
The Art of Interpretation for Domain-Specific

Embedded Languages

Saswat Anand1, Siau-Cheng Khoo2, Dana N. Xu2, and Ping Zhu2

1 College of Computing, Georgia Institute of Technology
2 School of Computing, National University of Singapore

Abstract. Domain-specific embedded language (DSEL) has become a
convincing approach in managing the complexity of domain-specific ap-
plications. Its dependence on a host language enables domain experts to
build programs at faster speed. Building DSEL on a host language with
interpretive ability also provides a familiar calculator approach to domain
experts, many of whom are programming novice. However, interpretive
overhead can be a concern for the use of DSEL. In contrast with other
research that investigates the compilation process of DSEL, we propose
in this paper a framework for designing Haskell-based DSEL to attain
efficiency in the interpretive environment. We lift the design of inter-
preter beyond the level of syntax-based interpretation, thus overcoming
the notorious syntax-analysis problem with DSEL. One main technical
contribution is the systematic and creative use of Haskell’s overloading
mechanism to achieve domain-specific program analysis at interpreta-
tive time. In addition, we advocate the use of abstract data types, not
just monadic computing, to achieve various domain-specific optimiza-
tions. We illustrate these features by designing a DSEL that supports
technical analysis of financial forecasting.

1 Introduction

Domain-specific embedded language (DSEL) has become a convincing approach
in managing complexity of domain-specific applications. Its dependence on a
wide-spectrum host language enables DSEL designers to rapidly construct pro-
totypes, thus shortening interactive software development cycle.

From the viewpoint of many users and domain experts – a majority of whom
are programming novice, a DSEL constructed on top of a host language with
interpretive ability, such as Haskell, SML, etc., has even greater appeal. Such
interpretive DSEL simulates the use of calculator, which immensely increases
the friendliness of the language.

In some domains, writing interpretive programs is almost inevitable, as use
of calculator has become part of the domain culture. As an example, in finan-
cial sector, simple technical indicators used for stock forecasting are commonly
defined and manipulated using formulae written in speadsheets, such as Excel,
etc. Here, the interpretive nature of technical indicator can be easily preserved
by an interpretive DSEL. It will be repulsive for domain experts to consider
compilation of each technical indicator definition before its use.

Despite its attractiveness, use of interpretive DSEL has been plagued by
performance efficiency problem, just like any interpretive language. For years,
researchers have focused on compilation approach to address this problem, at
the expense of upholding the user-friendliness of interpretive DSEL [8, 5, 12].
This indirectly highlights the shortcoming of the state of the art of DSEL, as
it requires users of the application domains to shift their mindset about DSEL
operation mode.

In this paper, we propose to invest software design effort in the construction
of an interpretive system which boosts the performance of the system without
resorting to compilation.

Our design emphasizes on both flexibility and efficiency. We follow the tra-
ditional approach of software design by employing abstract data types to ensure
high cohesion yet low coupling of various components of our system. In addition,
we introduce a one-time analysis of DSEL programs, performed at interpretive
time, to uncover optimization opportunity. To our knowledge, there have not
been any DSEL interpreters which are built from these two thrusts. One plausi-
ble reason is the notorious problem with performing syntax analysis on DSEL.
Specifically, DSEL language carries the syntax baggage of its underlying host
language; this makes performing syntax analysis on DSEL a delicate task, as
the DSEL designers may need to perform similar analysis over the entire host
language.

Another plausible reason for not investing on abstract data type is the per-
ception that interpreter of a language must be syntax-directed. Coupled with the
belief that interpreters are mainly used during rapid prototyping, little effort has
been spent on investigating optimization opportunities.

To demonstrate the feasibility of our ideas, we choose a Chart Pattern Lan-
guage (CPL) as our target DSEL building on top of Haskell [2, 3]. Part of the
CPL, the technical indicators, is akin to the definition of formulae in spreadsheet.
For instance, an three day close-price moving average can be defined as

close + close #1 + close #2

where close refers to the closing price of today, and close#1 and close#2 refer
respectively to the closing prices of yesterday, and of the day before. It is common
for a financial trader to call up a calculation of this moving average price for a
company, say IBM, by simply entering the command:

eval (close + close #1 + close #2) ‘‘IBM’’

Such an interactive environment is important to the usability of the system,
and users will be put off using it if they have to compile the above technical
indicators, and many others, before getting them evaluated against various com-
panies.

In this paper, we demonstrate a framework for constructing an efficient ver-
sion of such an interpreter.

The inclusion of performance consideration inevitably requires us to consider
alternate evaluation order of DSEL programs. Hence, we must ensure certain

degree of flexibility during interpretation. We accomplish this by encapsulating
monadic computation in abstract data types (ADT). As commonly known, ADT
enables different, more efficient data structures to be employed for performance
consideration, while providing a friendly front end to the user. This is particularly
crucial for a DSEL/DSL language, whereby the users are more concern with the
usability of the language than its efficiency coding. The role of ADT is primarily
to provide such a separation of concern.

While such an introduction of abstraction adds interpretation overhead to
the final product, we will show that its benefits, in terms of both the ease of use
and the realization of performance optimization, easily offset the cost.

Some of the performance boosters are dictated by analyses of DSEL pro-
grams. As memtioned earlier, these analyses are seldom done in the interpretive
environment, due to the incompatibility between syntax-directedness and design
of DSEL.

Our main technical contribution in this paper is to develop analyses for DSEL
that do not directly perform syntax analysis. Instead, we leverage on the Haskell

class system to design our analysis. Consequently, an analysis is viewed as an al-
ternate interpretation of DSEL programs. Our implementation can be viewed as
a realization of abstract interpretation for DSEL using Haskell overloading mech-
anism. Indeed, we will show how a general abstract interpretation framework for
DSEL programs can be implemented.

The outline of the paper is as follows: We first provide an overview of a
DSEL, the Chart Pattern Language (CPL), as our running example. In Sec-
tion 3, we describe the organization of Haskell classes to support analysis of
CPL programs. Section 4 highlights the novel view of monads as abstract data
types. Section 5 details the performance gained from this construction. This is
followed by a discussion on alternate implementation of interpretive DSEL, in
particular, combinator-based DSEL. We then conclude the paper by discussing
the related works.

2 CPL: A Running Example of a DSEL

We use Chart Pattern Language (CPL) as a DSEL thoughout the paper to illus-
trate our approach. CPL is a domain specific programming language embedded
in Haskell. It is used for programming analysis and forecasting techniques for
stock market. There is one school of thought, which thinks that price of stocks
moves in patterns and these patterns can be used to forecast future price. CPL
users belong to this school, who want program these patterns for their analysis.
An example of one such pattern is show in Figure ?? and its CPL definition in
Figure 2. The pattern definition is read as: a head-and-shoulder instance is com-
posed of six patterns (three ups and three downs back to back and if a, b, c, d,
e, f and g are the starting point, joining points of these patterns and end point
respectively (referred to as landmarks in CPL) then six constraints involving
these landmarks must be satisfied. close and high functions return the closing
and high price of a stock for a given day.

For those unfamiliar with technical analysis, we should mention that the
following definition of the pattern is just one of the many that can be written for
head-and-shoulder. There is no consensus on how a particular pattern is defined –
although the basic definition that defines the overall shape of the pattern will be
same there can be mutitudes of differences in the details. And that is precisely the
reason why we need a programming language so the user has the liberty to define
a pattern the way he likes. The advantages of embedding CPL in a declarative

headShoulder1 = let pat = up >.> down >.> up >.> down >.> up >.> down

cf = \(Lms ([a,b,c,d,e,f,g])) ->

[close a == close c, -- 2

close c == close e, -- 5

close e == close g, -- 7

close d > high b, -- 4

close d > high f, -- 6

abs(close b - close f) < 0.2 * close f]

-- 6

in pat ?? cf

Fig. 1. CPL definition of head-and-shoulder pattern

language like Haskell is clearly evident from the above definition. The syntax
of CPL is very high-level and easy to use, even for a stock analyst without any
programming background. In addition to aesthetics, CPL is as expressible and
powerful as Haskell. Although CPL, like any other embedded language, has a
nice syntax and sound semantics, the picture is not as rosy in the pragmatics
section, which is a serious limitation. After the user defines a pattern, normally
she would want to search instances of that pattern that satisfy this definition in
a price history that is usually huge. So how efficiently CPL pattern definitions
can be evaluated is of critical importance.

Figure 2 shows the optimal version of the preceeding definition of head-and-
shoulder.

To understand why the latter definition is efficient, we need to know how this
pattern definition is evaluated. As show in the Figure ??, for a pattern definition
of the form p??f we first evaluate all instance of pattern p and then filter out
those instances from the result that do not satsify all the constraints specified
in f . But due to lazy evaluation finding instances of pattern p and evaluation of
constraints occur in an interleaving manner and thus makes the search efficient.
For example if an instance of up >.> down do not satisfy the constraint close
a == close c of the head-and-shoulder definition, the instance can not be ex-
tended to form a head-and-shoulder. Lazy evaluation produces this behavior for
free. As we can see here, the order in which constraints are evaluated plays a

headShoulder1 = let pat = up >.> down >.> up >.> down >.> up >.> down

cf = \(Lms [a,b,c,d,e,f,g]) ->

[close a == close c, -- 2

close d > high b, -- 4

close c == close e, -- 5

close d > high f, -- 6

abs(close b - close f) < 0.2 * close f]

-- 6

close e == close g, -- 7

in pat ?? cf

Fig. 2. Optimal CPL definition of head-and-shoulder pattern

critical role in how efficiently the patterns can be evaluated. By default, the
constraints are evaluated in the order in which they are specified, which may
not always be the best order. For example, if in the list of constraints, the first
constraint involves the very first and the last landmarks of a pattern (eg. a and
g for head-and-shoulder), for evaluation of this constraint we need to find a com-
plete instance of the pattern, so that we have values for the required landmarks.
(We assume that pattern is evaluated left to right, but the other way is also
possible, in which case similar reasoning would still hold.) On the other hand, if
the first constraint involved first and second landmarks of the pattern and that
constraint was not satisfied, it would have saved us from evaluating any further
for that particular instance. In other words, it is always efficient to evaluate a
constraint that has a lower “depth”. If a constraint involves ith, jth, kth, . . .

landmarks of a pattern, depth of that constraint is max(i, j, k . . .). In Figure ??

and Figure ?? the numbers shown to the right of each constraint represents its
depth. The second definition of head-and-shoulder specifies the constraints in
the optimal order. In section ?? we describe an optimization technique, which
aims to find the depths of constraints and evaluate the constraints in increasing
order of their depths.

– should give the semantics of ?? operator from ICFP paper. –
Optimizing DSEL is a challenging problem when domain-specific entities are

modelled as functions, like our constraint function that takes a list of landmarks
and returns a list of booleans. Because functions are like black boxes – we have
no way to analyze and modify the body of a function unless we work on it as a
piece of code. In section ?? we offer a solution to this problem based on abstract
interpretation and class overloading.

3 Defining Program Analysis

One of the most technically challenging tasks in dealing with an interpretive
DSEL is to perform analysis of DSEL programs. The problem stems from seek-

ing a handle for manipulating the program syntax. If a DSEL is totally defined
using algebraic data types, then one can perform, during interpretation, syntax
analysis over these algebraic data types. This pre-processing technique is readily
described in some elementary textbook on program interpretation (eg. Chap-
ter 4.1.7 of [1]). In practice, however, many DSEL programs are (partly) con-
structed using function representation. Since these functions are usually treated
as “black-boxes” (ie. closures) during interpretation, there is no handle for syn-
tax manipulation.

In CPL, constraints associated with patterns are represented using function
of type Lms ([a] -> [b]). While this representation is both elegant and natural
(as the formal arguments provide a means to name the landmarks of a pattern),
it inhibits direct manipulation of constraint list encapsulated in the function. As
mentioned in Section 2, re-ordering of these constraints is required so that con-
straints can be solved in the same order as the construction of pattern instances.

We present a solution to this problem through Haskell’s overloading mecha-
nism. To illustrate our solution, let’s consider the following constraint function:

\ [a,b,c,d] -> [close b > close c, -- (2)

high c = high d, -- (3)

open a - open d < 10] -- (1)

This constraint is applicable to any pattern comprising three primitives, such
as (up >.> down >.> up). For a reason to be explained in the latter section,
pattern instances are constructed “backwards” such that sub-patterns at the
right end are constructed before those at the left end. The first constraint above
involves second and third landmarks. This means that the constraint can be
evaluated when a partial instance of the above pattern – an instance of (down

>.> up), more precisely – has been constructed.
Using the same reasoning, we find that second and third constraints can

be evaluated when the third and the first landmarks have respectively been
instantiated.

Informally, in order to find out when a constraint should be evaluated during
partial instantiation of patterns, we first represent the landmark variables by
their positions in the list of landmarks. We call these positions indices . Thus,
[a,b,c,d] is replaced by the index list [1,2,3,4]. Next, operations over land-
marks are treated as operations over indices. Thus, for each constraint, we find
the minimum of those indices involved. In the above constraint function, we re-
place a . . . d by 1 . . . 4 respectively, and the analysis of the three constraints
yields the indices 2, 3 and 1 respectively. Thus, during the “backwards” con-
struction of pattern instances, it is more efficient to solve the second constraint
first, followed by the first constraint, and then the third constraint.

To incorporate this index analysis into our system, we introduce the following
trick data constructor to represent indices:

data Lmk = T Int deriving (Show, Eq, Typeable, Data)

We dictate that all constraint operations should be overloaded to take in both
actual landmarks and indices and produce a boolean list (for constraint solving)

class (Fractional b) => Ind a b | a -> b where

close, open, low, high :: a -> b

instance Ind Bar (IndV Price) where instance Ind Lmk Lmk where

{- definitions of close,open,low,high = id

close, open, low, high -}

class Logic a where

(&&), (||) :: a -> a -> a

instance Logic IndV Bool where instance Logic Lmk where

{- definitions of (&&) and (||) -} (&&),(||) = liftT

class (Logic b, Num a) => Compare a b | a -> b where

(>),(<),(==),(<=),(>=) :: a -> a -> b

instance Compare (IndV Price) instance Compare Lmk Lmk where

(IndV Bool) where

{- definitions of (>),(<),(==),(<=),(>=) = liftT

(>),(<),(==),(<=),(>=) -}

liftT (T a) (T b) = T (a ‘min‘ b)

type IndV a = VMC (Maybe a)

Fig. 3. Simplified Haskell Classes and Instances for Constraint Operators

and a index list (for analysis) respectively. Figure 3 briefly depicts the Haskell
classes defining these overloading operators.

Describe how the analysis is called during interpretation.

3.1 Defining Abstract Functions

It is conducive to view the instances of operations defined with respect to a
DSEL as a standard interpretation, and view those defined for an analysis as an
abstract interpretation, a.la Cousot’s [4]. However, there are some limitations to
this approach that deserve closer investigation.

Firstly, this approach requires all Haskell primitives to belong to some Haskell
classes. This is certainly not the case. Specifically, conditional constructs, such
as if, is not defined in any Haskell class. Consequently, if-expression cannot be
overloaded, and its evaluation order cannot be modified during abstract inter-
pretation.

Thanks to the lazy evaluation strategy of Haskell, we can overcome this
problem by defining a special conditional function at the DSEL level, as follows.
Let L and A denote the datatypes used by DSEL and the analysis respectively.
We have:

class Cond a where

cond :: forall c . a -> c -> c -> c

instance Cond L where instance Cond A where

cond a b c = ... cond a b c = ...

Next, analysis of recursive functions has to be done by fixpoint iteration over
an abstract lattice. This is handled by (1) defining a class containing lattice
operators, and (2) restricting the representation of recursive function definition
by fixpoint operator, fix. From point (2) above, we see that recursive funnction
has to be defined in terms of functional, so that calls to the recursive function
will be expressed by calls to fix. Figure 3.1 defines this solution.

class Eq a => Lattice a where

elems :: [a] -- finite list of lattice elements

bot :: a

lub :: a -> a -> a

glb :: a -> a -> a

leq :: a -> a -> Bool

fp :: (a -> a) -> (a -> a) -> [a] -> (a -> a) -- fixpoint computation

fp f h data = let g = (f h) ‘leq_f‘ h

in if leq_f(g,h,data) then h else fp f g data

where leq_f f g = \ x -> (f x) \lub (g x)

leq_f(f,g,ds) = every (\ x -> (f x) ‘leq‘ (g x)) ds

class Fix a where

fix :: (a -> a) -> a -> a

instance Fix (L -> L) where instance Fix (A -> A) where

fix f = f (fix f) fix f = fp f bot elems

Fig. 4. Lattice and Fixpoint operations

In summary, for general abstract interpretation (AI) to work properly in the
overloading approach, every construct that is manipulable by the AI must have
a handle (such as cond, fix, etc.) at the user level, so that different instances of
handles can be defined. The onus is on DSEL designers to ensure that handles
are accessible by the user.

where does SPJ’s boilerplate scrapper technique comes in?

4 Monads as Abstract Data Types

Use of Abstract data types in software development is prevalent. Its role is also
well-defined: To separate the implementation concern from the use of a piece of
data. Unfortunately, this concern is usually raised in the design of interpreters,

probably due to the perception that interpreters primarily meant for rapid proto-
typing, and therefore designers are less concern about its implementation detail.

In the event that interpreter is the main interactive tool for language users,
it is important that its design and development be adhered to good software
engineering practice.

Performance efficiency is usually associated with in-place update, and in the
context of Haskell, this is realized via monadic computing [7, 11]. However, mon-
ads are typically viewed as an abstract model of programming language [9, 10].
This is different from treating monads as abstract data type. Specifically, mon-
ads have mainly been used to hide some data, such as state information, from
the user. They have not been used to provide a data structure at implementa-
tion level that is distinct from the data structure perceived by the user. To our
knowledge, no work has been done in relating monads to abstract data types.

To demonstrate the need for an abstract data type, we turn to the definition
of patterns in CPL. Ignoring constraint-function component, we provide a user-
level algebraic data type for pattern construction, as follows:

data PatD = Up | Down | Fby PatD PatD

This data structure enables users to form pattern easily. Treating Fby as >.>,
one can construct a simple head-and-shoulder pattern as follows:

Up >.> Down >.> Up >.> Down >.> Up >.> Down

From implementation viewpoint, however, searching instances of an up (resp.
down) pattern that is sandwiched between two down (resp. up) pattern can be
much simpler than that of a non-sandwiched pattern. This is because a sand-
wiched pattern assures that the end points of any of its instance must be extrema
points. Consequently, there can only be at most one instance per extrema point
for such a sandwiched pattern.

The above observation suggests a different algebraic data type for patterns at
implementation level, to highlight different version of primitive patterns. Thus,
at the implementation level, the corresponding data structure is

data PatI = UpI | DownI | FbyI PatI PatI | EUpI | EDownI

and the corresponding head-and-shoulder pattern, with slight abuse of the op-
erator (>.>), is represented at implementation by:

UpI >.> EDownI >.> EUpI >.> EDownI >.> EUpI >.> DownI

5 Performance

In this section, we report the performance of different optimizations on pattern
searching as well as memoization for computation of technical indicators. All
performance statistics presented in this paper are run under windowXP in a
desktop PC with Pentium(R)4 CPU 2.0GHz and 512MB of RAM. For pattern
searching, we use 10 years of daily stock price histories of 40 companies. For
computation of a technical indicator, we use 10 years of daily price of 1 company.

Table 1. Timing for pattern searching (in sec)

Pattern Unoptimized datatype backtracking

head-and-shoulder 112.84 45.48 36.76

hill 75.44 42.22 39.63

up3 hangs 78.04 65.10

Table 2. Timing for computation of technical indicator (in sec)

Technical Indicator without memoization with memoization

mvg (mvg close 10) 20 7.63 2.06

mvg (mvg close 20) 50 39.13 3.44

mvg (mvg close 50) 100 hangs 6.72

6 Combinator-based CPL

7 Related Work

The idea of virtual machine in our approach is originated from John Launch-
bury’s work on constructing a monadic interpreter for a simplified DSL: a graph-
travesal language describing depth-first graph traversals. He defined some monadic
virtual machine operations to access, update graph’s state and traverse graph.
Based on these primitive functions, he described the interpreter in a much more
compact manner. We extend Launchbury’s work by adding the optimization
function in our virtual machine.

7.1 Type-based overloading

The idea of type-based overloading used in our abstract interpretation is bor-
rowed from Simon Peyton Jones’s “Scrap your boilerplate” approach to generic
programming. He observed that in programs traversing data structures built
from rich mutually-recursive data types, there will be a great deal of “boiler-
plate” code that simply walks the structure, hiding a small amount of “real”
code that constitutes the reason for the traversal. He defined a generic mapping
operation gmapQ : (gmapQ f t) applies the polymorphic function f to each of
the immediate children of the data structure t (these data structures may have
different types so f must be a polymorphic function) and returns a list of these
results. This technique thus leaves the programmer free to concentrate on the
important part of the algorithm: defining the “real” type-specific code f . Simon
Peyton Jones demonstrate a concrete example of this type-based overloading
function f : f will perform certain desired analysis or transformation on some
nodes with some specific types while give default treatment to the remains nodes.
Our approach in abstract interpretation share the same idea with example.

7.2 Compiling DSELs

Oege de Moor [5] described a technique for producing optimizing compilers for
DSELs. The technique uses a data type of syntax for basic types, a set of smart
constructors that perform rewriting over those types, some code motion trans-
formations, and a back-end code generator. Domain-specific optimization results
from chains of rewrites on basic types. This compiler is tailored for a specific
application domain, i.e. those rewriting rules greatly exploited the optimization
opportunities . This embedded optimizing compiler tends to remove the interpre-
tative overhead which is caused by possible redundant computation. Our inter-
preter can separate the efficiency concern from the concern for user-friendliness
and can also reduce the interpretative overhead by performing some optimization
options, e.g. memoization.

Manuel Chakravarty [12] proposed another DSEL optimization technique:
augment a language with compile-time meta-programming by using Template
Haskell, which facilitates programmer in writing domain specific optimizations.
The key idea of Manuel’s approach is to represent code as a data structure,
manipulate this data so that it represents equivalent but faster code, and finally
turn this data back into code.

7.3 Monad

Category theory provides theoretical basis for the concept of monad[10, 9]. The
monad used in Haskell [6] make it possible to implement imperative programming
within pure functional language, such as IO monad and state monad. For the
best of our knowledge, it is a novel view of monad as a software engineering tool
to support the design of abstract data types.

8 Conclusion

The entire interpretation thus involves the following components:

– definition of a DSEL in a friendly syntax;
– introduction of analysis through overloading;
– definition of a virtual machine to encapsulate evaluation detail;
– existence of a main controller to coordinate the activities among the above

components.

Let’s discuss each of the above briefly.
The definition of DSEL will be in terms of combinators, rather than algebraic

data types. The advantage is apparent; combinator-based definition provides a
syntax that matches the actions in the corresponding application domain more
aptly, and less artificially than use of algebraic data types.

The introduction of analysis poses the problem that occurs frequently in
DSEL: the need for syntax analysis. Through the help of Haskell class system,
we achieve the analysis through heavy use of overloading. In fact, we will demon-
strate the encoding of abstract interpretation through overloading mechanism.

One feature of this construction of analysis is that it is domain-specific. That is,
operations pertaining to the application domain are overloaded, but not those
pertaining to the underlying host language (Haskell in this case). To do that, it
is necessary to distinguish the domain-specific types from the underlying host
types. This is accomplished in a fashion similar to the work done by Simon
Peyton-Jones on ”Scrapping the Boilerplate”.

The definition of virtual machine serves to separate the efficiency concern
from the concern for user-friendliness. Here, we show that combinators-based
DSEL programs can be represented, if it is beneficial to do so, by concrete
algebraic data types within the virtual machine. This enables more efficient exe-
cution. We define the virtual machine by yet another DSEL, whose combinators
are used to support the front-end of the interpretation. This definition is inspired
by the work of John Launchbury in defining a DSEL for graph traversal.

Finally, the main program of the interpreter takes in a DSEL program, per-
forms the necessary analysis, and use it to drive the execution of the program
at the virtual machine.

References

1. H. Abelson and G.J. Sussman. Structure and Interpretation of Computer Programs,
2nd Edition. MIT Press, 1996.

2. S. Anand, W.N. Chin, and S.C. Khoo. Charting patterns on price history. In
Proceedings of International Conference on Functional Programming, pages 134–
145, Florence, Italy, September 2001.

3. S. Anand, W.N. Chin, and S.C. Khoo. A lazy divide & conquer approach to
constraint solving. In Proceedings of the 14th IEEE International Conference On
Tools with Artificial Intelligence, pages 106–116, Washington DC, USA, November
2002.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Symposium
on Principles of Programming Languages (POPL’77), pages 238–252. ACM Press,
1977.

5. C. Elliott, S. Finne, and O de Moor. Compiling embedded languages. Msr-tr-00-52,
Microsoft Research, 2000.

6. Paul Hudak, John Peterson, and Joseph H. Fasel. A gentle introduction to haskell
98. 1999.

7. John Launchbury and Simon L. Peyton Jones. State in haskell. Lisp Symb. Com-
put., 8(4):293–341, 1995.

8. Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Proceedings
of the 2nd Conference on Domain-specific languages, pages 109–122. ACM Press,
1999.

9. Eugenio Moggi. An abstract view of programming languages. Ecs-lfcs-90-113,
Edinburgh University, 1989.

10. Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in computer science, pages 14–23. IEEE
Press, 1989.

11. Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 71–84. ACM Press, 1993.

12. Sean Seefried, Manuel Chakravarty, and Gabriele Keller. Op-
timising embedded dsls using template haskell. URL:
http://www.cse.unsw.edu.au/˜sseefried/papers.html, March 2004.

