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ABSTRACT
Most of the past languages for reactive systems are based
on synchronous dataflow. Recently, a new reactive lan-
guage, called Real-Time Functional Reactive Programming
(RT-FRP) [18] , has been proposed based on the functional
paradigm. The unique feature of this language is the high-
level abstraction provided in the form of behaviors for conti-
nuous-time signals, and events for discrete-time signals. RT-
FRP also features some performance guarantees in the form
of bounded runtime and space usage for each reactive com-
putation step.
In this paper, we propose a new compilation scheme for

RT-FRP. Our compilation scheme is based on two key stages.
In the first stage, we translate RT-FRP program to an in-
termediate functional code. This code is deliberately kept
at high level for two reasons. First, it is easier for us to vali-
date its correctness. Second, it allows us to apply high-level
source-to-source transformation to achieve further optimiza-
tion. The second stage attempts to compile the intermediate
code to a corresponding automata code. Our main novelty
is the use of two high-level transformation techniques for
this compilation. The first technique, partial evaluation, at-
tempts to propagate constant values (wherever feasible) in
order to perform more aggressive specialization. The sec-
ond technique, tupling, combines mutually dependent au-
tomata together into a composite automaton whenever pos-
sible. Both techniques are needed for generating fast target
code for RT-FRP.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – optimization;
I.2.2 [Artificial Intelligence]: Automatic Programming – Pro-
gram transformation.
General Terms
Algorithm, Performance, Languages
Keywords
Reactive System, Partial Evaluation, Tupling
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1. INTRODUCTION
Reactive systems are required to react in a timely man-

ner to external events. Their use can be found in a broad
range of applications, ranging from high-end consumer prod-
ucts (digital radio, intelligent cookers) to systems used in
mission-critical applications (such as air-craft and nuclear-
power stations).
Programming these systems poses a great challenge, and

a number of programming languages have been proposed
over the last two decades. Two main concerns are typically
addressed in these languages. Firstly, some features must
be available to express signals and events, and how they are
transformed by the intended reactive systems. Secondly, we
must be able to show that each reaction could be carried
out in a safe way using bounded computational resources.
Satisfying both these concerns is actually non-trivial as their
aims may be contradictory.
We adopt a recently proposed functional reactive pro-

gramming language for real time reactive system, called RT-
FRP, for this purpose. We believe that reactive systems
can be conveniently specified using high-level concepts that
are available in this language. Reactive system is typically
implemented through an automaton. Automata have very
simple structure with only states and transitions that can
be efficiently implemented. They are also expressive as they
can cover a wide range of problems. These properties make
them versatile tools for implementing reactive systems [9].
Our main contribution is to show that an efficient implemen-
tation exists through our proposal for compiling RT-FRP all
the way down to automata code.
The paper is organized as follows. Section 2 gives a brief

description of RT-FRP. Section 3 presents some details of
compiling RT-FRP to an intermediate functional code; while
section 4 highlights some techniques to compile these codes
further to automata code. We summarize the paper and
propose some future work in section 5.

2. REAL TIME FUNCTIONAL REACTIVE
PROGRAMMING (RT-FRP)

In this section, we give an overview of RT-FRP [18] and its
possible implementation, as described in [17] that improves
upon some of the disadvantages of past reactive languages.
Prior to the proposal for RT-FRP, both Elliot and Hudak
had invented and developed a functional reactive program-
ming approach, known as FRP [8]. FRP is essentially a
declarative programming paradigm that is anchored at two
fundamental notions essential to the reactive programming,
namely:
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a. continuous time-varying behaviors, and

b. discrete event-based reactivity.

Behavior can be abstractly represented as a function of
T ime to value. For example, we may define continuous be-
havior in Haskell by:

type Behavior a = Time → a

Events on the other hand are essentially time-ordered se-
quences of discrete values that can be perceived by:

type Event a = [(Time, a)]

In RT-FRP, behavior and event are implemented using
sampling technique [9]. Specifically, events can be approxi-
mated to instances of behaviors of theMaybe types as follows
[18]:

Event a ≈ Behavior (Maybe a)
data Maybe a = Nothing | Just a

When an event occurs, it gives a value Just x for some
x . If the event does not occur, it provides Nothing as a
output. Sampling technique makes use of streams to capture
values of behaviors and events at designated sampling times.
Such an approach would use the following implementation
for behaviors and events [7].

type Behavior a = [Time] → [a]
type Event a = [Time] → [Maybe a]

Here, a behavior is regarded as a function that takes an
infinite stream of sample times as input, in order to give
an infinite stream of output values. Similarly, an event is
also such a function. Using this implementation, time is
considered as a primitive behavior that is implemented by

time :: Behavior Time
time = \ ts → ts

FRP has been used successfully in many reactive pro-
gramming domains, including animation [16], robotics [15]
and graphical user interfaces [6]. However, one of the main
weaknesses of FRP is that it does not guarantee resource-
boundedness, both in time and in space. This boundedness
property is a very crucial aspect of real time reactive sys-
tems.
The recently proposed language RT-FRP can be consid-

ered as a subset of FRP with a clever combination of syn-
tactic restriction and type system. The imposed restrictions
have been shown to be useful for ensuring the resource-
boundedness property for space and time that is needed to
carry out each reaction [18].
The RT-FRP language consists of two parts: a reactive

part and a base language part. The expressive power of the
reactive part is comparable to Synchronous Kahn Network
since it allows mutual recursion and higher order functions
[3]. Synchronous Kahn Network may have unbounded com-
putation. It has been shown that the cost (in terms of both
time and space) of each execution step for a given RT-FRP
program is statically bounded, if every expression in the
base language is similarly bounded [18]. Figure 1 gives the
syntax of both the base language and reactive language of
RT-FRP where x and c are syntactic categories of variables
and real numbers respectively.

— base language syntax
e ::= x | c | () | (e1, e2) | e⊥ | ⊥ | λ x .e | e1 e2

v ::= c | () | (v1, v2) | v⊥ | ⊥ | λ x .e

— reactive language syntax
s, ev , u ∈ SignalR
s, ev ::= input | time | ext e | delay v s |

let snapshot x ← s1 in s2
s1 switch on x ← ev in s2 |
let continue {kj xj = uj } in s |
u

u ::= s until < evj ⇒ kj >

Figure 1: RT-FRP language syntax.

In Figure 1, e and v represent expressions and values re-
spectively. The terms e⊥ and ⊥ can be viewed as Just e and
Nothing respectively in Haskell. k is the syntactic category
of continuation variables. The construct ext supports the
interface between reactive and base languages by exporting
snapshots of signal values to the base language. The same
construct also allows base language values to be imported
back into the signal world. Both snapshots and ext allow
us to move between signal world and the value world. They
can be implemented using lift operators, as we shall see in
the section 3.

3. TRANSLATING RT-FRP TO FUNCTIONAL
CODE

In order to realize an efficient implementation for RT-
FRP programs, we propose a two-stage compilation that
first translates RT-FRP programs to an intermediate func-
tional code, before proceeding to compile the intermediate
code to corresponding automata.
In this section, we shall describe the idea for translating

RT-FRP to functional code. We choose to use a functional
language for intermediate code for two reasons. Firstly, it
allows us to verify the correctness of our compilation more
easily. Secondly, the use of such a high-level intermediate
form also allows us to perform sophisticated optimization.
In particular, we are interested in targeting automata (even-
tually in the form of an imperative program) as our final
code.
While the second part of the compilation process has not

been fully realized, we have done some preliminary work that
showed how high-level program transformation techniques
from partial-evaluation [12] and tupling [4] may be adapted
to achieve our objective.

3.1 Stream Based Implementation
We propose to translate programs written into RT-FRP

into an equivalent functional-style intermediate code (we call
it BExp). We adopt stream-based implementation and shall
first draw on some operators that have been used in FRP [7]
for concise implementation. A stream based implementation
is shown in Appendix A.
A reactive behavior can be defined using untilB . The

operator untilB takes a behavior b and an event e, it changes
the behavior b when event e occurs. The occurrence of event
e generates a new behavior to be followed after the time of
its occurrence.
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Operator switcher assembles a behavior piecewise from an
initial one and an event. For example, we can have a signal
s2 defined as follows

s2 = b1 ‘switcher ‘ (e1 =⇒ b2 .|. e2 =⇒ b3)

which means initial behavior is b1, either event e1 or e2
occurs, it changes. If event e1 occurs, it will change to
the behavior produced from (e1 =⇒ b1), similarly if event
e2 occurs, it will change to the behavior produced from
(e2 =⇒ b2) where =⇒ is a function defined in Appendix A.
The operator delay is not defined in FRP. This operator

is meant to delay a given signal by a unit of time. It is
actually related to the timeTransform operator in FRP. The
implementation of delay is shown in Appendix A.
It translates expression ext, we need to lift them so that

they can perform computations on lists. Here, a special
operator namely ($*) is used. It takes Behavior (a → b)
and Behavior a and returns Behavior b. Lifting functions
are defined as follows with the help of this operator.

lift0 = constantB

where constantB is a function that take a value and produce
a list such value, for example, constantB 5 = [5, 5, . . . , 5].

lift1 f b1 = lift0 f $* b1
lift2 f b1 b2 = lift1 f b1 $* b2
lift3 f b1 b2 b3 = lift2 f b1 b2 $* b3

3.2 Generating Intermediate Functional Code
Translating RT-FRP to functional code requires a special

environment : variable environment ε. The variable envi-
ronment maps snapshot variables to signal variables. The
translated signal definitions in functional code are kept in
a signal environment κ. This maps signal variables to their
corresponding signal definitions. Translation function is de-
noted by [[]]tr, and defined in Figure 2.
Function lookupε takes an expression in the base language

and a variable environment and returns a pair of lists of free
variables in the expression and their corresponding signal
variables. For example, we have ε = [. . . , (a, s1), (b, s2)]
and lookupε (a + b) gives ([a, b], [s1, s2]). newVar gener-
ates new variables. � updates an variable environment, as
well as unions two sets of signal definitions. The correctness
of the translation can be easily proven with the extension of
the proof in RT-FRP paper.
To illustrate the key idea used in our translation, we shall

illustrate how some simple RT-FTP expressions are trans-
lated to their functional equivalent:
Given

w1 = let snapshot x ← time in ext (x + 1)

the following functional intermediate code will be produced:

w1 = lift1 (\ x → x + 1) xs

xs = time

Note that ext (x + 1) is translated to a lift operation with
the appropriate signals piped into this operation. For any
given snapshot x, a corresponding variable xs is used to
capture the signal output at that snapshot. In the above
case, xs is equivalent to time. However, in general, it could
be any arbitrary signal expression.
For another example, consider:

— ———–input RT-FRP program————
w1 = let snapshot x ← time in

ext (x + 1)
w2 = let snapshot x ← w1 in

let snapshot y ← time in
ext (x + y)

w3 = let snapshot t0← time in
let snapshot t1← delay 0 time in
ext (t0 − t1)

w4 = ext (0) switch on x ← w1 in
ext (x )

w5 = let snapshot y1← w1 in
let snapshot y2← w4 in
let snapshot x ← time in
let continue {k1 y = ext (y1)

until < ext (x )⇒ k2 >,
k2 y = ext (y2)

until < ext (x )⇒ k1 >} in
ext (y1) until < ext (x )⇒ k2 >

— ————output in BExp———————
w1 = lift1 (\ x → x + 1) time
w2 = lift2 (\ x → \ y → x + y) w1 time
w3 = lift2 (\ t0→ \ t1→ t0− t1) time (delay 0 time)
w4 = (lift0 0) switcher w1 =⇒

(\ x7→ lift1 (\ x → x ) x7)
w5 = lift1 (\ y1 → y1) w1 untilB

lift1 (\ x → x ) time =⇒ kj14
kj13 = \ xj15 → lift1 (\ y1 → y1) w1 untilB

lift1 (\ x → x ) time =⇒ kj14
kj14 = \ xj18 → lift1 (\ y2 → y2) w4 untilB

lift1 (\ x → x ) time =⇒ kj13

Figure 3: Sample Running

w2 = let snapshot x ← delay 0 ext (x + 1) in
let snapshot y ← ext 0 in ext (x + y)

Here two auxiliary signals will be generated, in addition
to the main signal as shown below (after renaming).

w2 = = lift2 (\ x y → x + y) xs ys

xs = delay 0 (lift1 (\ x → x + 1) xs)
ys = lift0 0

When a time signal is encountered, we replace it by the
corresponding time signal. We do a similar translation for
the delay operation. Since ext expression is meant for con-
verting a base expression into a signal expression, we trans-
late it to a lift operation. For each snapshot variable relating
to a signal w, we first translate w to functional code, assign
it a name, and replace the snapshot variable by this name.
We show the outcome of our translation with a number of
small RT-FRP programs in Figure 3.

4. COMPILING TO AUTOMATA CODE
Reactive system is typically implemented through an au-

tomaton. Automata have very simple structure with only
states and transitions that can be efficiently implemented.
They are also expressive as they can cover a wide range of
problems. These properties make them versatile tools for
implementing reactive systems. The basic construct behind
synchronous languages is the notion of synchronous concur-
rency. This notion is inspired by Milner’s synchronous prod-
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[[]]tr :: REqn → VEnv → KEnv

[[ {vj = erj }j=1 ... n ]]tr ε =
F {κj }j=1 ... n � {(xb1, es1), . . . , (xbn , esn )}

where (esj , κj ) =[[ erj ]] ε′ ∀ j = 1 . . . n
ε′ =ε � {(v1, xb1), . . . , (vn , xbn)}
xbj =newVar ∀ j = 1 . . . n

[[ {kj y = erj }j=1 ... n ]]tr ε = (ε′, κ′)
where κ′ =

F
κj j=1 ... n � {(xb1, \ y → es1), . . . , (xbn , \ y → esn)}

(esj , κj ) =[[ erj ]] (ε′ � {(y , y)}) ∀ j = 1 . . . n
ε′ =ε � {(k1, xb1), . . . , (kn , xbn)}
xbj =newVar ∀ j = 1 . . . n

[[]]tr :: RExp → VEnv → (BExp,KEnv)

[[input]]tr ε = (input, ∅κ)

[[time]]tr ε = (time, ∅κ)

[[ext e]]tr ε = (liftk (\ v1 . . . vk . e) w1 . . . wk , ∅κ)
where ([v1 . . . vk ], [w1 . . .wk ]) = lookupε e ε

[[delay v s]]tr ε = (delay v s′, κ)
where (s′, κ) = [s]tr ε

[[let snapshot x s1 s2]]tr ε = (s2′, κ1 � κ2 � {(xb1, s1′)})
where (s2′, κ2) = [[ s2]]tr (ε � {(x , xb1)})

(s1′, κ1) = [[ s1]]tr ε
xb1 = newVar

[[ s1 switch on x ev s2]]tr ε = (s1′ ‘switcher ‘ (ev ′ =⇒ \ x → s2′), κv � κ1 � κ2)
where (ev ′, κv ) = [[ ev ]]tr ε

(s1′, κ1) = [[ s1 ]]tr ε
(s2′, κ2) = [[ s2 ]]tr (ε � {(x , x)})

[[ s until < evj ⇒ kj >j=1..n ]]trε =
(s′ ‘untilB ‘ (ev ′

1 =⇒ k ′
1 .|. . . . .|. ev ′

n =⇒ k ′
n), κs � F {κj }j=1 ... n)

where (ev ′
j , κj ) = [[ evj ]]tr ε ∀ j = 1 . . . n

(s′, κs ) = [[ s]]tr ε
k ′
j = lookupε kj ε ∀j = 1 . . . n

[[let continue {kj xj = uj }j=1..n in s]]tr ε = (s′, κs � κ′)
where (s′, κs ) = [[ s ]]tr ε′

(ε′, κ′) = [[ {kj xj = uj }j=1..n ]] ε k ′
j = \ xj → [[ uj ]]trε κ′

Figure 2: Translation Rules.

uct [13, 14]. In the sampling scheme [9] (RT-FRP belongs
to sampling scheme), when a set of automata is composed
in parallel, the compound transition for this product (or
set) is equivalent to simultaneous transitions for each of the
automata. Each automaton considers the output of other
automata as its own input for each compound transition.
Inter-automata communication is often done through broad-
casting.
This motivates us to make an attempt to compile RT-

FRP to automata. A brief description of the algorithm is
given in Section 4.1. A step-by-step illustration of compil-
ing a specific example is given in Section 4.2. The resulting
automata is shown in diagrammatic form in Section 4.3. Sec-
tion 4.4 shows how we use tupling method [4] to implement
synchronous concurrency.

4.1 Description of our Algorithm
As our intermediate code is expressed at high-level, we are

able to employ sophisticated transformation techniques to
help us derive corresponding automata code. In particular,
we shall make use of partial evaluation [12] and unfold/fold

techniques [2] to compile a RT-FRP program to automata
code.
We first describe the terminology used in our algorithm.

Note that streams can be expressed in the form delay v s.
For any given signal variable x, we define the instantiate
of x by expressing it as delay x � x (we call it delay form)
where x � and x are two new variables. x � denotes the cur-
rent snapshot value, while x denotes the rest of x (after
the current snapshot value). The use of this time-relative
annotation can help us avoid the introduction of redundant
names. There is another annotation we shall be using (in
the next section), namely x � which denotes a previous (last
most recent) value of x.
We can summarize the various annotations in the follow-

ing table:
The following is the syntax of our automata code.

C := delay e C1 | case {e0i : delay e1i Ci}i=1, ..., m

Each configuration corresponds to a state in an automaton.
The first syntactic form represents a direct transition from
a state (C ) to another state (C1); e is the output value pro-
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Time
(ti, i = 1, 2, 3, . . .) Notation Definition

- x signal x
ti x� value of the signal x at

current sample time
ti−1 x� value of the signal x at

previous sample time
tn, n > i x signal x from

t = i+ 1 onwards

Table 1: Definitions of time-relative annotation

duced during the transition. In the second syntactic form,
a state (C ) can be transited to several states (Ci), depend-
ing on the test e0i associated with the state C . Again,
e1i is the output value produced when transition to Ci oc-
curs. To ensure the finiteness of configuration state, we allow
parameterization of configuration with some values. A pa-
rameterized configuration is denoted by C [x1, . . . , xn ]. We
shall write C instead of C [] when the configuration has no
parameter.
Given a signal expression s, we can define a pre-configuration

C [x1, . . . , xn ] = s ′, such that s ′ is obtained from s by gener-
alizing all its constants (of type with unbounded variation,
such as integers) to variables x1, . . . , xn. Note that s ′ has
not yet been converted to the format of automata code. We
maintain such pre-configuration in a pre-configuration store
σ.

Unfolding rules are defined by the operator [[]]uf in Figure
4. Unfolding a signal always yields a signal expressed in
delay form. Unfolding always terminate – this can be proven
by induction on the structure of signal expressions.

Folding a signal expression s requires consultation of the
pre-configuration store, σ, for matching against previously
defined configuration. It also requires viewing the signal
from a particular frame of reference – the time factor. It is
defined as follows:

1. Assume the current frame of reference is at time ti+1.
Thus, a value produced by s at time ti is viewed as
the previous (most recent) value of s. Consequently,
all variables in s of the form x� will be converted to
x�, and x to x. The converted signal is denoted by s′.

2. Match s′ against configurations in σ. If match suc-
ceeds, replace s′ by the corresponding configuration
name (with appropriate arguments). Return the con-
figuration name and a boolean value True. Otherwise,
return a null name and a value False.

The compilation algorithm for a set of signal definitions
in the intermediate functional code, can now be defined as
follows:
For each signal definition be of the form s = es, define a

pre-configuration, with name C[x1, . . . , xn]. Keep the pre-
configuration in the pre-configuration store σ. Furthermore,
create an empty configuration store Σ.
While σ is non-empty, repeat the following:

1. Retrieve a pre-configuration C[x1, . . . , xn] = es1 from
σ.

2. Instantiate C[x1, . . . , xn] to delay c� c , with some new
variables c� and c .

[[ time ]]uf = delay t time
— t is the current time

[[ input ]]uf = delay i input
— i is the current input

[[ delay v s ]]uf = delay v s

[[ s1 switcher ev =⇒ f ]]uf
= letdelay v s1′ = [[ s1]]uf

delay w ev ′ = [[ ev ]]uf
in case { w = Nothing :

delay v (s1′ switcher ev ′ =⇒ f ),
w = (Just e) :

delay v ((f e) switcher ev ′ =⇒ f )}

[[ s1 untilB (ev ′
1 =⇒ k ′

1 . . .
.|. ev ′

j =⇒ k ′
j . . .

.|. ev ′
n =⇒ k ′

n)]]uf
= let delay v s1′ = [[ s1]]uf

delay w1 ev ′
1 = [[ ev1]]uf

:
delay wj ev ′

j = [[ evj ]]uf
:

delay wj ev ′
n = [[ evn ]]uf

in case {(w1, . . . , wn ) == (Nothing , . . . , Nothing) :
delay v (s1′ untilB (ev ′

1 =⇒ k ′
1 . . .

.|. ev ′
j =⇒ k ′

j . . .

.|. ev ′
n =⇒ k ′

n)),
(. . . , wj−1, wj , wj+1, . . . ) ==

(. . . , Nothing , Just e, Nothing , . . . ) :
delay v (k ′

j e)}
[[ lift0 e ]]uf = delay e (lift0 e)

[[ lift1 (\ x1 → e) (delay v1 v)]]uf
= delay e[v1/x1] (lift1 (\ x1 → \ x2 → e) v)

[[ lift2 (\ x1 → \ x2 → e) (delay v1 v) (delay w1 w) ]]uf
= delay e[v1/x1,w1/x2] (lift2 (\ x1 → \ x2 → e) v w)

:
:

Figure 4: Unfolding rules

3. Derive the configuration for C[x1, . . . , xn] by subject-
ing es1 to the following steps:

(a) es1a ← Instantiate all signal variables in es1;

(b) es1b ← [[es1a]]uf . The es1b will be of the form

case {ti : delay vi si}i=1,...,m.

(c) es1c ← case {t′j → delay v′j sj}i=1,...,n, where t′i,
and v′i are the result of simplifying the expressions
ti and vi respectively.

(d) For each branch delay v′i si in es1c, unify it with
delay c� c created at step 2, resulting in a signal
of the form delay v′′i s′′i . Update es1c to yield
es1d.

(e) For s′′i in each branch delay v′′i s′′i of es1d, fold it
against the configuration store σ. If folding fails,
define a pre-configuration for s′′i , and replace s′′i
in es1d by the pre-configuration name. Add the
new pre-configuration definition in σ. Applying
fold and define to all branches of es1d yields a
new expression, denoted by es2.
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(f) Add C[x1, . . . , xn] = es2 to the final configuration
store Σ, and delete the pre-configuration C[x1, . . . , xn]
from σ.

During unfold/folding/define process, compiled code is
obtained which corresponds to some automata. Thus, the
number of states generated increases with the depth of un-
folding.

Termination of the algorithm

Proof. (Sketch) As every unfolding step always termi-
nates, we just need to show that there are finite number
of configurations. This is guaranteed when there are finite
number of different signal expressions es1d produced at Step
(d) of the algorithm (and thus finite number of es2.)
Since es1d is of the form case {e0′i → delay e1′′i s′′i }i=1,...,n,

we need to show that there are only finite number of different
e0i , e1′′i and s ′′i .
Both e0i and e1′′i are of finite variation because – thanks

to the abstracting process performed during define step – all
constants of unbounded variety have been generalized, and
all time-related variables used referred to at most three time
stamp: previous (most-recent), current, and future.
The proof for s ′′i having finite variation can proceed by an

induction over the structure of the expressions produced by
unfold process, together with the fact that all values used in
s ′′i are of finite variation – an argument similar to the proof
for e0i and e1′′i to have finite variation. 
�

4.2 An Example to Illustrate the Compilation
from RT-FRP to Automata

In this section, we shall illustrate an example adapted
from [10] with three mutual-recursive signals, namely z, x,
n; and an input signal, called input (see Figure 5). We
shall show how these signals are compiled into three mutual-
dependent automata. During the compilation process, every
finitely bounded values are instantiated, where possible, in
order to provide more specialization.

z = let snapshot a ← delay True x in
let snapshot b ← delay True z in
let snapshot c ← input in
ext (if a then b else ((a and b) or c))

x = let snapshot a ← delay True x in
let snapshot b ← z in
ext (if a then False else b)

n = let snapshot a ← delay True x in
let snapshot b ← delay 0 n in
ext (if a then 0 else b + 1)

Figure 5: A program written in RT-FRP

Our first step is to generate an intermediate functional
code from the RT-FRP program. In the case of above ex-
ample, we can obtain the following:
Compile RT-FRP to functional code (in pretty printed form)

x = lift2 (\ a → \ b → if a thenFalse else b)
(delay True x ) z

z = lift3 (\ a → \ b → \ c →
if a then b else ((a && b) || c))
(delay True x ) (delay True z ) input

n = lift2 (\ a → \ b → if a then 0else b + 1)
(delay True x ) (delay 0 n)

During our transformation, we shall be defining new con-
figurations that correspond to states in the automata code at
each intermediate step. At each configuration, we shall leave
signals and constants that have bounded values unchanged,
while all infinitely bounded expressions (e.g. integers) are
appropriately generalized. This strategy provides aggressive
optimization without causing non-terminating transforma-
tion. In the case of signal, n, a suitably generalized config-
uration is shown below.

Generalize Integer constants (In this case, change the inte-
gers 0 at then-branch, 1 at else-branch and 0 in the delay to
c1, c2, c3 respectively).

nconfig1[c1, c2, c3] = n
where n = lift2 (\ a → \ b → if a then c1 else b + c2)

(delay True x ) (delay c3 n)

We are now in a position to perform partial evaluation
of our configuration. There are two signals in the code. In
order to obtain an appropriate result, we instantiate the two
signals in the following step.

Instantiate signals and substitute

n = delay n� n — [1]
x = delay x � x
n = lift2 (\ a → \ b → if a then c1else b + c2)

(delay True (delay x � x )) (delay c3 (delay n� n ))

Proceeding further with our specialization, we shall per-
form an unfold step for the lift operation, as shown below.

Unfold once and partial evaluate v

n = delay (if True then c1 else c3 + c2)
(lift2(\ a → \ b → if a then c1 else b + c2)
(delay x � x )(delay n� n ))

= delay c1 (lift2 (\ a → \ b →
if a then c1 else b + c2)
(delay x � x ) (delay n� n )) — [2]

As both [1] and [2] are identical, we can unify the two equa-
tions in order to obtain the following two equations.

Unification

— Unify [1] and [2], we have
n� = c1
n = lift2 (\ a → \ b → if a then c1 else b + c2)

(delay x � x ) (delay c1 n )

The first result is substituted back into our new configu-
ration, while the second equation is used as a new configu-
ration.

Shifting the frame of reference for n to ti+1

lift2(\ a → \ b → if a then c1 else b + c2)
(delay x � x ) (delay c1 n)

since the above signal does not match the definition of nconfig1,
folding fails. Thus, we introduce a new configuration in the
next step.

Introduce nconfig2 for n
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nconfig1[c1, c2, c3] = delay c1 nconfig2[c1, c2, c1]
nconfig2[c1, c2, c3] = n
where n = lift2 (\ a → \ b → if a then c1 else b + c2)

(delay x � x ) (delay c3 n)

We add the final definition of nconfig1 to Σ, and defini-
tion of nconfig2 to σ. Since σ is non-empty, we repeat the
compilation loop again.
We retrieve nconfig2 from σ and instantiate it followed

by unfolding. This is applied as shown below.
Instantiation: x = delay x � x

n = delay n� n

n = lift2 (\ a → \ b → if a then c1else b + c2)
(delay x � (delay x � x )) (delay c3 (delay n�n ))

= delay (if x � then c1 else b + c2)
(lift2 (\ a → \ b → if a then c1 else b + c2)

(delay x � x ) (delay (c3 + c2) n ))

One of the snapshot, x �, happens to be a boolean value.
In order to aggressively partially evaluate this configuration,
we dispatch this value based on two possible values, True
and False, resulting in:
case x � == False :

n = delay (c3 + c2) (lift2 (\ a → \ b →
if a then c1 else b + c2)
(delay x � x ) (delay n� n ))

— after unification, we have n� = c3 + c2
n = delay (c3 + c2) (lift2 (\ a → \ b →

if a then c1 else b + c2)
(delay x � x ) (delay (c3 + c2) n ))

— fold with nconfig2[c1, c2, c3 + c2]
n = delay (c3 + c2) nconfig2[c1, c2, c3 + c2]

case x � == True :

n = delay c1 (lift2 (\ a → \ b →
if a then c1 else b + c2)
(delay x � x ) (delay n� n ))

— after unification, we have n� = c1
n = delay c1 (lift2 (\ a → \ b →

if a then c1 else b + c2)
(delay x � x ) (delay c1 n ))

— fold with nconfig2[c1, c2, c1]
n = delay c1 nconfig2[c1, c2, c1]

In both branches, the subsequent configuration encoun-
tered matches with a previous configuration, allowing our
specialization to terminate successfully.
The final automata code is shown below.

Final program for n:

nconfig1[c1, c2, c3] =
delay c1 nconfig2[c1, c2, c1]

nconfig2[c1, c2, c3] =
case {x � == False :

n = delay (c3 + c2)
nconfig2[c1, c2, c3 + c2],

x � == True :
n = delay c1 nconfig2[c1, c2, c1]}

By a similar sequence of transformation, we are also able
to generate the following automata codes for both x and z.
Using the algorithm, we can get final programs for x and

z as follows.
Final Program for x:

xconfig1 = delay False xconfig2

xconfig2 = delay z � xconfig3

xconfig3 =
case {z � == False :

x = delay z � xconfig3,
z � == True :

x = delay False xconfig2}

Final program for z:

zconfig1 = delay True zconfig2

zconfig2 =
case {x � == True :

z = delay True zconfig2,
x � == False :

z = delay True zconfig3}
zconfig3 =

case {x � == True :
z = delay z � zconfig3,

x � == False :
z = delay input� zconfig3}

4.3 Automata Diagram
We can illustrate diagrammatically the automata code

generated with a node for each state. A transition from
a node A to another node B may depend on a test, indi-
cated by a ? symbol. The output produced during at each
transition is indicated by a ! symbol. A state may also be
parameterized (as shown in figure 6) by some values. Param-
eters of a state can be updated by the transition leading to
that state. Figure 6, 7 and 8 shows the automata generated
for the signals n, x and z respectively.

!n# = c1

n1[c1,c2,c3]

[d1,d2,d3+d2]

!n# = d3+d2

?xb == False

[d1,d2,d1]

?xb == True

!n# = d1

[c1,c2,c1]

n2[d1,d2,d3]

Figure 6: Automaton generated for the signal n.

4.4 Tupled Automata
The generated automata code may actually be interde-

pendent. Instead of allowing them as separate processes, we
can in fact simplify the control by merging the mutually-
dependent signals together. The transformation process to
accomplish this is known as tupling. Here, we collect a set of
configurations together, and begin to partially evaluate the
components simultaneously. Where successful, the result
of tupling transformation generates a tupled (or composite)
automata, with each transition representing a synchronous
step by the mutually-dependent signals. One of the key
advantages of tupling is that output from one signal, can
immediately be made available (or visible) to its dependent
signal(s). This can facilitate more specialization.
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x1

x2

x3

!x# = False

?zb == True

!x# = False

?zb == False

!x# = z#

!x# = z#

Figure 7: Automaton generated for the signal x.

z1

z2

z3

!z# = True

?xb == True

!z# = True

?xb == True

!z# = zb

?xb == False

!z# = input#

?xb == False

!z# = True

Figure 8: Automaton generated for the signal z.

We define a tupled configuration (abbreviated as t-config)
as follows.

M [v11, . . . , vmn ] :=
(C1[v11, . . . , v1n ], . . . , Cm [vm1, . . . , vmn ])

The following tupling algorithm takes in a set of automata
in their automata-code format, and returns a tupled au-
tomata in the same format. The result is stored in Ω.

1. Define a t-config by grouping the starting nodes of all
existing automata. Keep the new configuration in a
store ω.

2. While ω is non-empty, do the following steps:

(a) Retrieve a t-config from ω. Let it be

M := (C1, . . . , Cn).

We shall omit the parameters in our presentation.
We shall call Ci a source configuration.

(b) Unfold each source configuration Ci once to get

M := (case {t1j : delay e1j C1j }, . . . ,
case {tnj : delay enj Cnj })

(c) Form all possible tuples by combining a branch
from each component configuration.

M := case { t1jk && . . . && tnjl :
delay (e1jk , . . . , enjl ) (C1jk , . . . ,Cnjl )}

(d) Simplify the test in each branch ofM above. Delete
those branches whose test simplified to False.

(e) For each t-config occurring in each branch of M ,
Fold it against those in ω. If that fails, define it
as a new t-config and add the new definition in ω.
Consequently, M will once again become a piece
of automata code. Add it to the output store Ω
and delete it from the store ω.

This tupling algorithm terminates because there are finite
number of states in each of the composite automata.
Let us illustrate this technique using our earlier example

from the section 4.2. There were three initial configurations
from the three signals, n, z and r. These configurations are
grouped together to form the following tupled configuration.

mconfig111[c1, c2, c3] = (n, x , z )
where (n, x , z ) = (nconfig1[c1, c2, c3], xconfig1, zconfig1)

We unfold all the component configuration by following
their respective transitions, resulting:

delay (c1, False, True)
(nconfig2[c1, c2, c1], xconfig2, zconfig2)

The new tuple of components can now be defined as a new
configuration mconfig222.

= delay (c1, False, True)mconfig222[c1, c2, c1]

Following shows the steps involved in performing tupling
algorithm:

mconfig222[c1, c2, c3] = (n, x , z ) — c1, False, T rue
where
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig2, zconfig2)
case x � == False — yes
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig2, zconfig2)

= delay (c3 + c2, z �,True)
(nconfig2[c1, c2, c3 + c2], xconfig3, zconfig3)
— since x� = z�

= delay (c3 + c2,True,True)
(nconfig2[c1, c2, c3 + c2], xconfig3, zconfig3)
— introduce mconfig233

= delay (c3 + c2,True,True)
mconfig233[c1, c2, c3 + c2]

mconfig233[c1, c2, c3] = (n, x , z ) — c3 + c2, T rue, True
where
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig3, zconfig3)
case x � == True, z � = True — yes
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig3, zconfig3)

= delay (c1,False,True)
(nconfig2[c1, c2, c1], xconfig2, zconfig3)
— introduce mconfig223 – (c1,False,True)

= delay (c1,False,True)mconfig223[c1, c2, c1]

mconfig233a [c1, c2, c3] = (n, x , z )
— (c3 + c1, input�, input�)

where
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig3, zconfig3)
case x � == False, z � == False
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?xb == False

!x# = input#

?xb == False

?xb == True

233a[e1,e2,e3]

[b1,b2,b3+b2]
!n# = b3+b2
!x# = True
!z# = True

[a1,a2,a1]
!n# = a1
!x# = False
!z# = True

?zb == Fasle
[e1,e2,e1]
!n# = e1
!x# = False
!z# = True

?zb == True
[e1,e2,e3+e2]
!n# = e3+e2
!x# = input#
!z# = input#

!n# = d3+d2
[d1,d2,d3+d2]

!z# = input#
[c1,c2,c1]
!n# = c1
!x# = False
!z# = True

233[c1,c2,c3]

111[a1,a2,a3]

222[b1,b2,b3]

223[d1,d2,d3]

Figure 9: Tupled Automaton.

(n, x , z ) = (nconfig2[c1, c2, c3], xconfig3, zconfig3)
= delay (c3 + c2, z �, input�)
(nconfig2[c1, c2, c3 + c2], xconfig3, zconfig3)
— folded with mconfig233

— (c3 + c2, input�, input�)
= delay (c3 + c2, z �, input�)

mconfig233a [c1, c2, c3 + c2]
case x � == True, z � == True — yes
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig3, zconfig3)

= delay (c1,False, z �)
(nconfig2[c1, c2, c1], xconfig2, zconfig3)
— introduce mconfig223 — (c1,False,True)

= delay (c1,False,True)mconfig223[c1, c2, c1]

mconfig223[c1, c2, c3] = (n, x , z ) — (c1,False,True)
where
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig2, zconfig3)
case x � == False — yes
(n, x , z ) = (nconfig2[c1, c2, c3], xconfig2, zconfig3)

= delay (c3 + c2, z �, input�)
(nconfig2[c1, c2, c3 + c2], xconfig3, zconfig3)
— folded with mconfig233a

— (c3 + c1, input�, input�)
= delay (c3 + c2, input�, input�)

mconfig233a [c1, c2, c3 + c2]

Through the above tupling transformation, we can obtain
a 5-state tupled automata, which computes three output
values simultaneously with each transition. Some branches
which are dead code were eliminated in the process. The
diagrammatical representation is shown in figure 9.

mconfig111[c1, c2, c3] =
delay (c1,False,True)mconfig222[c1, c2, c1]

mconfig222[c1, c2, c3] =
delay (c3 + c2, True, True)mconfig233[c1, c2, c3 + c2]

mconfig233[c1, c2, c3] =
delay (c1,False,True)mconfig223[c1, c2, c1]

mconfig223[c1, c2, c3] =
delay (c3 + c2, input�, input�)mconfig233a [c1, c2, c3 + c2]

mconfig233a [c1, c2, c3] =
case {x � = False and z � = False :

delay (c3 + c2, input�, input�)
mconfig233a [c1, c2, c3 + c2]

,

x � = True and z � = True :
delay (c1,False,True)mconfig223[c1, c2, c1]}

5. CONCLUSIONS AND FUTURE WORKS
We have introduced a high-level and yet systematic ap-

proach to building reactive systems based on RT-FRP. This
approach is centered towards building signals that are either
continuous or event-driven. We note that a small number of
language constructs is sufficient for supporting a wide range
of possible programs. Both recursive equations and mutual-
recursive continuations are expressible in RT-FRP.
The main focus of this project is to develop a high-level

framework for compiling reactive language, such as RT-FRP.
We first tanslate RT-FRP programs to an intermediate func-
tional code. Use of this functional code facilitates high-level
compilation to automata. Our framework is unique in that
it utilizes two high-level transformation techniques, namely,
partial evaluation and tupling, and it provides a systmatic
methodology for compilation.
Partial evaluation is used to specialize each signal to its

corresponding automata. We adapt the technique to the
context of stream-based semantics by including shifting frame
of references during folding. Furthermore, through special-
izing variables whose values are of finite variation (such as
boolean values), we are able to eliminate many dynamic
tests in our code. This optimization is important as it can
help improve the run-time performance of reactive systems.
Better performance is obtained at the expense of larger pro-
gram size, since more states may be generated during partial
evaluation.
Each of the signals would normally be executed indepen-

dently. However, a number of these signals may be mutu-
ally dependent on each other. To facilitate passing of values
among signals, as well as to simplify global control, we em-
ploy tupling technique by combining related signals into a
composite signal.
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That high-level transformation techniques can be system-
atically applied to obtain compiled automata code is the dis-
tinctive contribution of this work. This is in contrast with
the compilation of Lustre, in which specific compilation tech-
niques, such as “data driven” and “demand driven” control
synthesis, were introduced [10]. While the automata code
produced by our framework are not as compact as those with
specific techniques, we believe that the goal for high-level
transformation techniques to drive compilation still remains
promising.
Wan et. al. presentated, in [19], a set of compilation

rules for Event-Driven FRP (E-FRP), a dialect of FRP. De-
spite syntactic similarity between E-FRP and RT-FRP, the
former obeys interrupt-driven semantics, instead of stream-
based. Wan et. al. compiled E-FRP programs to an im-
perative language (called SimpleC), and described specific
techniques for optimizing the generated imperative code. It
would be interesting to investigate the issues related to com-
piling E-FRP in our framework.
On the RT-FRP aspect, we believe that the resulting (tu-

pled) automaton adheres to the safety properties of its orig-
inal RT-FRP program; ie., resource and time boundedness.
We have yet to formally prove this, though.
Looking into the future, we find it useful to re-design the

language to make it more event-oriented. Many applications
in reactive systems are largely event-oriented, and the pro-
vision of a deterministic and concurrent language can be the
basis of a powerful development paradigm.
Secondly, we are interested in exploring how sized analy-

sis [11, 5], can be used to extend our language, while still
preserving the space and time boundedness property.
Lastly, apart from compiling to automata, we would like

to explore the possibility of compiling directly to hardware.
This ultimate compilation route allows concurrency to be
exploited to the fullest and is becoming more feasible with
wider adoption of FPGA technology. Presently, a variant of
Haskell, known as Lava [1], allows compilation to VHDL and
FPGA. We hope to adopt Lava as a target for our hardware
compilation strategy.
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APPENDIX

A. STREAM BASED IMPLEMENTATION

The following definitions are largely taken from [7]. The
symbol u represents a stream of user input synchronizes with
time.

type Behavior a = [Time] → [a]
type Event a = [Time] → [Maybe a]

time :: Behavior Time
time = \ ts → ts

input :: Event User
input = \ ts → u

delay :: a → Behavior a → Behavior a
delay v s = \ ts → v : (s ts)

=⇒ :: Event a → (a → b) → Event b
e1 ‘ =⇒ ‘ f = \ ts → loop ts (e1 ts)
where loop (:ts

′) (Nothing : es)
= Nothing : (loop ts ′ es)
loop (:ts

′) (Just a : es)
= (Just (f a)) : (loop ts ′ es)

untilB :: Behavior a →
Event (Behavior a) → Behavior a

b ‘untilB ‘ e = \ ts → loop ts (b ts) (e ts)
where loop (:ts

′) (x : xs ′) (Nothing : mb)
= x : (loop ts ′ xs ′ mb)
loop ts (x : xs ′)(Just bn : )
= x : (bn ts)

switcher :: Behavior a →
Event (Behavior a) → Behavior a

s ‘switcher ‘ e = \ ts → loop ts (s ts) (e ts)
where loop (:ts

′) (x : xs ′)(Nothing : mb)
= x : (loop ts ′ xs ′ mb)
loop (:ts

′) (x : xs ′) (Just bn : mb)
= x : (loop ts ′ (bn ts ′)mb)

.|. :: Event a → Event a → Event a
e1 ‘.|.‘ e2 = \ ts → zipWith aux (e1 ts) (e2 ts)
where aux Nothing Nothing = Nothing

aux (Just x ) = Just x
aux (Just x ) = Just x

fb ‘$ ∗ ‘ xb = \ ts → zipWith ($) (fb ts) (xb ts))
lift0 = constantB
lift1 f b1 = lift0 f $ ∗ b1
lift2 f b1 b2 = lift1 f b1 $ ∗ b2
lift3 f b1 b2 b3 = lift2 f b1 b2 $ ∗ b3
:
:
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