
P2

99K2 t′; (3) u
α
→3 u′.

By (1), (3) and rule [R5], we have (5) (s, u)
P1

99K12 (s′, u). By (2), (3) and rule [R5],

we have (6) (s, u)
P1

99K12 (s′, u). We know that there is a probability distribution

δ ⊂ Q1 ×Q2 × [0, 1], such that, ∀f(s′) ∈ σ1(s)(s
′), t′ ∈ Q2,

(†)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1, δ(s

′)(t′) > 0 ⇒ s′ ≤ t′
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Let δ′ = δ. We want to check that δ′ satisfies the condition Definition 5 (4) for all

f(s′, u) ∈ σ13(s, u)(s
′, u) and (t′, u) ∈ Q23.

(By definition of δ′)
∑

(s′,u)∈Q13

(f(s′, u) ∗ δ(s′)(t′))

= (By (3) and rule [R5],
∑

(s′,u)∈Q13

f(s′, u) =
∑

s′∈Q1

f(s′))

∑

(s′,u)∈Q13

(f(s′) ∗ δ(s′)(t′))

∈ (By (†))

σ2(t)(t
′)

= (By (3) and rule [R5], σ23(t, u)(t
′, u) = σ2(t)(t

′))

σ23(t, u)(t
′, u),

So we have the desired result (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qp
3. We have (1) s

[p1,p2]
99K 1 s′ and (2) u

[p3,p4]
99K 3 u′. From

(1), (2), by rule [R4], we have (s, u)
[p1∗p3,p2∗p4]
99K 13 (s′, u′). This yields:

(†1) σ13(s, u)(s
′, u′) = σ1(s)(s

′) ∗ σ3(u)(u
′)

Since s ≤ t, by Definition 5 [Contract Refinement] (4), we know t
[p5,p6]
99K 2 t′ for some

t′, p5, p6 and s′ ≤ t′. By u
[p3,p4]
99K 3 u′ and rule [R4], we know (t, u)

[p5∗p3,p6∗p4]
99K 23

(t′, u′). This yields:

(†2) σ23(t, u)(t
′, u′) = σ2(t)(t

′) ∗ σ3(u)(u
′)

By Definition 5 (4), we know there is a probability distribution δ ⊂ Q1×Q2× [0, 1],

s.t.,

(†3) ∀f(s
′) ∈ σ1(s)(s

′), t′ ∈ Q2,
∑

s′∈Q1

(f(s′)∗δ(s′)(t′)) ∈ σ2(t)(t
′), and s′ ≤ t′ if δ(s′)(t′) > 0

We want to show that there is a probability distribution δ′ ⊂ Q13 × Q23 × [0, 1],

such that Definition 5 (4) holds. Let δ′ be

δ′(s′, u′′)(t′, u′) =

{

δ(s′)(t′), if u′′ = u′

0, otherwise

We want to check that δ′ satisfies the condition Definition 5 (4) for all f ′ ∈ σ13(s, u))

and (t′, u′) ∈ Q23. We prove it for all t′ ∈ Q2 as follows.
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(By (†3), f(s
′) ∈ δ1(s)(s

′))
∑

s′∈Q1

σ1(s)(s
′) ∗ δ(s′)(t′) ⊆ σ2(t)(t

′)

⇐⇒ (By arithmetic, if [a, b], [c, d], [e, f ] ⊆ [0, 1], then

[a, b] ⊆ [c, d] ⇐⇒ [a, b] ∗ [e, f ] ⊆ [c, d] ∗ [e, f ].We also know σ3(u)(u
′) ⊆ [0, 1])

∀u′ ∈ Q3,
∑

s′∈Q1

σ1(s)(s
′) ∗ σ3(u)(u

′) ∗ δ(s′)(t′),⊆ σ2(t)(t
′) ∗ σ3(u)(u

′)

⇐⇒ (By (†1) and (†2))

∀u′ ∈ Q3,
∑

s′∈Q1

σ13(s, u)(s
′, u′) ∗ δ′(s′)(t′) ⊆ σ23(t, u)(t

′, u′)

⇐⇒ (For u′′ 6= u′,
∑

(s′,u′′)∈Q13

does not add any non-zero term. Also by definition of δ′)

∀u′ ∈ Q3,
∑

(s′,u′′)∈Q13

σ13(s, u)(s
′, u′′) ∗ δ′(s′, u′′)(t′, u′) ⊆ σ23(t, u)(t

′, u′)

⇐⇒ (By definition of f ′)

∀u′ ∈ Q3,
∑

(s′,u′′)∈Q13

(f ′(s′, u′′) ∗ δ′(s′, u′′)(t′, u′)) ∈ σ23(t, u)(t
′, u′)

We have the desired result (s, u) ≤ (t, u).

⊓⊔

Theorem 2 (Congruence of refinement for ||I) For all contracts C1, C2, C3, C4 and

an interaction set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.

Proof
C1 ≤ C2 and C3 ≤ C4

⇒ (By Lemma 5 (Congruence of ≤ for ||I) twice)

C1||IC3 ≤ C2||IC3 and C3||IC2 ≤ C4||IC2)

⇒ (By commutativity of ||I)

C1||IC3 ≤ C3||IC2 and C3||IC2 ≤ C4||IC2)

⇒ (By Lemma 2 (Transitivity of ≤))

C1||IC3 ≤ C4||IC2

⇒ (By commutativity of ||I)

C1||IC3 ≤ C2||IC4

⊓⊔

B.2 Conjunction of Contracts

Theorem 6 (Soundness of conjunction) For all contracts C1 and C2, πAi
(C1∧C2) ≤ Ci

for i = 1, 2.

Proof We only show the proof for πA1
(C1 ∧C2) ≤ C1 as the proof for πA2

(C1 ∧C2) ≤

C2 is similar. If C1 ∧ C2 = C⊥ then πAi
(C1 ∧ C2) = C⊥, and the claim follows. We

now consider the cases where C1 ∧ C2 6= C⊥. Let

C1 = (Q1,A1,→1, 99K1, s0)

C2 = (Q2,A2,→2, 99K2, t0)

πA1
(C1 ∧ C2) = (Q12,A1,→12, 99K12, (s0, t0))
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Let θ ⊆ Q12 × Q1 be a binary relation such that {((s, t), s) | s ∈ Q1, t ∈ Q2, (s, t) ∈

Q12}. We want to show that θ ⊆ ≤. Since projection is only done for action transitions

where the action is in A2 and not in A1, it only affects the case [LiftR].

First, we consider the 2 cases involving the state ⊤i.

• Case s = ⊤1. As any state refines ⊤1, we are done.

• Case t = ⊤2. We define a mapping ρ fromQ1×Q2 toQ1, ρ : (s,⊤2) 7→ s. According

to rules [C2L] and [C4L], the macro-state (s,⊤2) follows the transitions of s for

any state s, hence ρ is a bijection. So (s,⊤2) ≤ s.

Now, we consider cases where states s and t are neither ⊤i nor ⊥i. We have the

following induction hypothesis: for all s′, t′ such that s′, t′ are the next states of s and

t respectively, and (s′, t′) ∈ θ,

(s′, t′) ≤ s′ [H]

Given ((s, t), s) ∈ θ, we have the following cases to consider.

• Case s ∈ Qa
1 , t ∈ Qa

2 . We have There are 3 subcases to consider.

– Subcase s
α
→1 s′ and t

α
→2 t′. We have the following induction hypothesis:

(s′, t′) ≤ s′ [HC1]

Since we have s
α
→1 s′ and (s, t)

α
→12 (s′, t′) and [HC1], it is easy to check that

Definition 5 [≤] (3a) and (3b) are satisfied, and since (s, t) is not ⊤, Definition 5

[≤] (1) is vacuously true. So we have (s, t) ≤ s.

– Subcase s
α
→1 s′ and α 6∈ A2. We have the following induction hypothesis:

(s′, t) ≤ s′ [HLiftL]

Since we have s
α
→1 s′ and (s, t)

α
→12 (s′, t) and [HLiftL], it is easy to check that

Definition 5 [≤] (3a) and (3b) are satisfied and since (s, t) is not ⊤, Definition 5

(1) is vacuously true.

– Subcase t
α
→2 t′ and α 6∈ A1. We have the following induction hypothesis:

(s, t′) ≤ s [HLiftR]

Since s ∈ Qa
1 , s is not ⊤1. We thus know (s, t′) is not ⊤. After projection on

A1, we have (s, t) = (s, t′). By [HLiftR], we know (s, t) ≤ s, so we are done.

• Case s ∈ Qp
1, t ∈ Qa

2 . We have s
P
99K1 s′, t ∈ Qa and s′ ∼ t. By rule [C4L], we have

(s, t)
P
99K12 (s′, t). We have the following induction hypothesis:

(s′, t) ≤ s′ [HC4L]

Since ≤ is reflexive (by Lemma 1), we have s ≤ s. We know that there is a proba-

bility distribution δ ⊂ Q1 ×Q1 × [0, 1], such that, ∀f ∈ σ(s) and s′ ∈ Q1,

(†2)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′
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We want to establish a δ′ such that for all f ′(s′, t′) ∈ δ12(s, t)(s
′, t′), Definition 5 (4)

holds. Let δ′ ⊂ Q12 ×Q1 × [0, 1] be defined as δ′(s′, t′)(s′) = δ(s′)(s′).

(By (†2))
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′)

⇐⇒ (By definition of f)
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By rule [C4L], [σ12(s
′, t′), σ12(s

′, t′)] = [σ1(s)(s
′), σ1(s)(s

′)])
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By definition of δ′)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By definition of f ′)
∑

(s′,t′)∈Q12

(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s
′)

Together with the induction hypothesis [HC4L], we thus have the desired result.

• Case s ∈ Qa
1 , t ∈ Qp

2. Similar to the proof in case s ∈ Qp
1, t ∈ Qa

2 .

• Case s ∈ Qp
1, t ∈ Qp

2. We have s
[p1,p2]
99K 1 s′ and t

[p3,p4]
99K 2 t′ and s′ ∼ t′. By rule

[C3], we have (s, t)
[p5,p6]
99K 12 (s′, t′) where p5 = max(p1, p3) and p6 = min(p2, p4).

We have We have the following induction hypothesis:

(s′, t′) ≤ s′ [HC3]

Since ≤ is reflexive (by Lemma 1), we have s ≤ s. We know that there is a proba-

bility distribution δ ⊂ Q1 ×Q1 × [0, 1], such that, ∀f(s′) ∈ σ(s)(s′), s′ ∈ Q1,

(†1)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′
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We want to establish a δ′ such that for all f ′(s′, t′) ∈ δ12(s, t)(s
′, t′), Definition 5 (4)

holds. Let δ′ ⊂ Q12 ×Q1 × [0, 1] be defined as δ′(s′, t′)(s′) = δ(s′)(s′).

(By (†1))
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′)

⇐⇒ (By definition of f)
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By rule [C3], [σ12(s
′, t′), σ12(s

′, t′)] ⊆ [σ1(s)(s
′), σ1(s)(s

′)])
∑

s′∈Q1

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By Definition 15 [Unambiguous contract], the similarity between

s′ and t′ is a bijection, so the number of (s′, t′) states is the same as

the number of s′ states.)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By definition of δ′)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By definition of f ′)
∑

(s′,t′)∈Q12

(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s
′)

Together with the induction hypothesis [HC3], we thus have the desired result.

⊓⊔

B.3 Proofs for Similarity

Lemma 6 (Refinement implies similarity) For all unambiguous contracts C1 and

C2 such that ⊥ 6∈ C1, if C1 ≤ C2, then C1 ∼ C2.

Proof Let C1 = (Q1,A1,→1, σ1, s0) and C2 = (Q2,A2,→2, σ2, t0). To show s0 ≤ t0
implies s0 ∼ t0, we prove the general case, for all states s ∈ Q1 and t ∈ Q2, if s ≤ t,

then s ∼ t.

Since there is no ⊥ state in C1 and C1 ≤ C2, by Definition 5 [Refinement], there

is no ⊥ in C2. We also know that any state is similar to the ⊤ state, so we have four

cases to distinguish:

• Case s ∈ Qa and t ∈ Qa. It is easy to check that Definition 5 (3a) implies Defini-

tion 14 (1b); Similarly, Definition 5 (3b), where t is not⊤, implies Definition 14 (1a).

• Case s ∈ Qp and t ∈ Qp. Since s and t are states in an unambiguous contract, by

the induction hypothesis, s′ ≤ t′ =⇒ s′ ∼ t′ =⇒ s′ = t′, which means that

the refinement relation between s′ and t′ is a bijection. It follows that the δ in the

Definition 5 (4) is δ(s′)(t′) = 1 for s′ ≤ t′. Suppose s
P1

99K s′ and t
P2

99K t′ where

s′ ≤ t′. To satisfy the Definition 5 (4), we must have P1 ⊆ P2, which indeed implies

P1 ∩ P2 6= ∅, which satisfies Definition 14 (2).

• Case s ∈ Qa and t ∈ Qp. It is easy to check Definition 5 (5) implies Definition 14 (3).
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• Case s ∈ Qp and t ∈ Qa. It is easy to check Definition 5 (6) implies Definition 14 (4)

⊓⊔

Lemma 7 (Commutativity of ∼) For all contracts C1, C2, C1 ∼ C2 iff C2 ∼ C1.

Proof By inspecting Definition 14, we see that the conditions for s and t to be similar

are symmetrically defined. Thus, for all states s, t, s ∼ t iff t ∼ s. If states s0 and t0
are initial states of C1 and C2 respectively, we then have s0 ∼ t0 iff t0 ∼ s0. Thus,

C1 ∼ C2 iff C2 ∼ C1. ⊓⊔

Lemma 8 (Monotonicity of similarity over the same alphabets) For all unam-

biguous contracts C1, C2, and C3 over the same alphabet, such that C1 ≤ C2, if

C1 ∼ C3, then C2 ∼ C3.

Proof By logic A ⇒ B ⇐⇒ ¬B ⇒ ¬A, we prove C2 6∼ C3 ⇒ C1 6∼ C3. If C2 6∼ C3,

the initial states of C2 and C3 are not similar. Since C1 ≤ C2, by Definition 5, the

initial states of C1 and C3 are not similar either. Thus, C1 6∼ C3 and we are done. ⊓⊔

Remark: We do not have transitivity of similarity. That is, the following statement

does not hold: for all contracts C1, C2, and C3, if C1 ∼ C2 and C2 ∼ C3, then C1 ∼ C2.

Here is a counter example:

(a)s0
[0,0.3]
99K s1

a
→ s1 (b)t0

[0,1]
99K t1

a
→ t1 (c)u0

[0.5,1]
99K u1

a
→ u1

Here, s0 ∼ t0 and t0 ∼ u0, but s0 6∼ u0.

B.4 Completeness of conjunction

Lemma 9 (Commutativity of ∧) For all contracts C1 and C2, C1 ∧C2 = C2 ∧C1.

Proof It is obvious because the rules for conjunction are symmetric. ⊓⊔

Lemma 10 (Idempotency of ∧) For any contract C, C ∧ C ≡ C.

Proof For any contract C, C is similar to itself. As C and C share the same alphabet

and the same structure and we want to establish that the initial state of C refines itself,

only conjunction rules [C1] and [C3] in Figure 12 can be applied. Examining [C1], the

resulting transition (q1, q1)
α
→ (q1, q1) has the same action transition as q1

α
→ q1 for all

q1. Examining [C3], since P1∩P1 = P1, the resulting transition (q1, q1)
P1

99K (q1, q1) has

the same probabilistic transition as q1
P1∩P1

99K q1 for all q1. So we have idempotency. ⊓⊔

Lemma 11 (Congruence of refinement for ∧ over the same alphabets) For all

delimited unambiguous contracts C1, C2, C3, if C1 ≤ C2, then C1 ∧ C3 ≤ C2 ∧ C3.

Proof Note that, if C1 6∼ C3, then C1 ∧ C3 is C⊥ (recall that C⊥ has been defined in

Definition 3). Since ⊥ refines any state, we have C1∧C3 ≤ C2∧C3. So we only have to

consider the case where C1 ∼ C3. By Lemma 8 (Monotonicity of similarity), we know

C2 ∼ C3. Let
C1 = (Q1,A,→1, σ1, s0)

C2 = (Q2,A,→2, σ2, t0)

C3 = (Q3,A,→3, σ3, u0)

C1 ∧ C3 = (Q13,A,→13, σ13, (s0, u0))

C2 ∧ C3 = (Q23,A,→23, σ23, (t0, u0))
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Notation: for all interval σ, let σ and σ denote respectively the lower bound and

the upper bound of σ.

Let θ ⊆ Q1 × Q2 be the refinement relation such that (s, t) ∈ θ iff s ≤ t. Let

θ′ ⊆ Q13 × Q23 be a binary relation such that ((s, u), (t, u)) ∈ θ′ iff (s, t) ∈ θ, s ∼ u

and t ∼ u. We now prove that θ′ allows us to establish that (s, u) ≤ (t, u).

First, we consider the 3 cases involving the state ⊤i.

(a) Case s = ⊤1. Since s ≤ t, by Definition 5 (≤) (1), t = ⊤2. By Definition 16

(Conjunction), the conjunction of C1 and C3 is in the state ⊤ and the conjunction

of C2 and C3 is also in the state ⊤. Since ⊤ ≤ ⊤, we have the desired result.

(b) Case t = ⊤2. By Definition 16 (Conjunction), the state (t, u) in the conjunction is

replaced by ⊤. Since any state refines ⊤, we have the desired result.

(c) Case u = ⊤3. By Definition 16 (Conjunction), the conjunction of C1 and C3 is in

the state ⊤ and the conjunction of C2 and C3 is also in the state ⊤. Since ⊤ ≤ ⊤,

we have the desired result.

Second, we consider the 3 cases involving the state ⊥i:

(a) Case s = ⊥1. By Definition 16 (Conjunction), the state (s, u) in the conjunction is

replaced by ⊥. Since ⊥ refines any state, we have the desired result.

(b) Case t = ⊥2. Since s ≤ t, by Definition 5 (≤) (2), s is ⊥1. By Definition 16

(Conjunction), the conjunction of C1 and C3 is in the state ⊥ and the conjunction

of C2 and C3 is also in the state ⊥. Since ⊥ ≤ ⊥, we have the desired result.

(c) Case u = ⊥3. By Definition 16 (Conjunction), the conjunction of C1 and C3 is in

the state ⊥ and the conjunction of C2 and C3 is also in the state ⊥. the state of

conjunction for both sides is ⊥. Since ⊥ ≤ ⊥, we have the desired result.

Now, we consider cases where states s, t, u are neither ⊤i nor ⊥i. We have the following

co-induction hypothesis: for all s′, t′, u′ such that s′, t′, u′ are the next states of s, t, u

respectively, and ((s′, u′), (t′, u′)) ∈ θ′,

s′ ≤ t′ ⇒ (s′, u′) ≤ (t′, u′) [H]

Given ((s, u), (t, u)) ∈ θ′, we have the following cases to consider.

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qa
3 . Since s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′; (3)

u
α
→3 u′; (4) s′ ≤ t′. From (1) and (3), by rule [C1], we have (5) (s, u)

α
→13 (s′, u′).

From (2) and (3), by rule [C1], we have (6) (t, u)
α
→23 (t′, u′). From (4), by the

co-induction hypothesis [H], we have (7) (s′, u′) ≤ (t′, u′). The conditions (5), (6)

and (7) meet Definition 5 (≤) (3).

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qp
3. We have (1) u

P3

99K3 u′. Since C1 ∼ C3, (2) u′ ∼ s.

From s ∈ Qa
1 , (1) and (2), by rule [C4R], we have (3) (s, u)

P3

99K13 (s, u′). (Note

that, since u′ is a state in an unambiguous contract (Definition 15), it is impossible

to have more than one u′ such that s ∼ u′.) Since C2 ∼ C3, we have (4) t ∼ u′.

From (1), t ∈ Qa
2 and (4), by rule [C4R], we have (5) (t, u)

P3

99K13 (t, u′). As s ≤ t,

by the co-induction hypothesis [H], we have (6) (s, u′) ≤ (t, u′). From (3) and (5),

we can find a probability distribution δ′ ⊂ Q13×Q23× [0, 1], such that Definition 5

(≤) (4) holds, that is: δ(s, u′)(t, u′) = 1. Thus, (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qa
3 . Given s ≤ t, by Definition 5 (≤) (5), ∃ta ∈ Qa

2 :

t
>0
99K

+

2 ta∧s ≤ ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

. From s ≤ ta and s ≤ t′, by
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the co-induction hypothesis [H], we have (1) (s, u) ≤ (ta, u) and (2) (s, u) ≤ (t′, u)

respectively. By applying rule [C4R] multiple times, we have (3) (t, u)
>0
99K

+

23 (ta, u).

From (3), (1) and (2), by Definition 5 (≤) (5), we have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qp
3. We have (1) t

P2

99K2 t′ and (2) u
P3

99K3 u′. Since

C1 ∼ C3, we have (3) s ∼ u′. Since C2 ∼ C3, we have (4) P2 ∩ P3 6= ∅ and t′ ∼ u′.

From s ∈ Qa
1 , (2) and (3), by rule [C4R], we have (s, u)

P3

99K13 (s, u′). From (1), (3)

and (4), by rule [C3], we have (t, u)
P2∩P3

99K 23 (t′, u′). Since s ≤ t, by Definition 5

(≤) (5) we have (5) s ≤ t′. Note that, s ≤ t′ =⇒ s ∼ t′. Now, since t′ is a state

in an unambiguous contract, it is impossible to have more than one t′ such that

s ∼ t′. So the t′ is unique. From (5), by the co-induction hypothesis [H], we have

(s, u′) ≤ (t′, u′). As C2 is delimited (Definition 4) and unambiguous (Definition 15)

and C1 ≤ C2, there is only one t′ from t. As C3 is also delimited and unambiguous

and C2 ∼ C3, there is only one u′ from u. That is, P2 = P3 = [0, 1]. So P3 ⊆

P2 ∩ P3. We can find a probability distribution δ′ ⊂ Q13 ×Q23 × [0, 1], such that

Definition 5 (≤) (4) holds, that is: δ(s, u′)(t′, u′) = 1. Thus, (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qa
3 . Similar reasoning as in Case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qa

3 .

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qp
3. Similar reasoning as in Case s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qp

3.

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qa
3 . Similar reasoning as in Case s ∈ Qa

1 , t ∈ Qa
2 , u ∈ Qp

3,

but with a probability distribution δ′ ⊂ Q13 ×Q23 × [0, 1], such that Definition 5

(≤) (4) holds, that is:

δ′(s′, u)(t′, u) = δ(s′)(t′)

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qp
3. We have (1) s

P1

99K1 s′, (2) t
P2

99K2 t′, (3) u
P3

99K3 u′.

Since C1 ∼ C3, (4) s′ ∼ u′. Since C2 ∼ C3, (5) t′ ∼ u′. From (1), (3) and (4), by

rule [C3], we have (6) (s, u)
P1∩P3

99K 13 (s′, u′). From (2), (3) and (4), by rule [C3], we

have (7) (t, u)
P2∩P3

99K 23 (t′, u′). We know:

(†1) σ13(s, u)(s
′, u′) = [σ13(s, u)(s

′, u′), σ13(s, u)(s
′, u′)]

= [max(σ1(s, s
′), σ3(u, u

′)),min(σ1(s, s
′), σ3(u, u

′))]

(†2) σ23(t, u)(t
′, u′) = [σ23(t, u)(t

′, u′), σ23(t, u)(t
′, u′)]

= [max(σ2(t, t
′), σ3(u, u

′)),min(σ2(t, t
′), σ3(u, u

′))]

By Definition 5 (4), we also know that there is a probability distribution δ ⊂

Q1 ×Q2 × [0, 1], such that, ∀f(s′) ∈ σ1(s)(s
′), t′ ∈ Q2,

∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1, δ(s

′)(t′) > 0 ⇒ s′ ≤ t′

Moreover, we have:

(†3)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′)

⇐⇒
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(t′)) ⊆ σ2(t)(t
′)

⇐⇒
∑

s′∈Q1

[σ1(s)(s
′) ∗ δ(s′)(t′), σ1(s)(s

′) ∗ δ(s′)(t′)] ⊆ [σ2(t)(t
′), σ2(t)(t

′)]
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We want to show that there is a probability distribution δ′ ⊂ Q13 × Q23 × [0, 1],

such that Definition 5 (4) holds for all f ′(s′, u′) ∈ σ13(s, u)(s
′, u′) and all (t′, u′) ∈

Q23. Let |s′| be the number of outgoing states from s where δ(s′)(t′) > 0. Let

δ′(s′, u′)(t′, u′) = δ(s′)(t′) ∗ |s′|.

(By (†3))
∑

s′∈Q1

[σ1(s)(s
′) ∗ δ(s′)(t′), σ1(s)(s

′) ∗ δ(s′)(t′)] ⊆ [σ2(t)(t
′), σ2(t)(t

′)]

⇐⇒ (By set theory, if [a, b], [c, d], [e, f ] ⊆ [0, 1], then

[a, b] ⊆ [c, d] ⇐⇒ [max(a, e),min(b, f)] ⊆ [max(c, e),min(d, f)].

By distributivity of ∗ over max and min. We know that σ3(u)(u
′) ⊆ [0, 1])

∀u′ ∈ Q3,
∑

s′∈Q1

[max(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′)]

⊆ [max(σ2(t)(t
′), σ3(u)(u

′)),min(σ2(t)(t
′), σ3(u)(u

′))]

⇐⇒ (By definition of
∑

, we can apply
∑

u′∈Q3

to both sides of ⊆)

∑

u′∈Q3

∑

s′∈Q1

[max(σ1(s, s
′), σ3(u)(u

′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′)]

⊆
∑

u′∈Q3

[max(σ2(t)(t
′), σ3(u)(u

′)),min(σ2(t)(t
′), σ3(u)(u

′))]

⇐⇒ (By definition of
∑

)
∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′)]

⊆ [max(σ2(t)(t
′), σ3(u)(u

′)) ∗ (1/|s′|),min(σ2(t)(t
′), σ3(u)(u

′)) ∗ (1/|s′|)]

⇐⇒ (By multiplying both sides of ⊂ by |s′|)
∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′) ∗ |s′|,

min(σ1(s)(s
′), σ3(u)(u

′)) ∗ δ(s′)(t′) ∗ |s′|]

⊆ [σ2(t)(t
′) ∗ σ3(u)(u

′), σ2(t)(t
′) ∗ σ3(u)(u

′)]

⇐⇒ (By factorization, extract (δ(s′)(t′) ∗ |s′|))
∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u

′)),min(σ1(s)(s
′), σ3(u)(u

′))] ∗ δ(s′)(t′) ∗ |s′|

⊆ [max(σ2(t)(t
′), σ3(u)(u

′)),min(σ2(t)(t
′), σ3(u)(u

′))]

⇐⇒ (By definition of δ′)
∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u

′)),min(σ1(s)(s
′), σ3(u)(u

′))] ∗ δ′(s′, u′)(t′, u′)

⊆ [max(σ2(t)(t
′), σ3(u)(u

′)),min(σ2(t)(t
′), σ3(u)(u

′))]

⇐⇒ (By (†2))
∑

(s′,u′)∈Q13

([max(σ1(s)(s
′), σ3(u)(u

′)),min(σ1(s)(s
′), σ3(u)(u

′))] ∗ δ′(s′, u′)(t′, u′)

⊆ σ23(t, u)(t
′, u′)

⇐⇒ (By (†1))
∑

(s′,u′)∈Q13

(δ13(s, u)(s
′, u′) ∗ δ′(s′, u′)(t′, u′)) ⊆ σ23(t, u)(t

′, u′)

⇐⇒ (By definition of f ′)
∑

(s′,u′)∈Q13

(f ′(s′, u′) ∗ δ′(s′, u′)(t′, u′)) ∈ σ23(t, u)(t
′, u′)

⊓⊔
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Theorem 8 (Congruence of refinement for ∧) For all delimited unambiguous con-

tracts C1, C2, C3, and C4 over the same alphabet, if C1 ≤ C2 and C3 ≤ C4, then

C1 ∧ C3 ≤ C2 ∧ C4.

Proof
C1 ≤ C2 and C3 ≤ C4

⇒ (By Lemma 11 (Congruence of refinement for ∧) twice)

C1 ∧ C3 ≤ C2 ∧ C3 and C3 ∧ C2 ≤ C4 ∧ C2

⇒ (By Lemma 9 (Commutativity of ∧))

C1 ∧ C3 ≤ C3 ∧ C2 and C3 ∧ C2 ≤ C4 ∧ C2

⇒ (By Lemma 2 (Transitivity of ≤))

C1 ∧ C3 ≤ C4 ∧ C2

⇒ (By Lemma 9 (Commutativity of ∧))

C1 ∧ C3 ≤ C2 ∧ C4

⊓⊔

Theorem 7 (Completeness of conjunction over the same alphabet) For all delimited

unambiguous contracts C1, C2, C3, if C1 ≤ C2 and C1 ≤ C3, then C1 ≤ C2 ∧ C3.

Proof
C ≤ C1 and C ≤ C2

⇒ (By Theorem 8 (Congruence of refinement for ∧))

C ∧ C ≤ C1 ∧ C2

⇒ (By Lemma 10 (Idempotence of conjunction))

C ≤ C1 ∧ C2

⊓⊔

Corollary 2 For all IMC M and delimited unambiguous contracts C1 and C2, if M |=

Ci, i = 1, 2 then M |= C1 ∧ C2.

We do not have completeness for conjunction if two contracts have different alpha-

bets; that is, the following statement does not hold:

For all IMC M and contracts C1 = (Q1,A1,→1, σ1, s0) and C2 = (Q2,A2,→2, σ2, t0),

if πAi
(M) |= Ci, i = 1, 2 then M |= C1 ∧ C2.

A counter-example is shown in Figure 20, where A1 = {a, c}, A2 = {b}, and Pi = [pi, pi]

for i = 1, 2, 3, 4. For the ease of checking πAi
(M) |= Ci, we simply let the Ci be

⌊πAi
(M)⌋ and rename the labelling of the states accordingly. Intuitively, it is impos-

sible for M to produce a sequence ba. Specifically, s1 6≤ (t0, u2), so s0 6≤ (t0, {u0, u1})

and M 6|= C1 ∧ C2.

B.5 Associativity of Conjunction

Before proving Theorem 5, let us show that we do not have associativity of conjunction

if two contracts have different alphabets. That is, the following statement does not hold :

For all unambiguous contracts C1, C2, and C3, (C1 ∧ C2) ∧ C3 ≡ C1 ∧ (C2 ∧ C3).
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s1s0

s3

s2

s5

s4

b

c

cp2

a

p1
b

(a) An IMC M .

t3

t0 t1

{t2, t4}

t5

a

cP2

cP1

(b) A contract C1 where A1 = {a, c} and πA1
(M) |= C1.

{u3, u5}

u2 u4

{u0, u1}
b

P1 b

P2

(c) A contract C2 where A2 = {b} and πA2
(M) |= C2.

(t1, u2)

(t3, {u3, u5})

(t0, u4)(t0, u2) (t1, u4)
({t2, t4}, u4)

(t0, {u3, u5})

({t2, t4}, u2)

({t2, t4}, {u3, u5})

(t3, u4)

(t5, u4)

(t5, {u3, u5})

(t5, u2)

(t0, {u0, u1})

(t3, u2)

(t1, {u3, u5})

c

P1 b

b

P2

b

c

a
P1

P1

P2

b

a

c

b

c

b

P1

b
b

c

a

P2

P2

(d) Conjunction C1 ∧ C2 where M 6|= C1 ∧ C2.

Fig. 20: A counter example for completeness of conjunction for contracts.

Figure 21 shows a counter example. In Figure 21 (e), there is no transition from

state ((⊤1, t0), u0) because the action transition c from state (⊤1, t0) in C1 ∧ C2 is in

the set of actions of C3 (i.e., we cannot apply the conjunction rule [LiftL]). However,

in its corresponding state (⊤1, (t0, u0)) in Figure 21 (g), we can have transitions that

follow the contract C2 ∧ C3 due to the conjunction rule [C2R].

Definition 17 (Equality of contracts) For all contracts C1 = (Q1,A,→1, σ1, s0)

and C2 = (Q2,A,→2, σ2, t0), C1 is equal to C2 (written C1 = C2) iff there exists a

bijection ρ : Q1 → Q2 such that t0 = ρ(s0) and for all s, s′ ∈ Q1, we have: s
a
→ s′ ⇐⇒

ρ(s)
a
→ ρ(s′), and s

P
99K s′ ⇐⇒ ρ(s)

P
99K ρ(s′).

Theorem 5 [Associativity of conjunction over the same alphabet] For all un-

ambiguous contracts C1 = (Q1,A,→1, σ1, s0), C2 = (Q2,A,→2, σ2, t0), and C3 =

(Q3,A,→3, σ3, u0), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3).
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Fig. 21: Counter example for associativity of conjunction

Proof Let
C1 = (Q1,A,→1, σ1, s0)

C2 = (Q2,A,→2, σ2, t0)

C3 = (Q3,A,→3, σ3, u0)

C1 ∧ C2 = (Q12,A,→12, σ12, (s0, t0))

C2 ∧ C3 = (Q23,A,→23, σ23, (t0, u0))

(C1 ∧ C2) ∧ C3 = (Q12.3,A,→12.3, σ12.3, ((s0, t0), u0))

C1 ∧ (C2 ∧ C3) = (Q1.23,A,→1.23, σ1.23, (s0, (t0, u0)))

Let ρ be the state mapping from Q12.3 to Q1.23 such that ρ(⊥12.3) = ⊥1.23,

ρ(⊤12.3) = ⊤1.23, and for all ((s, t), u) ∈ Q12.3 such that s ∼ t ∼ u, we have

ρ(((s, t), u)) = (s, (t, u)). We must show the following property:

∀q, q′ ∈ Q12.3 we have q
a
→ q′ ⇐⇒ ρ(q)

a
→ ρ(q′) and q

P
99K q′ ⇐⇒ ρ(q)

P
99K ρ(q′) [P]

If q = ⊥12.3 or q = ⊤12.3, then the property [P] is trivially satisfied. Otherwise,

q is of the form ((s, t), u) with s ∼ t ∼ u, and we have the following cases:
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(1) Case where q′ = ⊥. We thus have the following (not necessarily exclusive) subcases:

(1a) s → ⊥1. According to Rule 2 of Definition 16, we have (s, t) → ⊥12. Hence

((s, t), u) → ⊥12.3. Similarly, whatever the transition from (t, u) in C23, we

have (s, (t, u)) → ⊥1.23. Since ρ(⊥12.3) = ⊥1.23, the states q and q′ satisfy [P].

(1b) The subcases t → ⊥1 and/or u → ⊥1 are analogous to (1a).

(1c) The three states are action states with s → s′, t → t′, and u → u′, and

are such that s′ 6∼ t′. Firstly, according to Rule 2 of Definition 16, we have

(s, t) → ⊥12. Hence ((s, t), u) → ⊥12.3. Secondly, either t′ ∼ u′ or t′ 6∼ u′.

The first case implies that (t, u) → (t′, u′). It follows that s′ 6∼ (t′, u′). The

second case implies that (t, u) → ⊥23. So in both cases, (s, (t, u)) → ⊥1.23.

Since ρ(⊥12.3) = ⊥1.23, the states q and q′ satisfy [P].

(1d) The subcases where some states are probabilistic states and/or another pair of

destination states is not similar are analogous to (1c).

(2) Case where one or two states among s, t, and u is equal to ⊤i. We have the following

subcases:

(2a) s = ⊤1, t
β
→ t′, and u

γ
→ u′. Firstly, since t ∼ u, we necessarily have

β = γ. Thus, according to Rule [C1], (t, u)
β
→ (t′, u′). Secondly, according

to Rule [C2R], (s, t)
β
→ (⊤1, t

′) and (s, (t, u))
β
→ (⊤1, (t

′, u′)). Thirdly, accord-

ing to Rule [C1], ((s, t), u)
β
→ ((⊤1, t

′), u′). In other words, ρ(((⊤1, t), u))
β
→

ρ(((⊤1, t
′), u′)) and the states q and q′ satisfy [P].

(2b) The other subcases, including with probabilistic transitions, are analogous to (2a).

(3) Case where q′ = ((s′, t′), u′) with s′ ∼ t′ ∼ u′. We have the following subcases:

(3a) The three states are action states with s
α
→ s′, t

β
→ t′, and u

γ
→ u′. Firstly,

since s ∼ t ∼ u, we necessarily have α = β = γ. Thus, according to Rule [C1],

(s, t)
α
→ (s′, t′) and (t, u)

α
→ (t′, u′). Secondly, applying again Rule [C1] gives

((s, t), u)
α
→ ((s′, t′), u′) and (s, (t, u))

α
→ (s′, (t′, u′)). In other words, ρ(((s, t), u))

α
→

ρ(((s′, t′), u′)) and the states q and q′ satisfy [P].

(3b) The other cases with probabilistic transitions are analogous to (3a).

⊓⊔

Theorem 9 (Distributivity of ‖ over ∧) Let Ci be an unambiguous contract over

alphabet Ai, i = 1, 2, 3, such that (A1∪A2)∩A3 = ∅, and let I ⊆ A1∪A2∪A3∪(A1 ⊲⊳

A2), where S1 ⊲⊳ S2 = {a|b | a ∈ S1 ∧ b ∈ S2}. Then,

(C1 ∧ C2)‖IC3 ≤ (C1‖IC3) ∧ (C2‖IC3)

Proof

(By Theorem 6 [Conjunction is a common refinement])

C1 ∧ C2 ≤ C1 and C1 ∧ C2 ≤ C2

⇒ (By Lemma 5 [Congruence of refinement for ||I ])

(C1 ∧ C2)‖IC3 ≤ C1‖IC3 and (C1 ∧ C2)‖IC3 ≤ C2‖IC3

⇒ (By Theorem 8 [Congruence of refinement for ∧])

((C1 ∧ C2)‖IC3) ∧ ((C1 ∧ C2)‖IC3) ≤ (C1‖IC3) ∧ (C2‖IC3)

⇐⇒ (By Lemma 10 [Idempotence of conjunction])

(C1 ∧ C2)‖IC3 ≤ (C1‖IC3) ∧ (C2‖IC3)

⊓⊔
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