
A Practical and Precise Inference and Specializer
for Array Bound Checks Elimination

Corneliu Popeea
Department of Computer Science
National University of Singapore

corneliu@comp.nus.edu.sg

Dana N. Xu
Computer Laboratory

University of Cambridge
nx200@cam.ac.uk

Wei-Ngan Chin
Department of Computer Science
National University of Singapore

chinwn@comp.nus.edu.sg

Abstract
Arrays are intensively used in many software programs, including
those in the popular graphics and game programming domains. Al-
though the problem of eliminating redundant array bound checks
has been studied for a long time, there are few works that attempt to
be both aggressively precise and practical. We propose an inference
mechanism that achieves both aims by combining a forward rela-
tional analysis with a backward precondition derivation. Our infer-
ence algorithm works for a core imperative language with assign-
ments, and analyses each method once through a summary-based
approach. Our inference is precise as it is both path and context sen-
sitive. Through a novel technique that can strengthen preconditions,
we can selectively reduce the sizes of formulae to support a prac-
tical inference algorithm. Moreover, we subject each inferred pro-
gram to a flexivariant specialization that can achieve good tradeoff
between elimination of array checks and code explosion concerns.
We have proven the soundness of our approach and have also im-
plemented a prototype inference and specialization system. Initial
experiments suggest that such a desired system is viable.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Languages, Theory, Verification

Keywords Safety verification, Dependent types, Size properties

1. Introduction

Array bound check optimization has been extensively investi-
gated over the last three decades [40, 11, 19], with renewed inter-
ests as recently as [3, 45, 14, 41, 30]. While the successful elimina-
tion of bound checks can bring about measurable efficiency gain,
the importance of check optimization goes beyond this direct gain.
In safety-oriented languages, such as Java, all bound violation must
be faithfully reported under precise exception handling mechanism.
Thus, check optimization is even more important for run-time effi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

ciency under such constraints. For example, the code motion tech-
nique is severely hindered by potential array bound violations.

Most array optimization techniques (e.g. [40, 11, 43]) focus on
the elimination of totally redundant checks. To achieve this, whole
program analysis is carried out to propagate analysis information
(e.g. availability) to each program point. Even for techniques that
handle partially redundant checks, such as partial redundancy elim-
ination (PRE)[4], the focus has been on either moving these checks
or restructuring the control flows, but without exploiting path-
sensitivity or interprocedural relational analysis. These features are
important for supporting precise analyses.

In this paper, we propose a practical approach towards array
checks optimization that is both precise and efficient. Our approach
is based on the derivation of a suitable precondition for each array
check across the method boundary, followed by program special-
ization to eliminate array checks found to be redundant. We for-
malise our technique as a type inference system that is able to pro-
cess each method independently, and yet exploits the different con-
texts of its multiple callers. Successful elimination of array checks
depends on how accurately we are able to infer the states of the
program variables. To achieve this, we employ a form of depen-
dent type [23, 7] that can capture symbolic program states using
a relational analysis. For practical reasons, we currently make use
of an existing Presburger arithmetic solver [35] that is quite effi-
cient. Nevertheless, our proposal allows this solver to be replaced
by a more appropriate one, if desired. The key contributions of this
paper include:

• Forward with Backward Combination : We propose a novel
combination of forward plus backward analysis that can be
practical and precise. This combination performs the more ex-
pensive forward fix-point analysis only once per method, but
proceeds to derive individual safety precondition for each check
across procedural boundary. We provide the first formalization
and implementation of this combination technique for an im-
perative language. (Sec 2, 4 and 5)

• Smaller Preconditions : To obtain a practical analysis, we de-
vise a new technique to make formulae smaller by suitable
strengthening of preconditions (Sec 6). This approach trades
(some) precision for speed and has been vindicated by exper-
iments with our prototype inference system.

• Integration with Specializer: We adopt a summary-based ap-
proach that gathers preconditions, postcondition and unsafe
checks for each method. While summary-based techniques have
already been proposed for a number of program analyses [5, 9,
44], their integration with program specializer is hardly investi-
gated. We show how a flexivariant specializer could be used to
insert runtime test for each array check that has been classified
as unsafe (Sec 7).

177

• Indirection Arrays : Our approach can analyse the bounds
of elements inside an array. This is important for eliminating
array checks for a class of programs where indexes are kept
inside indirection arrays (Sec 8). Past techniques on array bound
checks elimination have largely ignored this aspect.

• Prototype : To confirm the viability of our approach, we have
built a prototype inference and specializer system (Sec 9).

2. Overview
A key feature of our approach is the three-way classification of
checks. Given a method definition with a set of parameters V and a
set of checks C, our approach will classify each check (c ∈ C) that
occurs at a location with a symbolic program state s, as follows:

• c is safe if it is redundant under the program state s at the
location of this check. This holds if the following is valid:

(s ⇒ c)

• c is partially-safe if it may become redundant under an extra
condition. This holds if there exists a satisfiable precondition
pre (expressed in terms of variables from only V) such that:

(pre ∧ s ⇒ c) (1)

The precondition can be derived using pre = (∀L · ¬s∨c),
where L is the set of local variables, denoted by vars(s, c) − V .
The function vars returns the free variables used in s and c.

• c is unsafe, if false is the only precondition that can be found
to satisfy (1). In this case, the analysis will (conservatively)
conclude that the check c may fail at runtime.

Partially-safe checks are special in that they can be propagated
across methods from callees to callers. This mechanism can fur-
ther exploit the program states at callers’ sites for the elimination
of checks. While the above classification is general and may be ap-
plicable to any kind of checks, in this paper we shall be focusing
exclusively on array-related checks.

Let us highlight the above check classification using the foo

example at the top of Figure 1. In this example, randInt returns
a random integer, while abs converts each number into its posi-
tive counterpart. The set of parameters V at method boundary is
{a, j, n} where a is an array with indices from 0 to len(a)−1. The
foo method contains two array accesses at locations �1 and �2. The
symbolic program states (sps) at these sites may be affected by
the type invariants 1, conditionals, imperative updates and by prior
calls. Computing the states for the method entry �0 and the loca-
tions �1 and �2, we get:

sps(�0) = len(a)>0
sps(�1) = sps(�0) ∧ i=j+1 ∧ (0<i<=n)
sps(�2) = sps(�0) ∧ i=j+1 ∧ m>=0

Based on the earlier classification of checks, we can establish that
the low-bound checks (at �1 and �2) are safe, since:

sps(�1)⇒(i>=0) and sps(�2)⇒(m>=0)

For the high-bound checks (denoted by �1.H and �2.H), we derive
(the weakest) preconditions through universal quantification of the
local variables, as follows:

1 An example of a type invariant is that the size of an array a, denoted by
len(a), is positive (a design decision we took for our language).

pre(�1.H) = ∀i, m· (¬sps(�1) ∨ i<len(a))
= ∀i, m· (¬(len(a)>0 ∧ i=j+1 ∧ 0<i<=n)∨i<len(a))
= len(a)<=0 ∨ (j<=len(a)-2 ∧ 1<=len(a))
∨ (1<=len(a)<=j+1 ∧ n<=j)

pre(�2.H) = ∀i, m· (¬sps(�2) ∨ m<len(a))
= ∀i, m·(¬(len(a)>0 ∧ i=j+1 ∧ m>=0) ∨ m<len(a))
= len(a)<=0

These derived preconditions may be the weakest, but they do not
take into account the type invariant and thus are larger than needed.
The type invariant len(a) > 0 can be used to simplify pre(�2.H)
to false and pre(�1.H) to (j<=len(a)-2 ∨ n<=j∧j+1>=len(a)).
The last formula contains a disjunct (j<=len(a)-2) for satisfying
the check, and a second disjunct (n<=j∧j+1>=len(a)) for avoiding
the check (when the conditional test is unsatisfiable). In general,
the simplification may drop disjuncts that violate the type invariant
(len(a)<=0) or remove conditions already present in the type in-
variant (len(a)>0). We perform each simplification of a formula
φ1 under type invariant φ2 by the operation (gist φ1 given φ2). This
gist operation yields a simplified term φ3 such that φ3∧φ2 ≡ φ1∧φ2

and was introduced in [36].
While a goal of our analysis is to obtain weaker preconditions

for precision, this might impact the scalability of our analysis. To
obtain smaller (but stronger) preconditions, we apply a similar sim-
plification based on the gist operation, but more aggressive. For ex-
ample, simplifying pre(�1.H) with respect to the program state of
the check ∃ i · sps(�1) yields a smaller precondition (j<=len(a)-2)
without the disjunct that allows avoiding the check. Our proposal
trades off precision for performance and is crucial for overcoming
the intractability of solving large Presburger arithmetic formulae.

Float foo(Float[] a, Int j, Int n)
�0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(�1:a[i]) else ();
Int m=abs(randInt());
v+(�2:a[m]) }

w
w
 Inference

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j ∧ j+1≥s) ;

{�1.H : (j≤s−2) ∨ (n≤j ∧ j+1≥s)}; {�2.H} {· · · }
w
w
 Specialization

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j∧j+1≥s); (j≤s−2) ∨ (n≤j∧j+1≥s)
�0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(�1:a[i])else ();
Int m=abs(randInt());
v+(if (m<len(a)) then �2:a[m] else error) }

Figure 1. Inference and Specialization : An Example

One feature of our optimization is its formulation in two stages:
type inference followed by specialization. The type inference stage
processes methods in reverse topological order of the call graph. It
computes post-states at each program point, classifies checks and
propagates preconditions as new checks at each method boundary.
It also marks all unsafe checks. These information are collected for
each method declaration: a postcondition Δ, a set of preconditions
Φ, a set of unsafe checks Υ, and annotated types τ0, .., τk.

τ0 m (τ1 v1, . . . , τk vk) where Δ; Φ; Υ {body}

For example, after type inference on the foo method, we would ob-
tain the method displayed in the middle of the Figure 1, where the
unchanged method body is replaced by {. . .}. During the actual

178

P ::= meth∗

meth ::= t mn (([ref] t v)∗) {e}
e ::= c | v | if v then e1 else e2 | v = e

| t v=e1 ; e2 | mn(v∗)

t ::= t | t[Int, . . . , Int]
t ::= Void | Int | Bool | Float

Figure 2. Source IMP language

inference, we use size variables instead of program variables. For
example, size variables s, j and n denote len(a), j and n respec-
tively.

The inference result is then used by the specialization stage to
insert runtime tests to guard unsafe checks and to derive target
programs that are well-typed. Well-typed specialised methods are
decorated with a postcondition Δ and a precondition φpre :

τ0 m (τ1 v1, . . . , τk vk) where Δ; φpre {body}

The precondition φpre is a conjunction of checks from Φ that
are guaranteed safe at each call site. For example, if pre(�1.H)
is found to be safe when analyzing the call sites of method foo,
we can generate the specialised (and well-typed) method at the
bottom of Figure 1. Note that Δ ≡ φpre holds for this particular
example, but in general the two formulae may be different. This is
so as postcondition is computed using over-approximation, while
precondition is computed using under-approximation. Moreover,
postcondition may capture its method’s result(s), but not so for
precondition.

Well-typed programs are safe in that no array bound errors are
ever encountered by any array access during program execution.
This safety property is guaranteed by either the program context
(for array checks �1.L and �2.L), or the precondition of each method
(for array check �1.H) or the inserted runtime test (for �2.H). In the
rest of this paper, we shall formalise a type inference system to
derive well-typed programs for a core imperative language.

3. An Imperative Language
To formalise our type inference we first introduce a source language
IMP (see Figure 2), where types, denoted by t and t, do not have
annotations. IMP has support for assignments, conditionals, local
declarations, method calls, and multidimensional arrays. Typical
language constructs, such as multi-declaration block, sequence,
calls with complex arguments can be automatically translated to
constructs in IMP. In addition, loops can be viewed as syntactic
abbreviations for tail-recursive methods, and are supported by our
analysis with the help of pass-by-reference parameters.

3.1 Target Language

The target of our inference system is a corresponding imperative
language with dependent types where types may be annotated with
size variables. For example, a boolean value can be denoted by
Boolb where b = 0 represents false and b = 1 represents true;
an integer value can be denoted by Intn with n to denote its
integer value, while Float[Ints] can denote an array of floats with s
elements. Input-output relation between size variables from method
parameters and result is captured after the where keyword:

Intr randInt() where true; . . .
Intr abs(Inta v)

where (a<0∧r=−a ∨ a≥0∧r=a)∧(a′=a); . . .
Intr add(Inta x, Intb y)

where (r=a+b) ∧ noX{a, b}; . . .

P ::= meth∗

meth ::= τ mn (([ref] τ v)∗) where Δ;Φ; Υ {e}
prim ::= τ mn ((τ v)∗) where Δ; Φ; C

e ::= · · · | � : mn (v∗)

τ, τ̂ ::= τ | τ [Ints1 , . . . , Intsk]

τ ∈ PrimAnnType

::= Void | Ints | Bools | Float
Φ ::= { (l+ : φ)∗ } (Labelled Preconditions)
Υ ::= { (l+)∗ } (Unsafe Checks)
C ::= { (l+ : e)∗ } (Labelled Runtime Checks)
� ∈ Label

�+ ::= � | �1. · · · .�n (Label Sequences)
φ,Δ ::= a1=a2 | a1≤a2 | φ1∧φ2 | φ1∨φ2 | q〈s∗〉

a ::= c | s | s′ | c∗a | a1+a2

where s denotes a size variable
Q ::= {(q〈s∗〉 = φ)∗}

Figure 3. Inferred IMPI Language

Boolr lessThan(Inta x, Intb y)
where (a<b∧r=1 ∨ a≥b∧r=0)∧noX{a, b}; . . .

Note that true for randInt signifies that r is unbounded. Also,
non-trivial size relations can be supported through disjunctive
formulae. The prime notation is used to denote the state of size
variables at the end of the method. Parameter values that are
unchanged across method calls are captured using the notation
noX{a, b}≡(a′=a∧b′=b) as a shorthand for “no change in state”.
This no-change in state occurs mostly for parameters that are
passed by value. Pass-by-reference parameters are also supported
in our language using the ref keyword.

Figure 3 summarises a language with dependent type, called
IMPI , which is designed to be the target of our inference. Each
method declaration captures three information: an input-output re-
lation (postcondition) Δ, a set Φ that contains a precondition for
each partially-safe check, and a set of label sequences Υ, each se-
quence representing the location of an unsafe check. The labels
from Φ and Υ identify call sites from the body of the current
method. This is enabled in our language since every method call
is uniquely labelled. The suffix notation s∗ denotes a list of zero or
more distinct syntactic terms separated by appropriate separators,
while s+ represents a list of one or more distinct syntactic terms.

For a non-recursive method mn, the triple (Δ, Φ, Υ) can be de-
rived via inference of the method body (since the triple for each
method called in mn are already inferred.) To support recursive
methods, we make use of constraint abstractions (adopted from
[20]). For each mutual-recursive method, we first derive a (recur-
sive) constraint abstraction Q of the form q〈n∗〉 =φ. These abstrac-
tions are used by fix-point computation to provide a sound and pre-
cise analysis for recursive methods. An adaptation of the fix-point
approximation from [11] is detailed via examples in Section 5. Be-
sides constraint abstractions, our language of constraints contains
conjunctions and disjunctions of linear (in)equalities. We make use
of a Presburger solver [35] (with support for universal and existen-
tial quantifications) to eliminate local variables or simplify formu-
lae.

Primitive methods (denoted by prim in Figure 3) lack a method
body and are instead annotated with a postcondition and a set of
preconditions to support type inference. A primitive is also anno-
tated with a set of runtime tests C for use by the specializer : if some
precondition is not satisfied at a primitive call site, its correspond-
ing runtime test is to be inserted. Array operations are implemented

179

as calls to primitive methods. For example, 1-dimensional array op-
erations with element type τ are shown below:

τ [Intr] newArr(Ints s, τ v)

where (0<s ∧ r=s ∧ s′=s); {S: s> 0}; {S: s>0}
Intr len(τ [Ints] a)

where (r=s ∧ s′=s); {}; {}
τ sub(τ [Ints] a, Inti i)

where (0≤i<s ∧ noX{i, s}); {L: 0≤i, H: i<s};
{L: 0≤i, H: i<len(a)}

Void assign(τ [Ints] a, Inti i, τ v)

where (0≤i<s ∧ noX{i, s}); {L: 0≤i, H: i<s};
{L: 0≤i, H: i<len(a)}

The primitive newArr returns a new array with all elements initial-
ized to the value v, len returns the length of the array, sub returns
an array element from the specified index i, while assign updates
the specified array element with the value v. For example, an array
access a[i] is (automatically) converted to sub(a, i), while an array
update a[i] = v is converted to the primitive call assign(a, i, v).

4. Type Inference Rules
Our inference system analyses and propagates state information so
as to determine if an array check is safe and if a precondition is to
be propagated to the method boundary. The type judgment for the
entire program is Pm �I P � PI . It derives a program PI ∈ IMPI

from a program P ∈ IMP and a set of primitive declarations Pm.
The type judgement for expressions is specified as follows:

V ; Γ;Δ � e � e1 :: τ, Δ1, Φ, Υ

Here V is a set of size variables (called boundary variables) avail-
able at the boundary of the method in which the expression e re-
sides. Γ is a type environment mapping program variables to their
annotated types. The above judgement states that e will be trans-
formed into e1 during the inference: the target expression e1 will
contain types annotated with fresh size-variables and labels that
uniquely identify method calls. Both e and e1 have the same un-
derlying type. Furthermore, successful evaluation of e (and e1) re-
quires the validity of preconditions Φ, and the inclusion of the run-
time tests Υ. Successful evaluation of e also changes the program
state from Δ to Δ1.

For convenience, our inference rules ensure that the size vari-
ables occurring in the annotated type τ are unique; ie., FSV (τ)∩
FSV (Γ) = ∅ where FSV returns the set of free size variables
found. Some of the interesting inference rules are specified in
Figure 4. In these rules, we use s = fresh() and � = fresh() to
generate a new size variable and a new label, respectively. For
annotated types, τ̂ = fresh(t) (or τ̂ = fresh(τ)) returns a new
type τ̂ with the same underlying type as t (or τ), but anno-
tated with fresh size variables. The function equate(τ1, τ2) gen-
erates equality constraints for the corresponding size variables
of its two arguments, assuming both arguments share the same
underlying type. For example, we have equate(Intn, Intm′

) =
(n = m′). The function rename(τ1, τ2) returns a mapping instead,
e.g. rename(Intn, Intm′

) = (n �→ m′). A conditional constraint is
expressed as ζ1 � b � ζ2 =df if b then ζ1 else ζ2. For the rest of this
section, we highlight the important aspects of our inference system
via examples.

4.1 Inferring Imperative Update

Consider an assignment expression v = v + u, with a pre-state for-
mula Δ = (m′=2+n′∧n′=5) and Γ = {u :: Intm, v :: Intn, . . .}.
This example shows how the prime notation is used to capture the

latest values of size variables at each symbolic state [22]. It also
shows how updates are effected by a sequential composition op-
erator, ◦X , where X denotes a set of size variables that are being
updated.

The following depicts the inference step for assignment:

Γ(v) = Intn Γ(u) = Intm

V ; Γ;Δ � v + u � v + u :: Intr , Δ ∧ r = n′ + m′, ∅, ∅
Δ2 = assign(Δ ∧ r = n′ + m′, Intn, Intr)

V ; Γ;Δ � v = v + u � v = v + u :: void, Δ2, ∅, ∅
The function assign performs the necessary sequential composi-
tion:

assign(Δ, τ, τ1) =def let X = FSV (τ) ; Y = FSV (τ1)

in ∃Y.(Δ ◦X equate(prime(τ), τ1))

For our example, the correct post-state of the assignment can be
computed as follows:

Δ2 = ∃r · ((Δ ∧ r=n′+m′) ◦{n}(n′=r))
= ∃r · ((m′=2+n′∧n′=5∧r=n′+m′) ◦{n}(n′=r))
= ∃r · (∃n0 · m′=2+n0∧n0=5∧r=n0+m′∧n′=r)
= (m′=7 ∧ n′=m′+5)

More formally, sequential composition is defined as:

φ1 ◦X φ2 =def ∃R · ρ1(φ1) ∧ ρ2(φ2)
where X = {s1, . . . , sn} are size variables being updated

R = {r1, . . . , rn} are fresh size variables
ρ1 = {s′i �→ ri}n

i=1 ρ2 = {si �→ ri}n
i=1

4.2 Path Sensitive Inference

The [If] rule attempts to track the size constraint of condition-
als with path sensitivity. The two conditional branches are distin-
guished by assuming the conditional-test result to be either 1 or
0, representing the true or the false value, respectively. Given
e = if u then v else 5 and Γ = {v :: Intn, u :: Boolb}, the rule de-
rives Δ3 combining via disjunction the inference results of both
branches. We replace both r1 and r2 (the resulting sizes from both
branches) by the final resulting size r.

Δ1 = Δ∧(b′=1) Δ2 = Δ∧(b′=0)

V ; Γ;Δ1 � v � v :: Intr1 , Δ1 ∧ (r1=n′), ∅, ∅
V ; Γ;Δ2 � 5 � 5 :: Intr2 , Δ2 ∧ (r2=5), ∅, ∅
Δ3 = Δ ∧ ((b′=1 ∧ r=n′) ∨ (b′=0 ∧ r=5))

V ; Γ; Δ � e � e :: Intr , Δ3, ∅, ∅

4.3 Precondition for Safety of Check

Precondition derivation is essential for the detection of safe checks
across method boundaries. A check is proved safe when a call con-
text implies the call’s preconditions. Otherwise, the preconditions
associated with a call are replaced by preconditions associated with
its caller. The generated preconditions are expressed in terms of the
boundary variables. The [Call] rule formalizes this process.

As an example, consider inferring a primitive call sub(z, j)
under the type assumption Γ = {v :: Intv, z :: Float[Intm], j ::
Intj} and the pre-state Δ = (m′=m∧m′=10∧j′=v′+2∧v′=v+1∧
v′>5). Furthermore, let the set of boundary variables V be {v, m}
and j be a local variable. The two array-bound checks of the
sub primitive, 0≤i and i<s, are transformed into the following
preconditions:

pre1 = (Δ ≈> ρ(0 ≤ i))↓V ≡s true
pre2 = (Δ ≈> ρ(i < s))↓V ≡s (v < 7)

where ρ = {s �→ m, s′ �→ m′, i �→ j, i′ �→ j′}. The substitution ρ re-
places the size variables associated with the formal parameters of

180

[Var]

Γ(v) = τ τ1 = fresh(τ)

φ = equate(prime(τ), τ1)

V ; Γ; Δ � v � v :: τ1, Δ ∧ φ, ∅, ∅

[Var−Assign]

V ; Γ;Δ � e � e1 :: τ1, Δ1, Φ, Υ

Γ(v) = τ Δ2 = assign(Δ1, τ, τ1)

V ; Γ; Δ � v=e � v=e1 :: Void, Δ2, Φ, Υ

[If]

Γ(v) = Boolb V ; Γ; Δ ∧ (b′ = 1) � e1 � e3 :: τ1, Δ1, Φ1, Υ1

τ = fresh(τ1) V ; Γ;Δ ∧ (b′ = 0) � e2 � e4 :: τ2, Δ2, Φ2, Υ2

ρi = rename(τi, τ) ∀i ∈ {1, 2} Δ3 = ρ1Δ1 ∨ ρ2Δ2 e5 = if v then e3 else e4

V ; Γ; Δ � if v then e1 else e2 � e5 :: τ,Δ3, Φ1∪Φ2, Υ1∪Υ2

[Call]

Γ(vi) = τi ∀i ∈ 1..n τ = fresh(τ̂) U =
Sk

i=1 FSV (τi) � = fresh()

(τ̂ m(τ̂1 x1, . . . , τ̂n xn) where Δm; Φm; · · ·) ∈ P ∪ Pm Φm = {(�+1 : φ1), .., (�+k : φk)}
ρ = rename(τ̂ , τ) � Σn

i=1{rename(τ̂i, τi)} prei ≡s (Δ ≈> ρφi)↓V

mkChk(prei, �.�
+
i , Φ̂i, Υi) ∀i ∈ 1..k Φ̂ =

Sk
i=1 Φ̂i Υ =

Sk
i=1 Υi

V ; Γ; Δ � m(v1..n) � � : m(v1..n) :: τ,Δ ◦U ρ(Δm), Φ̂, Υ

[Mtd−Declare]

md = t m(t1 v1, . . . , tk vk) {e} τi = fresh(ti) ∀ i = 1..n τ = fresh(t)

V =
Sk

i=1 FSV (τi) W = V ∪ FSV (τ) Γ = {v1 : τ1, . . . , vk : τk}
Δinit = init(Γ) V ; Γ; Δinit � e � e1 :: τ,Δ, Φ, Υ Q = {m〈W 〉 = Δ}

�I md � τ m(τ1 v1, . . . τkvk) where m〈W 〉; Φ;Υ{e1} | Q

[MkChk−1]

pre ≡ true

mkChk(pre, �+, ∅, ∅)

[MkChk−2]

pre ≡ false

mkChk(pre, �+, ∅, {�+})

[MkChk−3]

¬(pre ≡ true ∨ pre ≡ false)

mkChk(pre, �+, {�+ : pre}, ∅)

Figure 4. Type Inference Rules

sub with those from the actual parameters of the call. The new pre-
conditions are obtained by simplifying (≡s) the result of the oper-
ations (≈>) and ↓V . The operator ≈> formulates the implication of
an array-bound check by the corresponding calling context. It en-
sures that all size variables are expressed in terms of those of the
call arguments, and primed variables are used in the post-state of
the caller:

Δ ≈> φ =def (Δ ⇒ ρ(φ)) where ρ = {s1 �→s′1, . . . , sn �→s′n};
{s1, . . . , sn} = FSV (φ)

The operator ↓V projects a constraint to the boundary variable set V
through quantification of (size variables from) the local variables.
These variables are universally quantified, so that the resulting
precondition is strengthened (weakening via ∃ quantifier is unsound
in this case):

φ↓V =def ∀W · φ where W = FSV (φ) − V.

After its derivation, each precondition is classified by the rela-
tion mkChk(pre , A, B, C) to determine if the corresponding array
bound check can be eliminated safely, be left as runtime check, or
decided at a later stage (a partially-safe check). Here, A is a label
sequence leading to the specific bound-check, B outputs the check
if it is partially-safe, and C outputs the label sequence identifying
the check if it should be left at runtime. For the example above, we
have mkChk(pre1, �.L, ∅, ∅) and mkChk(pre2, �.H, {�.H : pre2}, ∅),
where � is a new label associated with the call sub(z, j). These
mkChk clauses indicate that the low-bound check is safe, while the
upper-bound check is partially safe.

For recursive methods, we first employ a fixed-point computa-
tion to derive both the method postcondition and a recursive invari-

ant. The invariant captures a size relation to relate the parameters of
an arbitrary-nested recursive call with those of the first call. Once
the postcondition and the invariant are determined, we can compute
the program state at each program point and derive preconditions
similarly to the non-recursive case. Details are given next.

5. Recursion Analysis
Our type inference rules effectively determine both a postcondition
and a set of preconditions for non-recursive methods. For recursive
methods, these rules derive a (recursive) constraint abstraction that
can be analyzed via fix-point analysis. The analysis steps are: (i)
determine a fix-point for the constraint abstraction, and derive the
method postcondition, (ii) determine an invariant for the recursive
calls, and (iii) derive preconditions for checks inside recursion.

5.1 Deriving Postcondition

The postcondition can be derived from a recursive constraint via a
fix-point approximation procedure pioneered in [11] and adapted
for a disjunctive domain in [1, 18, 39, 33]. Let us consider a con-
straint abstraction of the form q〈n∗, r〉 where n∗ denote inputs,
while r denotes its output. For simplicity and without loss of gen-
erality, let us assume we have a constraint abstraction with two re-
cursive invocations of the following form.

q〈n∗, r〉 = φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉]

Note that φ1[,] is a formula with two holes containing the two
recursive invocations, while φ0 is the base case. The fix-point of
such an abstraction can be formalised by the following series:

q0〈n∗, r〉 = false
qi+1〈n∗, r〉 = φ0∨φ1[qi〈s∗, r1〉, qi〈t∗, r2〉]

181

For the above fix-point series to converge, we perform approxima-
tions via two techniques, known as hulling and widening.

Hulling approximates a set of disjuncts
W

φi with a conjunct
φ such that (

W
φi) ⇒ φ. This process can be refined by hulling

selectively a subset of closely-related disjuncts. We use the notion
of affinity to characterize how closely related is a pair of disjuncts
[33]. This selective hulling process is denoted by

W
φi ≡h φ.

Conjunctive widening takes a formula
V

φi and drops (by re-
placing with true) those constraints φi that are changed compared
to the previous step. To apply the widening operator to a disjunctive
formula, we first look for pairs of disjuncts (from the current and
the previous step) to widen and then apply the conjunctive widening
on these pairs [33]. Let us denote widening by ≡w. We shall apply
each fix-point approximation until we obtain a formula qp〈n∗, r〉
such that qp+1〈n∗, r〉 ⇒ qp〈n∗, r〉. This test indicates that a post
fix-point qp〈n∗, r〉 has been reached.

Methods with Postconditions:
Float sumvec(Float[Ints] a,Inti i,Intj j)

where sumvec〈s, i, j〉, . . .
{ if i>j then 0.0 else {Int v= �1:sub(a,i);

v+�2:sumvec(a,i+1,j) } }
Float sum(Float[Ints] a) where sum〈s〉, . . .
{ Int l=�3:len(a); �4:sumvec(a,0,l-1) }

Constraint Abstraction :
sumvec〈s, i, j〉 ≡ (i>j)∨(i≤j ∧ 0≤i<s ∧ sumvec〈s, i+1, j〉)

Figure 5. Sum Vector Program

Consider the simple summation program from Figure 5, where
the constraint abstraction obtained from our inference rules is also
given. To obtain a closed-form postcondition, we apply fix-point
analysis starting with false, the least element of the disjunctive
polyhedron domain. Due to the use of widening, such fix-point
approximation always terminates. For brevity, we display related
constraints like (j−1≤i ∧ 0≤i ∧ i≤j) using the abbreviated form
(j−1, 0≤i≤j).

sumvec0〈s, i, j〉 = false
sumvec1〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧false))

= (i>j)
sumvec2〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧i1>j))

= (i>j)∨(0≤i<s ∧ i=j)
sumvec3〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1

∧ (i1>j ∨ (0≤i1<s ∧ i1 = j))))
= (i>j)∨(0≤i<s−1 ∧ j=i+1)∨(0≤i≤s∧i=j)
≡h (i>j)∨(j−1, 0≤i≤j<s)

sumvec4〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1
∧ (i1>j ∨ (0≤i1<s−1 ∧ j=i1+1)∨(0≤i1≤s∧i1=j)))))

≡h (i>j)∨(j−2, 0≤i≤j<s)
≡w (i>j)∨(0≤i≤j<s)

sumvec5〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1
∧ (i1>j ∨ (0≤i1≤j<s))))
= (i>j)∨(0≤i≤j<s)

Fix-Point Detected: sumvec5〈s, i, j〉 ⇒ sumvec4〈s, i, j〉
We reach the following fix-point in five iterations:

sumvec〈s, i, j〉 = (i>j)∨(0≤i≤j<s)

5.2 Deriving Recursive Invariant

Within each recursive method, we may have checks that must be
optimized. To deal with this, we compute another constraint, but
this time, for just the input parameters (excluding the results of
method). More specifically, we build a one-step size relation to
relate the parameters of the next recursive calls with those of the
first call. This relation is then analysed via fix-point analysis to

derive a multi-steps relation, known as recursive invariant. The
latter can relate the parameters of an arbitrary recursive call with
those of the first call.

One-step relation can be directly extracted from each recursive
constraint abstraction. Given the earlier abstraction (of two recur-
sive invocations), q〈n∗, r〉 = φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉]. We can ob-
tain a one-step relation, named I, that attempts to relate the input
n∗ with that of its recursive call, n̂∗, as shown below.

I〈n∗, n̂∗〉 = φ1[
^

(s = n̂)∗, q〈t∗, r2〉] ∨ φ1[
^

(t = n̂)∗, q〈s∗, r1〉]

With this relation, we can now apply fix-point analysis to obtain:

I1〈n∗, n̂∗〉 = I〈n∗, n̂∗〉
Ii+1〈n∗, n̂∗〉 = Ii〈n∗, n̂∗〉 ∨ (∃z∗ · Ii〈n∗, z∗〉∧I〈z∗, n̂∗〉)

We derive the following recursive invariant via fix-point analysis:

sumvecI〈s, i, j, ŝ, î, ĵ〉 = (ŝ=s)∧(ĵ=j)∧(0≤i<î≤s, j+1)

The recursive invariant is important for deriving safety precondi-
tions of checks inside recursive methods, as elaborated next.

5.3 Deriving Precondition

Our inference can derive preconditions for checks inside recursion.
Due to recursion, such checks may be encountered multiple times.
We propose to separate out the check of the first recursive call
from the checks of the rest of the recursive calls. The reason for
this is that recursive invariant that we derive is applicable to all
recursive calls, except the first. Consequently, the program state
for the first check and the program state for the recursive checks
are different. More specifically, consider a check c labelled as � at
program context s in a recursive method m with invariant i. Its two
preconditions can be derived as follows:

preFst(�) = ∀L · (s ⇒ c) where L = vars(s, c) − V
preRec(�) = ∀L · (s∧i ⇒ c) where L = vars(s, c, i) − V

For the sumvec example, we would derive two sets of precondi-
tions, namely:

preFst(�1.L) = (j<i)∨(0≤i)
preFst(�1.H) = (j<i)∨(i<s)
preRec(�1.L) = true
preRec(�1.H) = (j<s)∨(s≤j∧i≤−1)∨(s≤j, i)

These preconditions are propagated to the caller of each sumvec
call. Note that the precondition for (rest of the) recursive checks for
�1.L is totally safe, but the first check of �1.L can be guarded by a
condition (j<i)∨(0≤i). These different scenarios of array checks
can be exploited by program specialization, so as to maximise
the elimination of redundant checks whilst being mindful of the
potential for code explosion. We describe such a specialization
process in Section 7.

6. Deriving Smaller Formulae
An important property of program analysis is efficiency, and this is
particularly so for an inference system based on Presburger arith-
metic. Presburger arithmetic can give highly accurate analysis (with
disjunctions and quantifiers) but has double-exponential complex-
ity, namely 22cn

where n is the size of its formulae. A summary-
based analysis like ours brings about a smaller number of size vari-
ables at each method boundary than a global analysis approach.
With this decrease, the main proviso for efficiency is to ensure that
the pre and postconditions are kept small in size.

A major reason for large formulae is the presence of disjuncts
related to the specification aggregation problem observed in [25].
To counter this effect, a derived postcondition can be weakened

182

through the hulling of its disjuncts. However, applying a weakening
process is unsound for preconditions! For preconditions, it is only
safe to strengthen and we propose a new technique that improves
the analysis efficiency at a low cost in precision. We perform the
strengthening of the precondition φpre using the gist operation from
the Omega library [36].

Given a check c which occurs at a location with program state
s and local variables VL, we have earlier derived the weakest
precondition using pre = (∀VL · ¬s∨c). This derived precondition
is unsuitable due to the negation of a (possibly very large) program
state formula s. To derive smaller preconditions, we may simplify
pre using a valid state s1 for which (∃VL · s)⇒s1 holds.

• One such s1 that can be used is the type invariant inv at method
entry. Let us refer to this technique of using (gist pre given inv)
as weak pre-derivation.

• A second technique is to use ∃VL · s itself. Let us refer to this
technique using (gist pre given ∃VL · s) as strong pre-derivation.
This technique would strip off all the avoidance conditions
from the derived precondition, which may result in some loss
of precision.

• To recover this loss of precision, we also propose a third tech-
nique, called selective prederivation, which would first obtain
a variant of ∃VL · s that is weakened by removing conditional
tests from s.

For example, consider a symbolic program state from the recur-
sive sumvec method: ∃ î · s>0∧î≤j∧(0≤i<î≤s, j+1). After strip-
ping off its conditional test, î≤j, we would obtain a weaker state:

∃ î · s>0∧(0≤i<î≤s, j+1)

Simplifying the precondition of (j<s)∨(s≤j∧i≤−1)∨(0≤i∧s≤j, i)
with this program state results in a much smaller precondition,
namely j<s, that is obtained by both selective and strong pred-
erivations. This is in contrast to (j<s)∨(s≤j∧i≤−1)∨(s≤j, i) that
is obtained by weak prederivation.

In our experiments (see Section 9), we tested the three pred-
erivation techniques. When compared to the weak prederivation
technique, we were able to reduce the size of preconditions on
average by 63.4% for selective prederivation and by 81.8% for
strong prederivation. We found the selective prederivation to have a
reasonable compromise between efficiency and precision. Further-
more, we achieved a significant reduction in the inference times
needed by some larger programs which fail to complete in reason-
able (allotted) time, otherwise!

7. Flexivariant Specialization
The objective of specialization is to place run-time tests (for unsafe
checks) at their respective primitive operations with the objective
that array operations become safe, and the array checks are done
minimally. To this end, we specialize the existing method defini-
tions with information about run-time tests.

To understand the effectiveness of various approaches to spe-
cializing method definitions, we examine the following example
program:

void main()
{ · · ·

�5 : p(· · ·);
· · ·
�6 : q(· · ·)}

t2 p(· · ·)
{ · · ·

�3 : q(· · ·);
· · ·
�4 : q(· · ·)}

t1 q(· · ·)
{ · · ·
v1=(�1: sub(a1, i1));
�2: assign(a2, i2, v1)}

Let us assume that the results of inference are as follows:

Pre-Conditions for q
from �1 from �2

�1.L �1.H �2.L �2.H

true φ1 true φ2

Pre-Conditions for p
from �3 from �4

�3.�1.H �3.�2.H �4.�1.H �4.�2.H

true φ3 φ4 false

Pre-Conditions for main
from �5 from �6

�5.�3.�2.H �5.�4.�1.H �6.�1.H �6.�2.H

true true false false

This corresponds to the following inferred method headers with
partially-safe and unsafe checks.

t1 q(· · ·) where · · · {�1.H : φ1, �2.H : φ2}, {}
t2 p(· · ·) where · · · {�3.�2.H : φ3, �4.�1.H : φ4}, {�4.�2.H}
void main() where · · · {}, {�6.�1.H, �6.�2.H}

Thus, there are three unsafe checks that must be residualized at
run-time, namely �4.�2.H, �6.�1.H and �6.�2.H. The other checks are
either safe, or partially-safe with the possibility of becoming safe
using the context of the caller. An aggressive approach to elimi-
nating checks is polyvariant specialization. This aims at creating
multiple specialized methods for each method definition, such that
each specialized version of a method has a different set of array
checks being eliminated. Its application on our example program
yields the following result:

void main()
{ · · ·
p(· · ·);
· · ·
q 3(· · ·)}

t2 p(· · ·)
where .., φ3∧φ4

{ · · ·
q 1(· · ·);
· · ·
q 2(· · ·)}

t1 q 2(· · ·) where .., φ1

{ · · ·
v1 = sub(a1, i1);
if (i2 < len(a2)) then
assign(a2, i2, v1)

else error }

t1 q 1(· · ·) where .., φ1∧φ2

{ · · ·
v1 = (sub(a1, i1));
assign(a2, i2, v1) }

t1 q 3(· · ·) where ..,true
{ · · ·

v1 = (if (i1 < len(a1))
then sub(a1, i1)
else error);

if (i2 < len(a2)) then
assign(a2, i2, v1)

else error }
Note that three versions of q have been created to handle its three
calls under different calling contexts.

We propose a flexivariant program specialization scheme in
this paper. As special cases, we can either support polyvariant or
monovariant specializations. For polyvariance, we can achieve it by
never attempting to weaken any of the configurations encountered.
For monovariance, we can achieve it by weakening each configu-
ration encountered to its most conservative variant with maximal
unsafe checks. For this example, the monovariant case will weaken
the configurations of both q 1 and q 2 to q 3. Even though q 3 is the
weakest configuration, it still has two low bound checks eliminated.

A key feature of our flexivariant specialization scheme is its
ability to trade-off optimization for a reduction in code size. Fur-
thermore, it is possible to achieve such trade-offs with minimal loss
in performance. For example, if it can be determined that q 1 con-
figuration occurs infrequently, we may weaken it into q 2 to save
on code size with little loss in performance.

Flexivariant specialization of a program P into an optimized pro-
gram S is declared as follows: �flex P ⇀ S. Specializing a method
requires information about the set of runtime tests to which calls
in the method body may lead. Thus, a specialized method can be

183

identified by a triple comprising the original method name, a set
of label sequences associated with the relevant runtime tests, and a
new method name uniquely defined by the first two components of
the triple. We call such a triple a specialization signature (or signa-
ture in short), and a set containing such signatures a specialization
cache (or cache in short).

(m, ς, m̂) ∈ SSig = MName× LSet × MName
σ, σY , σN , σ̂N ∈ SCache = P(SSig)

ς ∈ LSet = P(Label+)

The specialization of an expression is defined by:

P, σ, ς �e
flex e ⇀ e1, σN

The specialization cache σ drives the process, while ς contains the
checks to be residualized. New specialization points created during
specialization are stored in σN . We highlight the most important
specialization rules below.

An array operation is specialized in [Spec−Prim] by calling
the respective primitive method without array checks under the
condition that the combined runtime checks for this operation, e1,
is true.

[Spec−Prim]

τ m(τ1 x1, . . . , τn xn) where Δ, Φ,C ∈ Pm

ρ = [x1 �→ v1, . . . , xn �→ vn]

e1 =
V{ρ e | �.c ∈ ς ∧ (c : e) ∈ C}

e2 = if e1 then m(v1, . . . , vk) else error

e3 = m(v1, . . . , vk) � (e1 = true) � e2

P, σ, ς �e
flex (� : m(v1, . . . , vk)) ⇀ e3, ∅

Here, a label sequence of the form �.c occurring in the set ς rep-
resents an array check to be residualized. Its code is available at
the corresponding primitive method declaration. Variable substitu-
tion is needed to residualize the code. All codes thus generated are
combined as a conjunct, named e1, which is then wrapped as a run-
time test for the primitive call to m. If the runtime set is empty –
signified by e1 being true – the m call will not be wrapped by a
conditional.

Similarly, user-defined methods are specialized with respect to
the set of runtime tests ([Spec−Call1]). Weakening of configura-
tions by W may enlarge this set of runtime tests. Specialization
produces a signature for this specialized method if the latter has
not been recorded in the current cache. Otherwise, it reuses the spe-
cialised method that has been recorded previously, as specified in
[Spec−Call2].

[Spec−Call1]

(τ m(τ1 x1, . . . τkxk) where Δ, Φ, Υ {e}) ∈ P

ς2 = W(m, ς1) ς1 = {�+ | �1.�+ ∈ ς} ∪ Υ
(m, ς2,) �∈ σ ms = genName(m, ς2)
P, σ, ς �e

flex (�1 : m(v1, . . . , vk))

⇀ ms(v1, . . . , vk), {(m, ς1, ms)}
[Spec−Call2]

(τ m(τ1 x1, . . . τkxk) where Δ, Φ, Υ{e}) ∈ P

ς1 = {�+ | �1.�+ ∈ ς} ∪ Υ (m,W(m, ς1), ms) ∈ σ
P, σ, ς �e

flex (�1 : m(v1, . . . , vk)) ⇀ ms(v1, . . . , vk), ∅

8. Array Indirections
There is a class of programs which has been largely ignored in past
work on array bound checks elimination. This class of programs
uses indexes that are stored in another array (indirection array).
Array indirections are used intensively for implementing sparse
matrix operations. For such matrices, only nonzero elements are

stored; Additionally, the indices of these elements are kept inside
an indirection array. Lujan et al [27] proposed a solution to handle
indirection arrays via a runtime mechanism. Our system handles
indirection arrays and relies entirely on compile-time analysis.

To support programs with indirection arrays, the bounds of their
elements will have to be captured using an additional size variable
a via a new annotated type for integer array Inta[Ints]. Precise
tracking will allow us to analyse the indexes retrieved from such
integer arrays. As the array elements are being changed by the
assign primitive, their bounds may also change during program
execution. Such size properties are therefore mutable. To handle
them safely, we require the support of an alias analysis, such as
the one proposed in [21], that could be used to identify may-aliases
amongst the integer arrays.

In addition to alias annotation, the main extra machinery is a set
of enhanced primitive declarations (preconditions and runtime tests
are unchanged, so we replace them for brevity with . . .).

Inta[Intr] newArr(Ints s, Intv v)

where (0<s ∧ r=s ∧ a=v ∧ noX{s, v}); . . .
Intr sub(Inta[Ints] a, Inti i)

where (0≤i<s ∧ r=a ∧ noX{i, s, a}); . . .
Void assign(Inta[Ints] a, Inti i, Intv v)

where (0≤i<s ∧ (a′=v ∨ a′=a) ∧ noX{i, s, v}); . . .

The array elements are updated by the newArr and assign prim-
itives, and read by the sub primitive. In particular, the formula
(a′=v ∨ a′=a) captures a weak update operation with a new ap-
proximation to the state of elements in the array. Furthermore, we
may even track the relation between array indexes and their ele-
ments by using the annotated type Int(i,a)[Ints] with a new size
variable i to denote index positions. By using primitives with such
type declarations, we can selectively support increased precision
for our analysis. Note that both the inference and the specializer
work with the above indirection array primitives as well as with the
array primitives without indirection from Section 3.1.

Let us illustrate how array indirections are analyzed via a simple
example that initializes an array with a range of integer values:

Void initArr (Inta[Ints] a, Inti i, Intj j, Intn n)
where initArr〈a, s, i, j, n〉

{ if i>j then () else {a[i]=n; initArr(a,i+1,j,n+1)} }

Using the fix-point analysis described in Sec 5, we can obtain
the following post-condition which captures the initialization of the
array elements:

initArr〈a, s, i, j, n〉 ≡
≡ (i>j ∧ a′=a) ∨ (0≤i≤j<s ∧ (a′=a ∨ n≤a′≤n+j−i))

9. Implementation
We have constructed the proposed modular inference system to-
gether with a program specializer. Our implementation includes a
pre-processing phase to convert a C-like input program to IMP. The
output from our system was validated by a separate checking sys-
tem that we have also built. The entire prototype system was writ-
ten in Haskell and compiled using Glasgow Haskell compiler[32].
For constraint solving in the Presburger arithmetic domain, we used
the Omega library [35]. A web-demo of our system can be found at
http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/imp/.

We evaluated our prototype using small programs with chal-
lenging recursion and two numerical-intensive benchmarks: Sci-
Mark (Fast Fourier Transform, LU decomposition, Successive

Over-Relaxation) [31] and Linpack [13]. Our test platform was a

184

Benchmark Programs Source Static Checking Inference (secs) Static Checks
(lines) Checks (secs) Weak Selective Strong Eliminated

binary search 31 2 0.17 1.84 1.81 1.79 100%
bubble sort 39 12 0.43 1.55 1.51 1.47 100%

foo 12 4 0.39 0.66 0.67 0.87 50%/75%
hanoi tower 38 16 3.73 11.74 11.53 11.47 100%
merge sort 58 24 7.70 11.21 16.01 13.07 100%

queens 39 8 0.52 2.13 2.11 2.10 100%
quick sort 43 20 0.38 1.92 1.92 1.76 100%
sentinel 26 4 0.05 0.18 0.16 0.15 75%

sparse multiply 46 12 3.27 22.61 17.37 7.09 100%
sumvec 33 2 0.11 0.51 0.48 0.47 100%

FFT 336 62 9.58 * 58.02 28.74 100%
LU Decomp. 191 82 13.10 137.1 93.31 72.91 100%

SOR 84 32 1.15 7.18 4.67 3.8 100%
Linpack 903 166 42.26 * 360.1 162.2 100%

Figure 6. Statistics for Array Bound Checks Elimination

Pentium 2.8 GHz system with 1GBytes main memory, running Red
Hat Linux 9.0.

Our main objective was to show the viability and the precision
of the system. Figure 6 summarises the statistics obtained for each
program that we inferred. To quantify the analysis complexity of
the benchmark programs, we counted the program size (column 2)
and also the number of static checks present in each program (col-
umn 3). The time taken for inference (columns 5-7) includes pars-
ing, preprocessing, modular type inference and specialization. For
comparison, we present the time taken for checking pre-annotated
programs (column 4), composed from parsing and dependent type
checking. The size of the method constraints (preconditions, post-
conditions and recursive invariants) is on average around 15% of
the size of the source program. Thus, our inference eliminates the
effort to annotate methods required of programmers with access to
only a dependent type checker.

Due to the precision of our inference system, we were able to
eliminate 100% of array checks for all the programs we tested,
except for sentinel and foo (column 8). The sentinel example
illustrates a pattern where some checks cannot be eliminated by
our method, since it makes use of a sentinel/guard against falling
off one end of the array. Like [45, 43], we were unable to capture
the existential property that is required for check elimination. For
the foo example, strong prederivation and selective prederivation
eliminate 50% and 75%, respectively, of the static checks.

We can compare our experimental results to other analyses
that are based on disjunctive domains similar to ours, but employ
only forward derivation [39, 33]. For the benchmark set used in
our previous work [33], a forward derivation and a fixed-point
analysis with Hausdorff affinity akin to [39] led to 76% check
elimination, while a forward analysis using planar affinity intro-
duced in [33] was able to eliminate 84% of the checks. Compared
to these two previous analyses, our current techniques achieve
100% check elimination. We can attribute this improvement to the
combination of the forward derivation of postconditions with the
backward derivation of preconditions. Another reason for our im-
proved results was the handling of array indirections present in the
sparse multiply and Linpack benchmarks.

In almost all cases, strong prederivation takes less time than se-
lective prederivation, followed by weak prederivation. As an excep-
tion, the increased precision of weak prederivation allows a faster
analysis of mergesort, since some bound checks are proved redun-
dant at an earlier point than the other two prederivation methods.
On the other hand, for those larger programs we found it crucial
to use either selective or strong prederivation; weak prederivation

does not scale up as inference fails to complete in reasonable time
(cases denoted by * signify over an hour inference time).

To summarize our experiences, we observe that our initial goal
was to build a precise inference system and make it practical by
employing a modular analysis that computes method summaries.
However, the small number of size variables at each method bound-
ary was not enough to ensure the efficiency of our system. The
backward component of our system proved to be expensive mostly
due to two reasons. Firstly, precondition derivation was done via
negation of a (possibly very large) program state formula. Sec-
ondly, array bound checks were specialized by deriving individual
preconditions, one for each check. This was our intention in or-
der to enable aggressive program optimization. Note that proving
program safety does not necessarily require individual precondi-
tion derivation (and, in our setting, can be less expensive). To cope
with these additional difficulties, we employed additional approx-
imations to reduce the size of method summaries: weakening of
postconditions via selective hulling and strengthening of precon-
ditions via gisting. With these techniques, both the inference and
the specializer were integrated into a system that was shown to be
practical and precise enough for our purposes.

10. Soundness of Inference System
The soundness of our type inference is defined with respect to
a type checking system and a specialization process. After type
inference (that includes fixed-point analysis), the inferred program
must be specialized to include the runtime tests discovered during
inference, before it becomes well-typed. We state the soundness of
our system below and refer the reader to the technical report [34]
for details on the proof.

THEOREM 1 (Soundness). Let P be a program and a type infer-
ence judgement such that (Pm �I P � PI). Let (�flex PI ⇀ PT)
be the specialization of PI to PT guided by the inferred runtime
tests. Then PT is well-typed.

As a special case, if no unsafe check is discovered during in-
ference then PI is well-typed. However, if unsafe checks are dis-
covered, the use of label sequences (eg., �6.�1.H) to identify array
checks also enables debugging feedback. Specifically, our analysis
can pin-point the exact location of each unsafe check based on the
calling hierarchy up until an unsatisfied precondition.

185

11. Related Works
Traditionally, data-flow analysis techniques have been employed to
gather information for the purpose of identifying redundant array
checks [19]. Within the scope of intra-procedural analysis, these
techniques are also used to gather anticipatable information for the
purpose of hoisting partially-redundant checks to more profitable
locations. The techniques have gradually evolved in sophistication,
from the use of family of checks in [24], to the use of difference
constraints in [3].

To identify redundant checks more accurately, verification-
based methods have been used by Suzuki and Ishihata [40], Necula
and Lee [29] and Xu et al [45]. Xi and Pfenning have advocated
the use of dependent types for array bound check elimination [43].
Their approach is limited to totally redundant checks. Moreover,
the onus for supplying suitable dependent types rests squarely on
the programmers, as only a type checker is available.

Precondition derivation with respect to a postcondition (or
check) has been formulated via generating its Verification Con-
dition (VC) by Flanagan et al [16, 17]. Their focus was to ob-
tain compact VCs whose size is worst-case quadratic to the size
of the source. However, they do not attempt to make precondi-
tions and postconditions any smaller through strengthening and
weakening, respectively. Furthermore, these VCs are for totally-
redundant checks. In contrast, our technique stresses on modularity
and deals with inter-procedural analysis over recursive methods,
whereas they focus on intra-procedural analysis and loops. Re-
cently, Flanagan [15] introduced the idea of inserting assertions
that cannot be proven during type checking as run-time checks.
Our use of a flexivariant specializer to insert runtime checks (after
inference) shares a similar flavour. However, our proposal is based
on inference, while his is formalised for a type-checker.

Identifying redundant array bound checks can also be done us-
ing abstract interpretation techniques over numerical domains. In a
seminal paper, Cousot and Halbwachs [11] introduced the polyhe-
dra abstract domain and defined convex-hull and widening opera-
tors for this domain. Subsequently, various other abstract domains
have been proposed, varying from conjunctive domains like oc-
tagons [28], pentagons [26] or symbolic ranges [38] to disjunctive
domains [39, 33]. In fact, safety analyzers that scale to large critical
programs like ASTRÉE [2] or C Global Surveyor [41] use elabo-
rate combinations of abstract domains to achieve maximum effi-
ciency. For example, the static analyzer that has been described by
Cousot et al [2, 10] succeeds in analyzing a program of 75 kloc with
no false alarm. It achieves this by varying the precision of arith-
metic abstract domains from interval domain to ellipsoid domain.
It also uses a decision tree abstract domain and trace partitioning
for path-sensitivity. These relational domains operate on packs of
variables for efficiency reasons. However, our analysis maintains
path-sensitivity and the same level of precision over the entire pro-
gram by exploiting modularity. Being a summary-based approach,
we have a bounded number of variables at method boundary and we
further ensure that preconditions are kept small via suitable pred-
erivation. Modularity has also been recognized as an important step
for static program analyses to scale up to precise analysis of large
programs [9] and our proposal is a solution in this direction.

To avoid fix-point iteration, Rugina and Rinard [37] proposed an
analysis method (using linear programming) to synthesize polyno-
mial symbolic bounds. While efficient, fixing a target form (with-
out disjunction) for the symbolic bound may result in loss of pre-
cision. Dor et al advocated for linear constraints, expressed using
pre/post conditions, to help determine the safety of C pointers to
string buffers [14]. For their experiments, the inference result is,
however, less precise than user-supplied annotations. This is likely
due to the absence of disjunction and path-sensitivity during infer-
ence.

The idea of deriving preconditions for partially redundant
checks was first proposed in [8] to complement postcondition in-
ference on sized types [7] for a first-order functional language.
However, this early work was mostly informal and had no im-
plementation. We formalize this early idea by inferring a sound
dependent-type annotation for an imperative language, and inte-
grating its results with a program specializer. Moreover, we now
have a practical and precise implementation.

Unlike the work in [6] which uses a separate set-based analy-
sis for properties of elements in a collection, the current paper uses
arithmetic constraints to represent such properties directly for indi-
rection arrays. This decision reduces the burden of using two differ-
ent analyses. On the other hand, the set-based analysis approach [6]
may give more precise results via universal and existential proper-
ties, and deal with elements which may not be integers.

Flexivariant specialization scheme enables a trade-off to be
made, that can give up some array check optimization for a re-
duction in code size. Such trade-off can be guided with the help
of suitable path-profiling techniques[42]. Such a compromise was
originally pioneered in a technique, called selective specializa-
tion [12], to convert expensive dynamic method dispatches for OO
programs into static counterparts, where possible. Our flexivariant
scheme supports the proposed inference with a family of specializ-
ers, with selective specialization as a possible option.

12. Conclusion
We have proposed a new inference mechanism for a dependent type
system with size relations. Our approach captures postcondition in
the presence of imperative updates, and derives safety precondi-
tions for each check encountered. Both the postcondition and safety
precondition are propagated interprocedurally, though in opposite
directions. Recursive methods are also handled through a fix-point
analysis on constraint abstraction derived via inference. The result-
ing analysis is not only flow and context-sensitive, but is also path-
sensitive. It can capture symbolic program states between local
variables, inputs and outputs. Initial experiences with a prototype
implementation suggest that such an advanced form of type infer-
ence is both precise and efficient. Just as the present analysis is em-
powered by the use of Presburger arithmetic, it is inevitably limited
by the linearity of expressible constraints. However, by first sub-
jecting the original program to pre-processing such as partial eval-
uation (using constant propagation and loop unrolling), our analysis
can discover more linear constraints, and thus further improve its
effectiveness.

Acknowledgments
This work was supported by NUS grant R252-000-213-112 and
A*STAR grant R-252-000-233-305. It was also supported in part
by Microsoft Research through its Ph.D. Scholarship program for
the second author. We thank Siau-Cheng Khoo for his profound and
sound advices. We also thank anonymous referees for their careful
comments.

References
[1] R. Bagnara, P.M. Hill, and E. Zaffanella. Widening operators for

powerset domains. In Verification, Model Checking and Abstract
Interpretation, pages 135–148, 2004.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In ACM Conference on Programming Language Design
and Implementation, pages 196–207, 2003.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds
checks on demand. In ACM Conference on Programming Language
Design and Implementation, pages 321–333, 2000.

186

[4] R. Bodik, R. Gupta, and M.L. Soffa. Complete removal of redundant
expressions. In ACM Conference on Programming Language Design
and Implementation, pages 1–14, June 1998.

[5] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference.
In ACM Symposium on Principles of Programming Languages, 1999.

[6] W. N. Chin, S. C. Khoo, and D. N. Xu. Extending sized type with
collection analysis. In Proceedings of the ACM SIGPLAN Workshop
on Partial evaluation and semantics-based program manipulation,
pages 75–84. ACM Press, 2003.

[7] W.N. Chin and S.C. Khoo. Calculating sized types. In ACM SIGPLAN
Symposium on Partial Evaluation and Program Manipulation, pages
62–72, Boston, Massachusetts, January 2000.

[8] W.N. Chin, S.C. Khoo, and Dana N. Xu. Deriving pre-conditions for
array bound check elimination. In 2nd Symp. on Programs as Data
Objects, pages 2–24, Aarhus, Denmark, May 2001. Springer Verlag.

[9] P. Cousot and R. Cousot. Modular static program analysis. In
International Conference on Compiler Construction, 2002.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTREÉ analyzer. In European Symposium on
Programming, pages 21–30, 2005.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In ACM Symposium on Principles of
Programming Languages, pages 84–96, 1978.

[12] J. Dean, C. Chambers, and D. Grove. Selective specialization for
object-oriented languages. In ACM Conference on Programming
Language Design and Implementation, pages 93–102, 1995.

[13] J.J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
Past, present, and future. Concurrency and Computation: Practice
and Experience, 15:1–18, 2003.

[14] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for
statically detecting all buffer overflows in C. In ACM Conference on
Programming Language Design and Implementation, pages 155–167,
2003.

[15] C. Flanagan. Hybrid type checking. In ACM Symposium on Principles
of Programming Languages, pages 245–256, 2006.

[16] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. In ACM Symposium on Principles of Programming
Languages, 2002.

[17] C. Flanagan and J.B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In ACM Symposium
on Principles of Programming Languages, 2001.

[18] B.S. Gulavani and S.K. Rajamani. Counterexample driven refinement
for abstract interpretation. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2006.

[19] R. Gupta. A fresh look at optimizing array bound checking. In ACM
Conference on Programming Language Design and Implementation,
pages 272–282, New York, June 1990.

[20] J. Gustavsson and J. Svenningsson. Constraint abstractions. In
Programs as Data Objects II, pages 63–83, Aarhus, Denmark, May
2001.

[21] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of C code in a second. In ACM Conference on
Programming Language Design and Implementation, 2001.

[22] C. A. R. Hoare and J. He. Unifying Theories of Programming.
Prentice-Hall, 1998.

[23] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of
reactive systems using sized types. In ACM Symposium on Principles
of Programming Languages, pages 410–423. ACM Press, January
1996.

[24] P. Kolte and M. Wolfe. Elimination of redundant array subscript range
checks. In ACM Conference on Programming Language Design and
Implementation, pages 270–278. ACM Press, June 1995.

[25] P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in

program specification and analysis. In International Conference on
Aspect-Oriented Software Development, March 2005.

[26] F. Logozzo and M. Fahndrich. Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses. In ACM
Symposium on Applied Computing, 2008.

[27] Mikel Luján, John R. Gurd, T. L. Freeman, and José Miguel. Elimi-
nation of Java array bounds checks in the presence of indirection. In
ACM Joint Java Grande-IScope Conf., pages 76–85, 2002.

[28] A. Mine. The octagon abstract domain. In the Eighth Working
Conference on Reverse Engineering, 2001.

[29] G. Necula and P. Lee. The design and implementation of a certifying
compiler. In ACM Conference on Programming Language Design
and Implementation, pages 333–344, 1998.

[30] T.V.N. Nguyen and F. Irigoin. Efficient and effective array bound
checking. ACM Trans. Program. Lang. Syst., 27(3):527–570, 2005.

[31] National Institute of Standards and Technology. Java SciMark
benchmark for scientific computing. http://math.nist.gov/scimark2.

[32] Simon Peyton-Jones and et al. Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

[33] C. Popeea and W.N. Chin. Inferring disjunctive postconditions. In
ASIAN CS Conference, 2006.

[34] C. Popeea, D.N. Xu, and W.N. Chin. A practical and precise inference
and specializer for array bound checks elimination. Technical report.
http://www.comp.nus.edu.sg/~corneliu/research/array.tr.pdf.

[35] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis. Communications of the ACM,
8:102–114, 1992.

[36] W. Pugh. Counting solutions to Presburger formulas: how and
why. In ACM Conference on Programming Language Design and
Implementation, 1994.

[37] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. In ACM Conference on
Programming Language Design and Implementation, pages 182–195.
ACM Press, June 2000.

[38] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis
using symbolic ranges. In International Static Analysis Symposium,
pages 366–383, 2007.

[39] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static
analysis in disjunctive numerical domains. In International Static
Analysis Symposium, Springer LNCS, Seoul, Korea, August 2006.

[40] N. Suzuki and K. Ishihata. Implementation of an array bound checker.
In ACM Symposium on Principles of Programming Languages, pages
132–143, 1977.

[41] A. Venet and G. Brat. Precise and efficient static array bound
checking for large embedded C programs. In ACM Conference on
Programming Language Design and Implementation, pages 231–242,
2004.

[42] Y. Wu and J.R. Larus. Static branch frequency and program profile
analysis. In Proceedings of the 27th annual international symposium
on Microarchitecture, pages 1–11. ACM Press, 1994.

[43] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In ACM Conference on Programming Language
Design and Implementation. ACM Press, June 1998.

[44] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In ACM Symposium on Principles of Programming
Languages, pages 351–363, 2005.

[45] Z. Xu, B.P. Miller, and T. Reps. Safety checking of machine
code. In ACM Conference on Programming Language Design and
Implementation, pages 70–82. ACM Press, June 2000.

187

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

