
Frightening Small Children and Disconcerting
Grown-ups: Concurrency in the Linux Kernel

Jade Alglave
University College London

Microsoft Research
j.alglave@ucl.ac.uk

Luc Maranget
Inria — Paris

luc.maranget@inria.fr

Paul E. McKenney
IBM Corporation

Oregon State University
paulmck@linux.vnet.ibm.com

Andrea Parri
Scuola Superiore Sant’Anna

andrea.parri@sssup.it

Alan Stern
Harvard University

stern@rowland.harvard.edu

Abstract
Concurrency in the Linux kernel can be a contentious topic.
The Linux kernel mailing list features numerous discussions
related to consistency models, including those of the more
than 30 CPU architectures supported by the kernel and that
of the kernel itself. How are Linux programs supposed to
behave? Do they behave correctly on exotic hardware?
A formal model can help address such questions. Better

yet, an executable model allows programmers to experiment
with the model to develop their intuition. Thus we offer
a model written in the cat language, making it not only
formal, but also executable by the herd simulator. We tested
our model against hardware and refined it in consultation
with maintainers. Finally, we formalised the fundamental
law of the Read-Copy-Update synchronisation mechanism, and
proved that one of its implementations satisfies this law.

ACM Reference Format:
Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2018. Frightening Small Children and Disconcerting
Grown-ups: Concurrency in the Linux Kernel. In ASPLOS ’18: 2018
Architectural Support for Programming Languages and Operating
Systems, March 24–28, 2018, Williamsburg, VA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3173162.3177156

1 Introduction
Concurrency in Linux may frighten small children [35]; it
also appears to be disconcerting to grown-ups.

1.1 “Still confusion situation all round” [sic] [89]

The Linux kernel (LK) targets more than 30 CPU architec-
tures, amongst which Alpha [18], ARM [14], IBM Power [38],

ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in ASPLOS ’18: 2018 Architectural Support for Programming Languages and
Operating Systems, March 24–28, 2018, Williamsburg, VA, USA, https://doi.
org/10.1145/3173162.3177156.

Intel [40], Itanium [40] and MIPS [39] implement weak con-
sistency models. Consistency models determine what values
a read can take; weak models allow more behaviours than
Sequential Consistency (SC) [45].

Table 1. Selection of LKML discussions
Model URL
SPARC [51, 76]
LK [84]
LK [4, 56]
LK [19]
LK [73]
LK [36]
LK/Itanium [16, 70]
LK [20]
Itanium [48, 49, 57, 88]
Intel [41, 53]
LK/C11 [22, 23]
LK [21]
Alpha [79]
LK [31]
ARM64 [26]
LK [27]
MIPS [81, 85–87]
Power [30, 32, 33]
ARM64 [28]
LK/C11 [24]
LK [72]

These architectures implement distinct models and thus
disagree on the values that a read can return. This leads to
a plethora of discussions on the Linux Kernel mailing list
(LKML), some of which are listed in Table 1; their frequency
has increased as multicore systems have gone mainstream.

LK developers must understand not only the kernel’s con-
currency primitives, but also those of the underlying hard-
ware. Several documents make laudable efforts in this di-
rection: [37] lists what orderings are guaranteed; [69] sum-
marises semantics of read-modify-write operations, and [55]
documents ways of avoiding counterproductive optimisa-
tions. Sadly these documents are in prose, subject to ambigui-
ties andmisinterpretations. As a candid disclaimer puts it [37]:

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156

This document is not a specification; it is intentionally (for the sake of
brevity) and unintentionally (due to being human) incomplete. [. . .]
in case of any doubt (and there are many) please ask.

This quote suggests that a specification might dispel all
doubts. However, as Linus Torvalds writes [78]:
With specs, there really *are* people who spend years discussing what
the meaning of the word "access" is or similar [the authors of this
paper plead guilty]. Combine that with a big spec that is 500+ pages
in size and then try to apply that all to a project that is 15 million lines
of code and sometimes *knowingly* has to do things that it simply
knows are outside the spec [...]”
This highlights the need for an object beyond a prose

specification: unambiguous, concise, amenable to vast code
projects, and complete. We offer a formal executable model
for the LK, written in the cat language [12].
Writing a memory consistency model in cat gives it a

formal meaning, since cat has a formal semantics [3]. More-
over, a cat model can be executed within the herd tool [5],
allowing users to experiment with the model to develop their
intuition.

1.2 “[I]t is your kernel, so what is your preference?” [54]

Architects and standard committees are often seen as ulti-
mate authorities on consistency matters. In our case, we rely
on Linus Torvalds’s and his maintainers’ posts to LKML and
the gcc mailing list. We cite and discuss these posts below.
A common denominator of hardware models seems to

align with Torvalds’ view [80]:
Weakmemory ordering is [. . .] hard to think about [. . .] So thememory
ordering rules should [. . .] absolutely be as tight as at all humanly
possible, given real hardware constraints.

To this end, we axiomatised models of IBM Power [74, 75]
in cat. We modified this formalisation to handle Alpha [18]
and incorporate ideas from academic ARMmodels [34]. ARM
then released their official memory model [47, Chap. B2.3]
(including a cat file distributed within the diy+herd tool-
suite [5]), making those models obsolete; we thus modified
our LK model accordingly. This experience shows that our
model will change over time as existing hardware evolves,
or new hardware arises.

Yet the LK cannot simply be an envelope for the architec-
tures it supports. As Ingo Molnar writes [71]:
it’s not true that Linux has to offer a barrier and locking model
that panders to the weakest (and craziest!) memory ordering model
amongst all the possible Linux platforms—theoretical or real metal.
Instead what we want to do is to consciously, intelligently pick a sane,
maintainable memory model and offer primitives for that—at least
as far as generic code is concerned. Each architecture can map those
primitives to the best of its abilities.

This seems much like defining a language-level model: it
might appear that the C11 model could be used as the LK
model. Indeed, converging with C11 is the topic of several

LKML discussions [22, 24]. Unfortunately the C11 model is
an imperfect fit [78]:
I do not believe for a second that we can actually use the C11 memory
model in the kernel [. . .] We will continue to have to do things that are
“outside the specs” [. . .] with models that C11 simply doesn’t cover.
In short, the LK should have a model of its own.

1.3 “[P]ick a sane, maintainable memory model” [71]

Our LK model is a first attempt at fulfilling this wish. Of
course, concerns like sanity or maintainability are to an
extent in the eye of the beholder. But we believe that the
LK community will help achieve these goals. Indeed, our
work is based on interactions with the community, along
with documentation and posts to mailing lists. This has been
necessary for understanding the semantics of certain pieces
of code.

Table 2. LK issues that our work helped address

LK issue URL
locking on ARM64 [26]
ambiguities in [37] [59]
ambiguities in RCU documentation [58]
CPU hotplug [90]
assumption about lock-unlock [64]
semantics of spin_unlock_wait [83]

Moreover, our model has already resolved ambiguities and
helped fix bugs (see Table 2). The RCU documentation now
uses our definitions [58] and memory-barriers.txt [37]
was updated to distinguish between transitivity and cumu-
lativity [59]. Our work informed fixes to code incorrectly
relying on fully ordered lock-unlock pairs [64], code where
ARM64 needed stronger ordering from combinations of lock-
ing and fences [26], and discussions about the semantics of
locking primitives [83]. Finally, our model was directly used
by a maintainer to justify his patch [90]; this highlights the
practical applicability of our model.
Seven maintainers agreed to sponsor our model, which

has received positive feedback on LKML [60].

1.4 Correctness of concurrent code
Our model is also a stepping stone towards assessing the
correctness of LK code. We focus here on Read-Copy-Update
(RCU) [52].

CBMC [17] has been used to verify LK Tree RCU over
SC, TSO, and PSO [46]; others used Nidhugg over SC and
TSO [42]. Userspace RCU has been examined with respect
to C11 [43, 77]. These works provided valuable insights, but
only relative to the models available to them. We examine
RCU in the light of our LK model, the first to provide a
formal semantics for RCU. Moreover, our results provide
two alternative ways to integrate a semantics of RCU in a
software analysis tool.

1.5 Overview of the paper and contributions
Section 2 introduces LK programs and their executions, and
the cat language. Section 3 describes and illustrates our
model. Section 4 formalises RCU. Section 5 gives our ex-
perimental results. Section 6 examines the correctness of an
RCU implementation. In summary, this paper presents:

1. a formal core LK memory model, in the form of a
specification of the model in cat (Figure 8) and precise
constraints under which executions are allowed or
forbidden by the LK model (Figure 3);

2. examples illustrating how forbidden executions violate
the constraints (Figures 2, 4, 5, 6, and 7);

3. a formalisation of RCU as an axiom (Figure 12);
4. a formalisation of the fundamental law of RCU [62],

equivalent to the axiom (Theorem 1);
5. experiments showing that our model is sound with

respect to hardware, and a comparison with C11 (Ta-
ble 5);

6. the correctness of an RCU implementation (Theorem 2);
7. a discussion of required future work (Section 7).

The cat model, test results and proofs are online [7].

2 Programs and Candidate Executions
LK programs communicate via shared locations (e.g., x, y,
z), use private locations (e.g., r1, r2) for logic or arithmetic,
and control their execution flow with conditionals and loops.
Use of shared accesses may result in weak behaviours.

int x=0, y=0;

void T0() {

WRITE_ONCE(x,1);

smp_wmb ();

WRITE_ONCE(y,1);

}

void T1() {

int r1 = READ_ONCE(y);

smp_rmb ();

int r2 = READ_ONCE(x);

}

Figure 1. LK program

Figure 1 shows an LK pro-
gram where two threads com-
municate via shared loca-
tions x and y, initialised to 0.
T0 updates x, calls smp_wmb,
and sets y to 1.T1 reads y, calls
smp_rmb, and reads x. This is
a message passing idiom: with
enough synchronisation, after
T1 sees that the flag y is set,
it must see the updated data.
Here smp_wmb and smp_rmb
are enough.

Below we partially describe
the LK primitives in Table 3, formalised in Figure 8. Table 4
details RCU primitives.

ONCE primitives are special reads and writes which restrict
compiler optimisations (vide infra).

Acquire and release primitives are synchronising: a re-
lease read by an acquire ensures that writes before the release
are seen by the acquire’s thread.

Fences prevent reorderings: smp_rmb for reads, smp_wmb for
writes, smp_mb for all accesses, and smp_read_barrier_-
depends for dependent reads on architectures that do not
respect such dependencies, viz, Alpha.

Read-modify-writes (xchg and siblings) consist of a read
paired with a write. Depending on the primitive, these reads
andwrites can be ONCE (for xchg_relaxed), acquire, release,
or surrounded by full fences (for xchg).

Table 3. LK primitives and corresponding events
LK/C primitive Event

READ_ONCE() R[once]
WRITE_ONCE() W[once]
smp_load_acquire() R[acquire]
smp_store_release() W[release]
smp_rmb() F[rmb]
smp_wmb() F[wmb]
smp_mb() F[mb]
smp_read_barrier_depends() F[rb-dep]
xchg_relaxed() R[once],W[once]
xchg_acquire() R[acquire],W[once]
xchg_release() R[once],W[release]
xchg() F[mb],R[once],W[once],F[mb]

LK coding conventions restrict compiler optimisations, e.g.:
• ONCE primitives prevent tearing (compiling a large access
as a group of smaller accesses), fusing (compiling a series
of accesses to a single location as just one access), and
splitting (compiling a single access as multiple full-sized
accesses, e.g., repeating a load to avoid a register spill);
• dependencies are crafted to prevent the compiler from
breaking them [37, 55];
• the LK relies on inline assembly: for example, archi-
tectures with write memory barriers can implement
smp_wmb, despite lack of C11 support for this notion.

In addition, we only model architectures that the LK ac-
tually supports. Thus we need not consider (for example)
difficulties such as 8-bit architectures with 16-bit pointers.
All in all, our LK model specifies the cumulative effect of a
language-level model (the subset of C specific to the LK) and
the hardware models targeted by the LK.
A consistency model determines which values can be re-

turned by read primitives. An axiomatic model—the style we
chose here—does so by determining whether candidate exe-
cutions of a program are allowed. Candidate executions are
graphs: nodes are events modeling instructions, and edges
form relations over events, representing, e.g., the program or-
der in which instructions appear on a thread, or where a read
takes its value from. Figure 2 shows a candidate execution
(with initial writes and thread labels omitted).
Eventsmodel primitives. Reads (R) from a shared location
place the value read in a private location, writes (W) to a
shared location update said location with a given value, and

a: W[once]x=1

g: F[wmb]

b: W[once]y=1

c: R[once]y=1

i: F[rmb]

d: R[once]x=0

po

wmb

po

rf

po

rmb

po

fr

Figure 2. Forbidden execution for the program in Figure 1
fences (F) may prevent undesirable behaviours. Read-modify-
writes give rise to a read and a write for the same shared
location. Events bear annotations reflecting the correspond-
ing primitives: once or acquire (for reads); once or release
(for writes); and rmb, wmb, mb or rb-dep (for fences). For ex-
ample, smp_load_acquire is represented by a read anno-
tated acquire, WRITE_ONCE by a write annotated once, and
smp_wmb by a fence annotated wmb. Table 3 lists the events
for each primitive, omitting locations for brevity.

Candidate executions consist of abstract executions, repre-
senting the semantics of each thread, and execution witnesses,
representing communications between threads. Abstract ex-
ecutions (E,po,addr,data,ctrl,rmw) contain:
• E, the set of events;
• po, the program order, specifies instruction order in a
thread after evaluating conditionals and unrolling loops;
• addr, data, and ctrl are the address, data, and control
dependency relations in po, always starting from a read.
• rmw links the read of a read-modify-write to its write.

Execution witnesses (rf,co) contain:
• the reads-from relation rf, which determines where
reads take their value from. For each read r there is
a unique write w to the same location s.t. r takes its
value fromw .
• the coherence order relation co, representing the history
of writes to each location. It is a total order over writes
to the same location, starting with the initialising write.

The cat language [3] formalises consistency models as sets
of constraints over candidate executions.Wewrote ourmodel
in cat so that it can be executed by the herd simulator [12].
The language provides the user with predefined sets of events
(W contains all write events, R all reads, and _ all events) and
the relations forming candidate executions (po, addr, data,
ctrl, rmw, rf, and co), as well as the identity relation id,
the loc relation, which contains all pairs of events that ac-
cess the same shared location, and the int relation, which
contains all pairs of events that belong to the same thread.
Users can build new relations via union (∪), intersection

(∩), difference (\), complement (∼ r), inverse (r−1), reflex-
ive closure (r ?), transitive closure (r+), reflexive transitive
closure (r ∗), sequence (r1 ; r2, defined as {(x ,z) | ∃y[(x ,y) ∈
r1∧ (y,z) ∈ r2]}), and direct product of sets of events (X ×Y).

One can thus build the following relations, which often ap-
pear in cat models (and in our LK model):
• the from-reads relation consists of one step of reads-from
backwards, then one step of coherence: fr := rf−1; co;
• the communication relation gathers reads-from, coher-
ence and from-reads: com := rf ∪ co ∪ fr;
• the dependency relation gathers address and data (but
not control) dependencies: dep := addr ∪ data;
• the program order relation restricted to accesses of the
same location: po-loc := po ∩ loc;
• the internal reads-from relation, i.e., the reads-fromwhich
take place within a thread: rfi := rf ∩ int;
• the external relation ext, containing pairs of events that
belong to different threads: ext := ∼ int;
• the external reads-from, coherence and from-reads: rfe
:= rf ∩ ext, coe := co ∩ ext, and fre := fr ∩ ext.

A cat model can constrain a relation r to be irreflexive,
acyclic, or empty.
In Figure 2, read c takes its value from write b, hence

the reads-from (rf) arrow between them. Read d takes the
initial value, which is overwritten by write a, hence the from-
reads (fr) arrow between them. This candidate execution is
forbidden by our LK model: the synchronisation ensures that
the updated data x is visible to T1 when it reads the flag y.

3 The LK model’s core
A candidate execution is allowed by the core LK model iff it
satisfies the constraints of Figure 3; it is forbidden otherwise.

acyclic(po-loc ∪ com) (Scpv)
empty(rmw ∩ (fre ; coe)) (At)
acyclic(hb) (Hb)
acyclic(pb) (Pb)

Figure 3. Core of our LK model
Constraint Scpv (sequential consistency per variable) forces

the values of a single variable to be the ones it would have in
SC: weak consistency arises from interactions among vari-
ables. At (atomicity) ensures that there cannot be an interven-
ing write to the same location between the read and the write
of a read-modify-write. Hb (happens-before) provides the in-
tuitive causality notion. Pb (propagates-before) constrains the
propagation of writes and fences among concurrent threads.
Both Scpv and At appear in the literature [12, Sect. 4.2]. In
this section, we present Hb and Pb.
These axioms constrain the hb and pb relations (defined

later) to be partial orders, because they require the relations
to be acyclic. Belowwe illustrate these orders using examples
from the LK 4.12 source code [82].

Auxiliary relations in the figures include the following:
The acq-po relation contains pairs of events in program or-
der such that the first is an acquire. Similarly, po-rel pairs

events where the second is a release. rfi-rel-acq is an in-
ternal reads-from communication between a release and
an acquire. The rmb relation pairs reads with an smp_rmb
fence between them. Similarly, wmb pairs writes with an
smp_wmb fence between them, mb pairs any events with an
smp_mb fence between them, and rb-dep pairs reads with a
smp_read_barrier_depends between them.

3.1 Examples
LB+ctrl+mb, in Figure 4, appears in the ring-buffer interface
from kernel to userspace (see perf_output_put_handle()
in [82, kernel/events/ring_buffer.c]). T0 reads from x
(event a) and writes to y (b), imposing a control dependency
(depicted by the ctrl arrow) in between. Similarly, T1 reads
from y (c) and writes to x (d), with an smp_mb fence be-
tween them (mb arrow). If the dependency or the fence is
removed, the execution is allowed by the model and observed
on ARMv7 [50, Sect. 7.1].

a: R[once]x=1

b: W[once]y=1

c: R[once]y=1

m: F[mb]

d: W[once]x=1

ctrl rf po

mb

po
rf

Figure 4. LB+ctrl+mb: Forbidden.

WRC+po-rel+rmb, in Figure 5, is a sibling of Figure 1. This
pattern appears in LKML discussions [61]. T0 writes to x (a),
and T1 writes to y (c) after reading x (b). The release in T1
(po-rel arrow) forces a to happen before c, even though a
and c are not in the same thread. The fence inT2 (rmb arrow)
ensures that d and e stay in order.

a: W[once]x=1 b: R[once]x=1

c: W[release]y=1

d: R[once]y=1

j: F[rmb]

e: R[once]x=0

rf

po-rel
rf po

rmb

po

fr

Figure 5. WRC+po-rel+rmb: Forbidden.

SB+mbs (a store buffering idiom), in Figure 6, is used in
LK wait-event/wakeup code. It is documented in functions
waitqueue_active() [82, include/linux/wait.h]; wait
_woken() and woken_wake_function() [82, kernel/sched-
/wait.c]; and wake_q_add(), wake_up_q(), and try_to-
_wake_up() [82, kernel/sched/core.c].Without the fences
it is observed on x86.

PeterZ, in Figure 7, is used to resolve races between perfor-
mance monitoring and CPU hotplug operations [90]. As in
the previous example, two strong fences forbid the pattern,
which otherwise is observed on Power machines.

a: W[once]x=1

g: F[mb]

b: R[once]y=0

c: W[once]y=1

i: F[mb]

d: R[once]x=0

po
mb

po
fr

po
mb

po
fr

Figure 6. SB+mbs: Forbidden.

a: W[once]x=1

k: F[mb]

b: R[once]y=0

c: W[once]y=1

d: W[release]z=1

e: R[acquire]z=1

r: F[mb]

f: R[once]x=0

po

mb

po fr
po-rel

rf
po

mb

po

fr

Figure 7. PeterZ: Forbidden.

3.2 Formal definitions
We now dive into the formal definitions of our model, given
in Figure 8, which we justify in the light of the LK design.
dep := addr ∪ data
rwdep := (dep ∪ ctrl) ∩ (R × W)
overwrite := co ∪ fr
to-w := rwdep ∪ (overwrite ∩ int)
rrdep := addr ∪ (dep ; rfi)
strong-rrdep := rrdep+ ∩ rb-dep
to-r := strong-rrdep ∪ rfi-rel-acq
strong-fence := mb
fence := strong-fence ∪ po-rel ∪ wmb ∪ rmb ∪ acq-po
ppo := rrdep∗ ; (to-r ∪ to-w ∪ fence)
cumul-fence := A-cumul(strong-fence ∪ po-rel) ∪ wmb
prop := (overwrite ∩ ext)? ; cumul-fence∗ ; rfe?
hb := ((prop \ id) ∩ int) ∪ ppo ∪ rfe
pb := prop ; strong-fence ; hb∗

Figure 8. LK definitions

3.2.1 “[I]f some [. . .] architecture gets its memory
ordering wrong [. . .], [it] should pay the price” [80]

Some architectures do not provide sufficient ordering for
the LK. The LK compensates in architecture-specific ways,
and our LK model reflects only the ordering provided by the
hardware. A notable example is Itanium, which can reorder
loads from the same address. To work around this, Itanium’s
gcc compiler emits special load instructions, which provide
suitable ordering guarantees for READ_ONCE. Accordingly,
even though all other architectures’ compilers need only
emit a plain load, our LK model requires memory accesses
to be annotated by once or something stronger (see Table 3).

3.2.2 The preserved program order relation ppo

ppo relates events in program order as described below:
Local orderings to writes are modeled by to-w. The rwdep
(read-write dependency) relation orders a read and a write
with an address, data, or control dependency between them

(dep∪ctrl) (see [37, l. 879]). In Figure 4, there is a control de-
pendency between a and b ((a,b) ∈ ctrl); thus (a,b) ∈ ppo.
The overwrite relation orders events where the second

overwrites the first. Among the local orderings to writes, we
consider only the instances of overwrite that are internal
to a thread; hence the intersection with the int relation.

Local orderings to reads are modeled by the to-r relation.
Read-read dependencies (formalised by rrdep) consist of
addr, or dep followed by rfi (internal reads-from) (see [37,
l. 393]). Unfortunately, Alpha does not respect read-read
address dependencies [18]. The LK compensates via smp-
_read_barrier_depends (modeled by rb-dep), which emits
a memory barrier on Alpha and is a no-op on other archi-
tectures. Our model therefore respects read-read dependen-
cies only given an intervening smp_read_barrier_depends
(see [37, l. 429, l. 550]), as modeled by strong-rrdep (strong
read-read dependency).

An internal reads-from between a write release and a read
acquire also provides ordering.

Local ordering due to fences is modeled by the fence re-
lation (see [37, l. 1801]). The strong-fence relation orders
events separated by smp_mb; we will update it in the next
section to account for RCU. The fence relation orders events
separated by a fence (mb [37, l. 446], smp_wmb [37, l. 1801]
or smp_rmb [37, l. 1801]), or such that the first event is an
acquire (acq-po) [37, l. 461] or the second is a release
(po-rel) [37, l. 477]. In Figure 5, d and e are separated by
an smp_rmb fence (i.e., (d,e) ∈ rmb); thus (d,e) ∈ fence. In
Figure 7, d is a write release; thus (c,d) ∈ po-rel ⊆ fence.

ARMv7 implements smp_load_acquire with a full fence
for lack of better means. In contrast, Power uses the light-
weight lwsync, andARMv8 a special load-acquire. Ourmodel
represents smp_load_acquire with the weaker orderings
of ARMv8 [47] and Power [12], not the stronger ordering
of ARMv7 [12]. The situation for smp_store_release is
the same.

a: W[once]x=1

i: F[wmb]

b: W[once]y=1

c: R[once]y=1

d: R[acquire]z=0

e: R[once]x=0

po

wmb

po

rf
addr

ppo
acq-po ,ppofr

Figure 9. MP+wmb+addr-acq: Forbidden.

All in all, ppo pairs events linked by one of the relations
above, optionally preceded by a read-read dependency (in the
sense of rrdep). The LK uses this prefix (as documented in
task_rq_lock [82, kernel/sched/core.c]) to forbid Fig-
ure 9: d is address-dependent (addr arrow) on c, thus (c,d) ∈
rrdep; and d is an acquire, thus (d,e) ∈ acq-po, which en-
tails (d,e) ∈ strong-rrdep ⊆ to-r. Therefore (c,e) ∈ ppo.

3.2.3 The propagation relation prop

This relation corresponds to the informal notion of transi-
tivity presented in [37, l. 1349]. It pairs events possibly in
different threads ordered as follows.

Cumulative fences are modeled by cumul-fence, which
pairs events in program order that are separated by an smp_wmb
or smp_mb fence, or where the second is a release.
Strong fences (smp_mb) and releases are A-cumulative, as

formalised by the cat function A-cumul(r) := rfe? ; r . The
ordering provided by these fences extends to external writes
that are read by an event preceding the fence. In Figure 5, c
inT1 is a write release, thus (b,c) ∈ po-rel. Since b reads the
write a inT0, (a,b) ∈ rfe and thus (a,c) ∈ A-cumul(po-rel);
hence (a,c) ∈ cumul-fence.

The relation prop generalises cumulativity: it ensures
that guarantees made by cumul-fence for a thread T spread
to other threads that access the same variables as T . When
e1 and e2 are related by a sequence of cumul-fence links:

• (e1,e2) ∈ prop. In Figure 2, a and b are separated by
an smp_wmb fence; thus they are related by prop.
• Any external event overwritten by e1 links by prop
to e2. In Figure 2, d is overwritten by a; thus (d,b) ∈ prop.
• e1 (or an external event it overwrites) is related by prop
to events that read from e2. In Figure 7, b is overwritten
by c and the release d is read by e; thus (b,e) ∈ prop.
• These facts hold when e1 = e2. For instance, in Figure 6,
d is overwritten by a; thus (d,a) ∈ prop. Idem f and a
in Figure 7.

3.2.4 The happens-before relation hb

hb is the union of the ppo and rfe relations, together with
prop restricted to distinct events in the same thread. The Hb
axiom requires hb to be acyclic, ensuring that reads-from is
consistent with local orderings due to ppo and fences.
In Figure 4, we have (a,b) ∈ ctrl; thus (a,b) ∈ ppo

(as ctrl ⊆ to-w ⊆ ppo). We also have (c,d) ∈ mb; thus
(c,d) ∈ ppo (as mb ⊆ fence ⊆ ppo). Overall, we have a

ppo
−−−→

b
rfe
−−−→ c

ppo
−−−→ d

rfe
−−−→ a, a cycle in the hb relation.

In Figure 5, we have (a,c) ∈ cumul-fence, as mentioned
above. Moreover, a overwrites e and d reads from c; thus
(e,d) ∈ prop. Since e and d are different events in the same
thread, we have (e,d) ∈ (prop \id)∩int. And since d and e
are separated by an rmb fence, we also have (d,e) ∈ ppo.

Thus d
ppo
−−−→ e

(prop\id)∩int
−−−−−−−−−−−→ d, a cycle in hb.

3.2.5 The propagates-before relation pb

pb contains events related by prop followed by a strong fence
and an arbitrary number of hb links. The Pb axiom requires
pb to be acyclic, so that events are overwritten in a manner
consistent with the orderings due to strong fences.

In Figure 6, (d,a) ∈ prop, as mentioned above. Since a
and b are separated by a strong fence, we have (d,b) ∈ pb.
By symmetry we also have (b,d) ∈ pb, hence a cycle in pb.
In Figure 7, (b,e) ∈ prop, as mentioned above. Since e

and f are separated by a strong fence, we have (b, f) ∈ pb.
Similarly, since (f,a) ∈ prop and (a,b) ∈ strong-fence, we
also have (f,b) ∈ pb, thus creating a cycle in pb.

3.3 Summary
This section presented the core of our formal LK model.

3.3.1 Our core LK model (Figure 3)
We exclude executions exhibiting any of following cycles:
• Scpv cycles, which involve only one shared variable,
made of program order and communications edges;
• At cycles, which involve read-modify-writes;
• Hb cycles, which involve local orderings due to depen-
dencies and fences, and reads-from communications;
• Pb cycles, which involve at least one strong fence.

3.3.2 The relations constrained by the model
These are formally defined in Figure 8. The crucial ones are:
• preserved program order ppo, which models local order-
ings due to dependencies (to-r and to-w) and fences;
• the propagation relation prop, which models the effect
of fences (cumul-fence) on the propagation of writes to
different variables with respect to one another;
• the happens-before relation hb, which models the effect
of local orderings due to ppo and fences on reads-from;
• the propagates-before relation pb, modeling strong fences.

4 Modeling Read-Copy-Update
Table 4. RCU primitives and corresponding events

LK/C primitive Event

rcu_dereference() R[once],F[rb-dep]
rcu_assign_pointer() W[release]
rcu_read_lock() F[rcu-lock]
rcu_read_unlock() F[rcu-unlock]
synchronize_rcu() F[sync-rcu]

Read-copy update (RCU) is a synchronisation mechanism in
which writers do not block readers: readers can be fast and
scalable and writers can make forward progress concurrently
with readers. Readers call the primitives rcu_read_lock
and rcu_read_unlock to delimit a read-side critical section
(RSCS). Updaters are writers that call the synchronize_rcu
primitive; calling it starts a grace period (GP). Table 4 lists
RCU primitives and their corresponding events.
In Figure 10, T0 contains an RSCS accessing variables x

and y, and T1 updates the same variables.
We present here two different ways of formalising RCU:

the fundamental law in Section 4.1 and the RCU axiom in

g: F[rcu-lock]

a: R[once]y=1

b: R[once]x=0

j: F[rcu-unlock]

c: W[once]x=1

k: F[sync-rcu]

d: W[once]y=1

po

po

po

fr
po

porf

Figure 10. RCU-MP: Forbidden.

Section 4.2. We show the equivalence of the law and the
axiom in Theorem 1. This result has practical significance
because it enables tools to embed RCU semantics in either of
two ways: by determining if a critical section spans a grace
period (as per the law), or by counting the number of grace
periods and critical sections in a cycle (as per the axiom).

4.1 Formalising the fundamental law of RCU
In [62], “an informal, high-level specification for RCU”, the
reader is warned thus:
RCU’s specification is primarily empirical in nature

Wewould like to formalise the requirement of [62], i.e., the
fundamental law of RCU (aka grace period guarantee) [66]:
Read-side critical sections cannot span grace periods.
Intuitively, for any GP and RSCS, the law has two aspects:
• RSCS precedes GP: if any access in the RSCS precedes
the GP, then no access in the RSCS can follow the GP.
• GP precedes RSCS: if any access in the RSCS follows the
GP, then no access in the RSCS can precede the GP.

We illustrate each aspect below, referring to Figure 10.

RSCS precedes GP: we take the fr arrow to indicate that b
precedes c, hence b precedes the synchronize_rcu event k.
Thus an access in the RSCS precedes the GP. By the funda-
mental law, no access in the RSCS can follow the GP. Thus
a cannot read from d, which forbids the pattern.

GP precedes RSCS: we take the rf arrow to indicate that
a follows d, i.e., a executes after synchronize_rcu returns.
The law says that no access in the RSCS can precede the GP.
Thus b cannot precede c, which again forbids the pattern.

The guarantees made by the law may seem similar to the
ones made by fences. Indeed, the pattern of Figure 10 would
also be forbidden with wmb in T1 and rmb in T0 (cf. Figure 1).
However, unlike with fences, if we swap the reads in T0 (cf.
Figure 11) the pattern remains forbidden: if the read of x
obtains 0 and hence executes before the GP, then the read of
y cannot obtain 1.
We model the law with a “precedes” function F which,

given a candidate execution, an RSCS, and a GP, selects
which of the RSCS or the GP precedes the other:

F (RSCS,GP) = RSCS or F (RSCS,GP) = GP.

g: F[rcu-lock]

a: R[once]x=0

b: R[once]y=1

c: W[once]x=1

j: F[rcu-unlock]

k: F[sync]

d: W[once]y=1

po

po

fr

po

po

po
rf

Figure 11. RCU-deferred-free: Forbidden.

The rcu-fence(F) relation models the interaction of an
RSCS and aGP. Events, e1 and e2, are related by rcu-fence(F),
if and only if there are an RSCS (delimited by rcu_read_lock
and rcu_read_unlock events l and u) and a GP (given by
synchronize_rcu event s) such that either:
• the RSCS precedes the GP, e1 precedes u in program
order, and e2 is s itself or follows s in program order:
F (RSCS,GP) = RSCS ∧ (e1,u) ∈ po ∧ (s,e2) ∈ po

?

• or the GP precedes the RSCS, e1 precedes s in program
order, and e2 is l itself or follows l in program order:
F (RSCS,GP) = GP ∧ (e1,s) ∈ po ∧ (l ,e2) ∈ po

?

Let us revisit Figure 10 in the light of our new definition.
• If F (RSCS,GP) = RSCS (i.e., the RSCS precedes the GP),
all events preceding the unlock event j in program order
are related by rcu-fence(F) to the GP event k and all
po-subsequent events. In particular, we have (a,d) ∈
rcu-fence(F).
• If F (RSCS,GP) = GP (i.e., the GP precedes the RSCS), all
events preceding theGP event k are related by rcu-fence(F)
to the lock event g and all po-subsequent events. In par-
ticular, we have (c,b) ∈ rcu-fence(F).

The fundamental law makes guarantees similar to fences,
albeit stronger. Thus we treat rcu-fence(F) on a par with
strong-fence and embed it in an enlarged pb(F) relation:

pb(F) := prop; (strong-fence ∪ rcu-fence(F)); hb∗

A candidate execution X satisfies the fundamental law of
RCU iff there is a precedes function F such that X satisfies
the enlarged Pb axiom acyclic(pb(F)). We see that there is
no such function for the execution in Figure 10:
• if F (RSCS,GP) = RSCS then (a,d) ∈ rcu-fence(F).
Moreover we have (d,a) ∈ rfe, thus in hb∗. This creates
a cycle in pb(F).
• if F (RSCS,GP) = GP then (c,b) ∈ rcu-fence(F). More-
over we have (b,c) ∈ fre, thus in prop. This also creates
a cycle in pb(F).

4.2 The RCU axiom
We augment our model with the relations in Figure 12.

We write gp for the relation between events in program
order separated by a synchronize_rcu s , or such that the

gp := (po ∩ (_ × Sync)) ; po?
strong-fence := mb ∪ gp
rscs := po ; crit−1 ; po?
link := hb∗ ; pb∗ ; prop
gp-link := gp ; link
rscs-link := rscs ; link
rec rcu-path := gp-link ∪ (rcu-path ; rcu-path)

∪ (gp-link ; rscs-link) ∪ (rscs-link ; gp-link)
∪ (gp-link ; rcu-path ; rscs-link)
∪ (rscs-link ; rcu-path ; gp-link)

irreflexive(rcu-path) (RCU)

Figure 12. RCU relations and axiom

second one is s itself. In Figure 10, we have (c,k) and (c,d)
in gp. We add gp to the definition of strong-fence, so that
synchronize_rcu can be used instead of smp_mb.
We write crit for the relation between an RSCS’s lock l

and its unlock u. The LK allows rcu_read_lock() and rcu_
read_unlock() to be nested arbitrarily deeply; crit con-
nects each outermost rcu_read_lock() to itsmatching rcu_
read_unlock(). We omit its definition for brevity.

The relation rscs pairs events e1 and e2 in the same thread
s.t. e1 is po-before an unlocku and e2 is po-after the matching
lock l or is l itself. In Figure 10, (g,g), (g,a), (a,b), (b,a),
(b,zj), (b,g), and many other pairs are in rscs.

The link relation embeds everything that provides order
in our model. Intuitively, if an event in an RSCS appears
before a GP according to our link relation, we model the
first aspect of the fundamental law; if a GP appears before
an event in an RSCS in link, we model the second aspect.

The gp-link and rscs-link relations are gp followed by
link and rscs followed by link, respectively. Roughly speak-
ing, they pair events where the second occurs after a GP
following, or RSCS containing, the first.

The rcu-path relation is defined recursively, as indicated
by the cat keyword rec. It merely pairs events that are con-
nected by a non-empty sequence of gp-link and rscs-link
edges in which there are at least as many GPs as RSCSes.

The RCU axiom requires rcu-path to be a path, i.e., to be
irreflexive. Strikingly, our work allows us to demonstrate
that this is equivalent to the fundamental law:

Theorem 1 (RCU guarantee). An LK candidate execution sat-
isfies the Pb and RCU axioms iff it satisfies the fundamental law.

This theorem formalises a rather simple rule of thumb
[65, slide 42]: the fundamental law of RCU is invalidated iff
there is a cycle in which the number of RSCSes is less than
or equal to the number of GPs.
To establish this result, we show that the irreflexivity of

rcu-path (as per the axiom) is equivalent to the acyclicity of
pb enlarged by rcu-fence(F) (as per the law). We omit the
proof (available online [7]) for brevity.

Model Power8 ARMv8 ARMv7 X86 C11
LB Allow 0/15G 0/10G 0/3.0G 0/33G Allow
LB+ctrl+mb, Fig. 4 Forbid 0/17G 0/5.1G 0/4.4G 0/18G Allow
WRC Allow 741k/7.7G 13k/5.2G 0/1.6G 0/17G Allow
WRC+wmb+acq, Fig. 14 Allow 0/7.5G 0/4.6G 0/1.6G 0/16G Forbid
WRC+po-rel+rmb, Fig. 5 Forbid 0/7.7G 0/5.3G 0/1.6G 0/17G Forbid
SB Allow 4.4G/15G 2.4G/10G 429M/3.0G 765M/33G Allow
SB+mbs, Fig. 6 Forbid 0/15G 0/10G 0/3.0G 0/33G Forbid
MP Allow 57M/15G 104M/10G 3.0M/3.0G 0/33G Allow
MP+wmb+rmb, Fig. 2 Forbid 0/15G 0/9.4G 0/2.6G 0/33G Forbid
PeterZ-No-Synchro Allow 26M/4.6G 3.6M/900M 10k/380M 351k/7.2G Allow
PeterZ, Fig. 7 Forbid 0/8.7G 0/2.5G 0/2.2G 0/9.1G Allow
RCU-deferred-free, Fig. 11 Forbid 0/256M 0/576M 0/15M 0/25M —
RCU-MP, Fig. 10 Forbid 0/672M 0/336M 0/336M 0/336M —
RWC Allow 88M/11G 94M/4.8G 7.5M/1.6G 5.6M/17G Allow
RWC+mbs, Fig. 13 Forbid 0/8.7G 0/2.5G 0/2.2G 0/9.1G Allow

Table 5. Simulations vs. experimental results.

5 Experiments
Weused the diy+herd toolsuite [5] to build a vast library of lit-
mus tests and run them against our model and as kernel mod-
ules. We also compared our model to the C11 model of [15].

Litmus tests are small programs that exercise specific fea-
tures of consistency models. Our validation includes classic
tests [12, 13, 34, 38, 74, 75], new hand-written tests, and sys-
tematic variations of several tests (see e.g. [50, Sect. 9.1])
with all combinations of fences or dependencies. We used
the diy7 tool [5] to systematically generate thousands of
tests with cycles of edges (e.g., dependencies, reads-from,
coherence) of increasing size. The tests, written in a subset
of C supplemented with LK constructs such as READ_ONCE
or WRITE_ONCE, are online [7].
Running litmus tests against cat models was carried out

with the herd7.43 tool [5]. The herd tool can simulate any
catmodel, but initially supported only machine-level models
of CPUs and GPUs [2, 6, 12] and language-level models for
C11 and OpenCL [15]. We extended herd with support for
the LK constructs used in our tests.
Running litmus tests as kernel modules was done using

our new klitmus tool, inspired by the litmus tool [5]. The
new tool differs from litmus in that kernel programming is
different from userspace programming: we had to find LK
equivalents to the userspace libraries used by litmus. E.g.,
launching threads is performed using LK kthreads instead
of userspace pthreads. The test results cannot be sent to
standard output, so we instead read the kernel module’s
output via the /proc filesystem.

5.1 Hardware results
We tested a CHRP IBM pSeries with 8 POWER8E CPUs at
3.4GHz (Linux v4.4.40), an Amlogic ARMv8 with 4 Cortex-
A53 cores at 1.5GHz (Linux v3.14.29), a Raspberry Pi ARMv7

with 4 Cortex-A7 cores at 900Mhz (Linux v4.9.20), and an
HP desktop with 2 (6-core) Intel Xeon E5-2620 v3 CPUs at
2.40GHz (Linux v3.16.04).

Table 5 summarises our results; the complete set is at [7].
For each test we give the number of times it was observed
on hardware, over the times it was run: k stands for 103, M
for 106 and G for 109. E.g., we ran LB+ctrl+mb (Figure 4) 17G
times on Power8, but never observed it. This is expected, as
the model forbids the idiom.
Indeed, a result observed during experiments but forbid-

den by the model indicates a bug. One cannot make definite
conclusions from the absence of observation, but the tool
proved rather discriminating [2, 10–12, 74, 75].
For reference, we include tests without synchronisation.

E.g., Figure 4 shows LB+ctrl+mb with a control dependency
and an mb fence; its sibling LB has no dependency and no fence.
Table 5 shows that all the hardware behaviours we ob-

served are allowed by the model: our model is experimentally
sound. Some behaviours allowed by the model have not been
observed in experiments; the machines are stronger than re-
quired by our model. For instance, LB, although allowed by
our model, was not observed on any of our systems. It was
observed on other ARMv7 machines, however [50, Sect. 7.1].

5.2 Comparison to C11
To compare our LK model and C11, we used the cat model
of [15], and the mapping from LK primitives to C11 primi-
tives given in [68]. The complete results are available at [7].
Our experiments quantify the differences between LK (see
first column of Table 5) and C11 (see last column), using this
mapping.

For example, smp_mb “restores SC”, but its C11 counterpart
atomic_thread_fence(memory_order_seq_cst) does not.

a: W[once]x=1 b: R[once]x=1

i: F[mb]

c: R[once]y=0

d: W[once]y=1

k: F[mb]

e: R[once]x=0

rf

po
mb

po

fr

po
mb

po
fr

Figure 13. RWC+mbs: Forbidden.

a: W[once]x=1 b: R[once]x=1

k: F[wmb]

c: W[once]y=1

d: R[acquire]y=1

e: R[once]x=0

rf

po wmb

po
rf

pofr

Figure 14. WRC+wmb+acq: Allowed.

As an example of this difference, the LK model forbids the
pattern in Figure 13 (there is a cycle in pb) but C11 allows it.
In fact, no known production-quality implementation of

C11 fails to forbid Figure 13 [43, 74]. But originally, C11 al-
lowed it so that the seq_cst fence could be implemented
with Itanium’s mf instruction. Eventually relaxed loads
were defined to forbid reordering of loads to the same vari-
able, forcing Itanium to generate ld,acq for relaxed loads;
hence mf is now sufficient to forbid Figure 13. The current
consensus is that C11’s fence should be strengthened to re-
store SC (as smp_mb does in the LK); there are various ideas
on how to accomplish this [15, 44].
There are other differences: the LK respects control de-

pendencies between a read and a write (ctrl ⊆ to-w ⊆ ppo
in Figure 8), thus forbidding the outcome of Figure 4, which
C11 allows. Moreover, the test WRC+wmb+acq (Figure 14),
which C11 forbids but the LK allows, shows that there is no
ideal equivalent of smp_wmb in C11 [68].

6 Verifying an RCU implementation
The RCU implementation in Figure 15, used in the Linux trace
tool [1], provides code for rcu_read_lock (lines 8 to 18),
rcu_read_unlock (lines 20 to 25) and synchronize_rcu
(lines 43 to 50). We explain here why it satisfies the fun-
damental law of RCU at a high level, and refer the reader
to [7] for details.

6.1 Description of the implementation
Threads communicate via an array of variables rc[] (line 4)
and a grace-period control variable gc (line 5). The gp_lock
mutex (line 6) serialises grace periods. The GP_PHASE (line 1)
bit of gc indicates which phase a grace period is in (grace pe-
riods have two phases). The low-order bits of rc[i] selected
by CS_MASK (line 2) form a 16-bit counter.

The counter in rc[i] records the depth of RSCS nesting
for thread i: initially 0, set to 1 at line 13 in an outermost

rcu_read_lock call, incremented at line 16 in inner calls,
and decremented at line 24 in rcu_read_unlock. If RSCSes
are properly nested (no unlock without a earlier matching
lock) and the depth of nesting does not overflow the 16-
bit counter, only an outermost rcu_read_unlock sets the
counter to 0, indicating that thread i is not in an RSCS.

The GP_PHASE bit in gc is 0 before a grace period, viz, be-
fore synchronize_rcu is called. That routine sets the phase
to 1 and then 0 again (line 36). Threads starting an RSCS
copy the current phase value into their respective rc[i]
(line 13). Thus synchronize_rcu knows which threads must
be waited for. Indeed, after changing the phase, update_
counter_and_wait waits for each thread i (lines 38–39) un-
til the value computed at lines 29–30 becomes false. This
happens when:
• rc[i]’s counter is zero (thread i is not in an RSCS), or
• rc[i]’s counter is nonzero and its phase bit is equal to
that of gc (thread i is in an RSCS which started after
the current GP phase).

6.2 Correctness statement
Let P be an LK program, and let P ′ be obtained by replacing
the RCU primitives in P with the routines of Figure 15. For
any execution X ′ of P ′ allowed by our model, let X be the
corresponding execution of P . Each non-RCU event e in X
corresponds directly to an event e ′ in X ′. (Consider, e.g., the
execution X in Figure 10, corresponding to X ′ in Figure 16.
Events a, b, c, and d in X match a’, b’, c’, and d’ in X ′.)
Furthermore, since the code in Figure 15 does not access

any of the shared locations in P , and conversely, P does not
access the shared locations gc and rc[], each read in X is
related by rf in X ′ to a write also in X . (For example, a’
inX ′ reads from d’, not from some other write present inX ′
but not in X .) More generally, the non-RCU relations of X
are simply those of X ′ restricted to the events in X .
We set up a similar correspondence for the RCU events

(in Figure 16, appended to these events’ labels are the line
numbers from Figure 15 for the events and their call chains):

• For each F[rcu_lock] event l inX (g in Figure 10), let l ′
be the write of rc[i] at line 13 (or 16 for inner nesting
levels). In Figure 16, this is g’.
• For each F[rcu_unlock] event u in X (j in Figure 10),
let u ′ be the write of rc[i] at line 24 (j’ in Figure 16).
• For each F[sync-rcu] event s in X (k in Figure 10), let
s ′ be the write to gc at line 36, from the call to update_
counter_and_wait at line 46 (k’ in Figure 16).

We can now state our correctness result:

Theorem 2 (Correctness of RCU implementation). If X ′ is
allowed in our LK model and has properly nested RSCSes that
do not overflow the counters in rc[], then X is allowed.

1 #define GP_PHASE 0x10000
2 #define CS_MASK 0x0ffff
3
4 static unsigned long rc[MAX_THREADS] = {0};
5 static unsigned long gc = 1;
6 static DEFINE_MUTEX(gp_lock);
7
8 void rcu_read_lock(void) {
9 unsigned int i = get_my_tid ();
10 unsigned long tmp = READ_ONCE(rc[i]);
11
12 if (!(tmp & CS_MASK)) {
13 WRITE_ONCE(rc[i], READ_ONCE(gc));
14 smp_mb ();
15 } else {
16 WRITE_ONCE(rc[i], tmp + 1);
17 }
18 }
19
20 void rcu_read_unlock(void) {
21 unsigned int i = get_my_tid ();
22
23 smp_mb ();
24 WRITE_ONCE(rc[i], READ_ONCE(rc[i]) - 1);
25 }

26 static int gp_ongoing(unsigned int i) {
27 unsigned long val = READ_ONCE(rc[i]);
28
29 return (val & CS_MASK)
30 && ((val ^ READ_ONCE(gc)) & GP_PHASE);
31 }
32
33 static void update_counter_and_wait(void) {
34 unsigned int i;
35
36 WRITE_ONCE(gc, READ_ONCE(gc) ^ GP_PHASE);
37 for (i = 0; i < MAX_THREADS; i++) {
38 while (gp_ongoing(i))
39 msleep (10);
40 }
41 }
42
43 void synchronize_rcu(void) {
44 smp_mb ();
45 mutex_lock (& gp_lock);
46 update_counter_and_wait ();
47 update_counter_and_wait ();
48 mutex_unlock (& gp_lock);
49 smp_mb ();
50 }

Figure 15. RCU implementation from [29].

g’[13]: W[once] rc[i]=1

h’[14]: F[mb]

a’: R[once] y=1

b’: R[once] x=0

j’[24]: W[once] rc[i]=0

i’[23]: F[mb]

c’: W[once] x=1

· · ·

m’[27,last loop of 38,47]: R[once] rc[i]=0

· · ·

k’[36,46]: W[once] gc=0x10001

· · ·

n’[49]: F[mb]

d’: W[once] y=1

po

po

po

mb

po

fr

po

po

rf

po

po

po

po

po

mb
po

rf

Figure 16. RCU-MP, with RCU as implemented in Figure 15

6.3 Proof sketch
For brevity, we only list critical points of our proof; detailed
proofs are in [7].

All non-RCU relations R in X hold in X ′:when (e1,e2) ∈
R holds in X , the corresponding fact (e ′1,e

′
2) ∈ R holds in X ′.

Recall that we defined X to differ from X ′ only for RCU
events and relations. Hence this result is immediate except

when R is strong-fence, which contains the RCU relation
gp. Fortunately it is true in this case as well.
To see why, consider (e1,e2) ∈ gp in X (e.g., the writes c

and d in Figure 10). There is an F[sync-rcu] event between
them in program order; hence the F[mb] event arising from
line 44 lies between the corresponding events e ′1 and e

′
2 inX

′.
Thus (e ′1,e

′
2) ∈ mb, implying that (e ′1,e

′
2) ∈ strong-fence.

(Between c’ and d’ in Figure 16 are all the events from
Figure 15’s implementation of synchronize_rcu; the F[mb]
event for line 44 is elided.)

Since X ′ is allowed, X thus obeys all the core constraints
of our model, leaving only the RCU constraint to consider.

Using our RCU guarantee theorem (Section 4.2), we show
that X does obey the RCU constraint by showing that X sat-
isfies the fundamental law of RCU. This requires finding a
precedes function F for X such that pb(F) is acyclic.

Our precedes function is derived from the execution X ′.
Given a GP in X and an outermost RSCS in thread i, let l
andu be the lock and unlock of the RSCS. The corresponding
events l ′ andu ′ inX ′were defined in Section 6.2.We consider
two distinguished read events, r1 and r2, where:
• r1 is the read of rc[i] executed by line 27 of Figure 15,
• in the call to gp_ongoing(i) from the last iteration of
the while loop at line 38,
• in the first call to update_counter_and_wait (line 46)
within the GP,

and r2 is the equivalent read from within the second call to
update_counter_and_wait (line 47). In Figure 16, r2 = m’
and r1 is not shown.
At least one of the following two facts must hold in X ′:

1. the RSCS’s rcu_read_lockwas not visible at the start
of the GP: (r1,l ′) ∈ fr;

2. the RSCS’s rcu_read_unlock or a later write to rc[i]
was visible at the end of the GP: (u ′,r2) ∈ (coi? ; rf).

We take F (RSCS,GP) to be GP if (1) holds and RSCS oth-
erwise. In Figure 16, (2) holds since u ′ is j’, r2 is m’, and
(j’,m’) ∈ rf. Thus F (RSCS,GP) = RSCS.

A cycle in pb(F) forXwould give rise to a cycle in pb forX ′.
We omit the full demonstration (given in [7]) but illustrate
it with our example. We know from Section 4.1 that X in
Figure 10 violates the fundamental law of RCU and every
pb(F) relation for X contains a cycle. We are now claiming
this means that X ′ in Figure 16 has a cycle in pb. And so
it does: d’

rfe
−−−→ a’

mb
−−→ j’, hence d’

pb
−−→ j’, and similarly,

j’
pb
−−→ d’ via m’.
Returning to the general proof of Theorem 2: The theorem

assumed that X ′ is allowed in our model and hence obeys
the Pb constraint. This requires the pb relation in X ′ to be
acyclic, from which we now deduce that the pb(F) relation
in X must also be acyclic. By our earlier remark, this suffices
to conclude the proof sketch.

7 Discussion
The process that led to our LK model was iterative, and both
social and technical. We reviewed [37] and wrote an initial
cat file formalising our understanding. We used the litmus
tests of [37, 66, 67] to refine this model, and asked questions
to hardware designers and LKmaintainers [8, 9, 25, 65]. Later
we modified the tools of the diy+herd toolsuite [5] to gener-
ate more tests, and run them as kernel modules. We referred
to published models when available, e.g., ARMv8 [47], and
architectural definitions of LK primitives [37, 69].
The need to account for all the architectures that the LK

targets can make the model seem complex and arbitrary. For
example, smp_read_barrier_depends exists exclusively for
the sake of Alpha. Otherwise, in the definition of ppo, the
relations strong-rrdep and rrdep would be the same.
We do think that our LK model is, perhaps surprisingly,

less subtle than C11 and OpenCL [15], as it is inspired by
hardware: thus our model does not have out-of-thin-air val-
ues, because it respects dependencies as hardware does; and
the LK’s full fence restores SC, unlike that of C11.
All in all, the model is as complex and arbitrary as the

LK is. Consequently it is as stable as the LK is; we expect
it to change as often as [37] does, i.e., a handful of times
per year. The LK model will adapt as architectures change
(or become better defined), as workloads change, and as

kernel developers become more aggressive in their pursuit
of performance and scalability.
To support existing non-buggy LK code, an LK model

must account for the LK’s primitives, including fences, RCU,
read-modify-writes, and locking. Our work models all these
primitives, except for locks. This is due to the current lack of
consensus on the semantics of certain locking primitives [83]
within the LK community, which our preliminary work on
the topic helped uncover.
Locking may, however, be emulated with the constructs

that we already have [63]. For example, we model a spinlock
as a shared location. The spin_lock primitive behaves like
xchg_acquire for this location. In Table 3, this is modeled as
a read with annotation acquire and a write with annotation
once, governed by the At axiom of Figure 3 and the con-
straints on acquire in Figure 8. The spin_unlock primitive
behaves like a smp_store_release for the shared location,
governed by the constraints on release in Figure 8.

Other features not currently supported by our model are:
• compiler optimizations (however, the LK’s READ_ONCE
and WRITE_ONCE rule out many optimizations [20, 21],
so this limitation is less of a problem than it might seem);
• any kind of arithmetic;
• multiple access sizes and partially overlapping accesses;
• non-trivial data, including arrays and structures;
• dynamic memory allocation;
• exceptions, interrupts, self-modifying code, and I/O;
• asynchronous RCU grace period primitives, including
call_rcu and rcu_barrier.

We do hope to address these limitations over time. But
even in its current form, our model provides a reference for
making decisions about concurrency in the LK, as witnessed
by the issues that our work helped discuss or settle (Table 2).

Acknowledgements We thank H. Peter Anvin, Will Dea-
con, Andy Glew, DerekWilliams, Leonid Yegoshin, and Peter
Zijlstra for their patient explanations of their respective sys-
tems’ models; Boqun Feng and Mark Rutland for their keen
interest and suggestions; Sylvan Clebsch, Will Deacon and
Daryl Stewart for comments on a draft; and Jessica Murillo
and Mark Figley for their support of this effort. Finally, we
thank our reviewers, especially our shepherd Dan Lustig, for
their helpful and enthusiastic reviews.

References
[1] 2017. Linux Trace Tool (LTTng). http://lttng.org/. (2017).
[2] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrish-

nan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wicker-
son. 2015. GPU Concurrency: Weak Behaviours and Programming
Assumptions. In ASPLOS 2015.

[3] Jade Alglave, Patrick Cousot, and Luc Maranget. 2016. Syntax and
semantics of the weak consistency model specification language cat.
CoRR abs/1608.07531 (2016). http://arxiv.org/abs/1608.07531

[4] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial
Orders for Efficient Bounded Model Checking of Concurrent Software.

http://lttng.org/
http://arxiv.org/abs/1608.07531

In Computer Aided Verification (CAV) (LNCS), Vol. 8044. Springer, 141–
157. https://doi.org/10.1007/978-3-642-39799-8_9

[5] Jade Alglave and Luc Maranget. 2011–2017. The diy7 tool suite. http:
//diy.inria.fr/. (2011–2017).

[6] Jade Alglave and Luc Maranget. 2015. Towards a formalisation of the
HSA memory model in the cat language. http://www.hsafoundation.
com/?ddownload=5381. (2015).

[7] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2017. A formal model of Linux-kernel memory ordering
– companion webpage. http://diy.inria.fr/linux/. (2017). [Online;
accessed 25-December-2017].

[8] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2017. A formal kernel memory-ordering model (part 1).
(14 April 2017). https://lwn.net/Articles/718628/.

[9] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan Stern. 2017. A formal kernel memory-ordering model (part 2).
(20 April 2017). https://lwn.net/Articles/720550/.

[10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010.
Fences in Weak Memory Models. In Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings. 258–272.

[11] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012.
Fences in weak memory models (extended version). Formal Methods
in System Design 40, 2 (2012), 170–205.

[12] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herd-
ing Cats: Modelling, Simulation, Testing, and Data Mining for Weak
Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014),
7:1–7:74 pages.

[13] ARM. 2009. ARM Barrier Litmus Tests and Cookbook. ARM Ltd.
[14] ARM. 2014. ARM Architecture Reference Manual (ARMv8, for ARMv8-A

architecture profile). ARM Ltd.
[15] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Over-

hauling SC Atomics in C11 and OpenCL. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’16). ACM, New York, NY, USA, 634–648.

[16] Anton Blanchard. 2011. RE: [PATCH] smp_call_function_many SMP
race. https://lkml.org/lkml/2011/1/11/489. (12 January 2011).

[17] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool
for checking ANSI-C programs. In In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 168–176.

[18] Compaq. 2002. Alpha Architecture Reference Manual. Compaq Com-
puter Corporation.

[19] Jonathan Corbet. 2008. The lockless page cache. https://lwn.net/
Articles/291826/. (29 July 2008).

[20] Jonathan Corbet. 2012. ACCESS_ONCE(). https://lwn.net/Articles/
508991/. (1 August 2012).

[21] Jonathan Corbet. 2014. ACCESS_ONCE() and compiler bugs. https:
//lwn.net/Articles/624126/. (3 December 2014).

[22] Jonathan Corbet. 2014. C11 atomic variables and the kernel. https:
//lwn.net/Articles/586838/. (18 February 2014).

[23] Jonathan Corbet. 2014. C11 atomics part 2: “consume” semantics.
https://lwn.net/Articles/588300/. (26 February 2014).

[24] Jonathan Corbet. 2016. Time to move to C11 atomics? https://lwn.net/
Articles/691128/. (15 June 2016).

[25] Michael Cree. 2017. Re: Question about DEC Alpha memory order-
ing. lkml.kernel.org/r/20170214192646.m6ydg27nwnh7bg7o@tower.
(2017).

[26] Will Deacon. 2015. [PATCH] arm64: spinlock: seri-
alise spin_unlock_wait against concurrent lockers. https:
//marc.info/?l=linux-arm-kernel&m=144862480822027. (2015).

[27] Will Deacon. 2015. Re: [PATCH] arm64: spinlock: serialise
spin_unlock_wait against concurrent lockers. https://marc.info/?l=
linux-arm-kernel&m=144898777124295. (2015).

[28] Will Deacon. 2016. [PATCH v2 1/3] arm64: spinlock: order
spin_{is_locked, unlock_wait} against local locks. http://lists.infradead.
org/pipermail/linux-arm-kernel/2016-June/434765.html. (2016).

[29] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Da-
genais, and Jonathan Walpole. 2012. User-Level Implementations of
Read-Copy Update. IEEE Trans. Parallel Distrib. Syst. 23, 2 (Feb. 2012),
375–382.

[30] Michael Ellerman. 2016. [PATCH v3] powerpc: spinlock:
Fix spin_unlock_wait(). https://marc.info/?l=linux-kernel&m=
146521336230748&w=2. (2016).

[31] Boqun Feng. 2015. Re: [PATCH 4/4] locking: Introduce
smp_cond_acquire(). https://marc.info/?l=linux-kernel&m=
144723482232285. (2015).

[32] Boqun Feng. 2016. [PATCH v2] powerpc: spinlock: Fix
spin_unlock_wait(). https://marc.info/?l=linux-kernel&m=
146492558531292&w=2. (2016).

[33] Boqun Feng. 2016. [PATCH v4] powerpc: spinlock: Fix
spin_unlock_wait(). https://marc.info/?l=linuxppc-embedded&
m=146553051027169&w=2. (2016).

[34] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali
Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. 2016. Modelling
the ARMv8 Architecture, Operationally: Concurrency and ISA. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16). ACM, New York, NY,
USA, 608–621.

[35] Mel Gorman. 2013. LWN Quotes of the week, 2013-12-11. http://lwn.
net/Articles/575835/. (2013).

[36] Tejun Heo. 2010. [PATCH 3/4] scheduler: replace migration_thread
with cpuhog. https://marc.info/?l=linux-kernel&m=126806371630498.
(8 March 2010).

[37] David Howells, Paul E. McKenney, Will Deacon, and Peter Zijlstra.
2017. Linux kernel memory barriers. https://www.kernel.org/doc/
Documentation/memory-barriers.txt. (2017).

[38] IBM. 2009. Power ISA Version 2.06. IBM Corporation.
[39] Imagination. 2015. MIPS®Architecture For Programmers, Volume II-A:

The MIPS64®Instruction, Set Reference Manual. Imagination Technolo-
gies, LTD. https://imgtec.com/?do-download=4302.

[40] Intel. 2002. A Formal Specification of Intel Itanium Processor Family
Memory Ordering. Intel Corporation.

[41] Andi Kleen. 2013. Re: [PATCH v6 4/5] MCS Lock: Barrier corrections.
https://marc.info/?l=linux-mm&m=138619237606428. (2013).

[42] Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless
Model Checking of the Linux Kernel’s Hierarchical Read-Copy Update
(Tree RCU). Technical Report. National Technical University of Athens.
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf.

[43] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming
Release-acquire Consistency. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 649–662.

[44] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA,
618–632. https://doi.org/10.1145/3062341.3062352

[45] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28,
9 (1979), 690–691.

[46] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham.
2016. Verification of the Tree-Based Hierarchical Read-Copy Update
in the Linux Kernel. CoRR abs/1610.03052 (2016). http://arxiv.org/abs/
1610.03052

[47] ARM Ltd. (Ed.). 2017. ARM Architecture Reference Manual (ARMv8, for
ARMv8-A architecture profile). ARM Limited.

https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
http://diy.inria.fr/
http://www.hsafoundation.com/?ddownload=5381
http://www.hsafoundation.com/?ddownload=5381
http://diy.inria.fr/linux/
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://lkml.org/lkml/2011/1/11/489
https://lwn.net/Articles/291826/
https://lwn.net/Articles/291826/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/624126/
https://lwn.net/Articles/624126/
https://lwn.net/Articles/586838/
https://lwn.net/Articles/586838/
https://lwn.net/Articles/588300/
https://lwn.net/Articles/691128/
https://lwn.net/Articles/691128/
lkml.kernel.org/r/20170214192646.m6ydg27nwnh7bg7o@tower
https://marc.info/?l=linux-arm-kernel&m=144862480822027
https://marc.info/?l=linux-arm-kernel&m=144862480822027
https://marc.info/?l=linux-arm-kernel&m=144898777124295
https://marc.info/?l=linux-arm-kernel&m=144898777124295
http://lists.infradead.org/pipermail/linux-arm-kernel/2016-June/434765.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2016-June/434765.html
https://marc.info/?l=linux-kernel&m=146521336230748&w=2
https://marc.info/?l=linux-kernel&m=146521336230748&w=2
https://marc.info/?l=linux-kernel&m=144723482232285
https://marc.info/?l=linux-kernel&m=144723482232285
https://marc.info/?l=linux-kernel&m=146492558531292&w=2
https://marc.info/?l=linux-kernel&m=146492558531292&w=2
https://marc.info/?l=linuxppc-embedded&m=146553051027169&w=2
https://marc.info/?l=linuxppc-embedded&m=146553051027169&w=2
http://lwn.net/Articles/575835/
http://lwn.net/Articles/575835/
https://marc.info/?l=linux-kernel&m=126806371630498
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://imgtec.com/?do-download=4302
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf
https://doi.org/10.1145/3062341.3062352
http://arxiv.org/abs/1610.03052
http://arxiv.org/abs/1610.03052

[48] Tony Luck. 2013. RE: Does Itanium permit speculative stores? https://
marc.info/?l=linux-kernel&m=138427925823852. (12 November 2013).

[49] Tony Luck. 2013. RE: Does Itanium permit speculative stores? https://
marc.info/?l=linux-kernel&m=138428203211477. (12 November 2013).

[50] Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A Tutorial
Introduction to the ARM and POWER Relaxed Memory Models. http:
//www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf. (Oct. 2012).
Draft.

[51] Paul McKenney. 2001. RFC: patch to allow lock-free traversal of lists
with insertion. https://lists.gt.net/linux/kernel/223665#223508. (2001).

[52] Paul McKenney. 2007. What is RCU, fundamentally? https://lwn.net/
Articles/262464/. (2007).

[53] Paul McKenney. 2013. Re: [PATCH v6 4/5] MCS Lock: Barrier correc-
tions. https://marc.info/?l=linux-mm&m=138540258209368. (2013).

[54] PaulMcKenney. 2016. Re: [RFC][PATCH]mips: Fix arch_spin_unlock().
http://lkml.kernel.org/r/20160202120252.GI6719@linux.vnet.ibm.
com. (2016).

[55] Paul McKenney. 2017. PROPER CARE AND FEEDING OF RE-
TURN VALUES FROM rcu_dereference(). https://www.kernel.org/
doc/Documentation/RCU/rcu_dereference.txt. (2017).

[56] Paul E. McKenney. 2007. QRCU with lockless fastpath. https://lwn.
net/Articles/223752/. (24 February 2007).

[57] Paul E. McKenney. 2013. Does Itanium permit speculative stores?
https://marc.info/?l=linux-kernel&m=138419150923282. (11 November
2013).

[58] Paul E. McKenney. 2016. documentation: Present updated RCU guar-
antee. https://patchwork.kernel.org/patch/9428001/. (2016).

[59] Paul E. McKenney. 2016. documentation: Transitivity is not cumula-
tivity. http://www.spinics.net/lists/linux-tip-commits/msg32905.html.
(2016).

[60] Paul E. McKenney. 2016. Prototype patch for Linux-kernel memory
model. http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.
ibm.com. (2016).

[61] Paul E. McKenney. 2016. [v3,11/41] mips: reuse asm-generic/barrier.h.
https://patchwork.kernel.org/patch/8036201/. (14 January 2016).

[62] Paul E. McKenney. 2017. A tour through RCU’s require-
ments. https://www.kernel.org/doc/Documentation/RCU/Design/
Requirements/Requirements.html. (2017).

[63] Paul E. McKenney. 2017. Re: [PATCH RFC 01/26] netfilter: Replace
spin_unlock_wait() with lock/unlock pair. https://lkml.org/lkml/2017/
6/27/1052. (2017).

[64] Paul E. McKenney. 2017. srcu: Force full grace-period ordering. https:
//patchwork.kernel.org/patch/9535987/. (2017).

[65] Paul E. McKenney, Jade Alglave, Luc Maranget, Andrea Parri, and Alan
Stern. 2016. Linux-Kernel Memory Ordering: Help Arrives At Last!. In
LinuxCon Europe. http://www.rdrop.com/users/paulmck/scalability/
paper/LinuxMM.2016.10.04c.LCE.pdf.

[66] Paul E. McKenney, Mathieu Desnoyers, Lai Jiangshan, and Josh Triplett.
2013. The RCU-barrier menagerie. https://lwn.net/Articles/573497/.
(2013).

[67] Paul E. McKenney, Mathieu Desnoyers, Lai Jiangshan, and Josh Triplett.
2013. User-space RCU: Memory-barrier menagerie. https://lwn.net/
Articles/573436/. (2013).

[68] Paul E. McKenney, Ulrich Weigand, Andrea Parri, and Boqun Feng.
2016. Linux-Kernel Memory Model. (6 June 2016). http://open-std.
org/JTC1/SC22/WG21/docs/papers/2016/p0124r2.html.

[69] David S. Miller. 2017. Semantics and behavior of atomic and bit-
mask operations. https://www.kernel.org/doc/core-api/atomic_ops.rst.
(2017).

[70] Milton Miller. 2011. [PATCH 0/4 v3] smp_call_function_many issues
from review. https://marc.info/?l=linux-kernel&m=130021726530804.
(15 March 2011).

[71] Ingo Molnar. 2013. Re: [PATCH v6 4/5] MCS Lock: Barrier corrections.
https://marc.info/?l=linux-mm&m=138513336717990&w=2. (2013).

[72] Ingo Molnar. 2017. Re: [PATCH v2 0/9] Remove spin_unlock_wait().
https://marc.info/?l=linux-kernel&m=149942365927828&w=2. (2017).

[73] Jiri Olsa. 2009. [PATCHv5 2/2] memory barrier: adding
smp_mb__after_lock. https://marc.info/?l=linux-netdev&m=
124839648220382&w=2. (3 July 2009).

[74] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter
Sewell, Luc Maranget, Jade Alglave, and Derek Williams. 2012. Syn-
chronising C/C++ and POWER. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’12). ACM, New York, NY, USA, 311–322.

[75] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. 2011. Understanding POWER Multiprocessors. In Proceed-
ings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’11). ACM, New York, NY, USA, 175–
186.

[76] Manfred Spraul. 2001. Re: RFC: patch to allow lock-free traversal of
lists with insertion. http://lkml.iu.edu/hypermail/linux/kernel/0110.1/
0410.html. (2001).

[77] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying
Read-Copy-Update in a Logic for Weak Memory. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). ACM, New York, NY, USA, 110–120.

[78] Linus Torvalds. 2012. Re: Memory corruption due to word sharing.
https://gcc.gnu.org/ml/gcc/2012-02/msg00013.html. (2012).

[79] Linus Torvalds. 2015. Re: [PATCH 4/4] locking: Intro-
duce smp_cond_acquire(). http://lkml.kernel.org/r/CA+
55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@
mail.gmail.com. (2015).

[80] Linus Torvalds. 2016. Re: [RFC][PATCH] mips: Fix arch_spin_unlock().
https://lkml.org/lkml/2016/2/2/80. (2016).

[81] Linus Torvalds. 2016. Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
https://marc.info/?l=linux-kernel&m=145384764324700&w=2. (26 Jan-
uary 2016).

[82] Linus Torvalds. 2017. Linux Kernel v4.12 (Fearless Coyote). https://
www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz. (2 July 2017).

[83] Linus Torvalds. 2017. Re: [GIT PULL rcu/next] RCU commits for 4.13.
https://lkml.org/lkml/2017/6/27/1052. (2017).

[84] Srivatsa Vaddagiri. 2005. [PATCH] Fix RCU race in access of
nohz_cpu_mask. http://lkml.iu.edu/hypermail/linux/kernel/0512.0/
0976.html. (5 December 2005).

[85] Leonid Yegoshin. 2016. Re: [v3,11/41] mips: reuse asm-
generic/barrier.h. https://marc.info/?l=linux-kernel&m=
145263153305591&w=2. (12 January 2016).

[86] Leonid Yegoshin. 2016. Re: [v3,11/41] mips: reuse asm-
generic/barrier.h. https://marc.info/?l=linux-kernel&m=
145280444229608&w=2. (14 January 2016).

[87] Leonid Yegoshin. 2016. Re: [v3,11/41] mips: reuse asm-
generic/barrier.h. https://marc.info/?l=linux-kernel&m=
145280241129008&w=2. (14 January 2016).

[88] Peter Zijlstra. 2013. Re: Does Itanium permit speculative stores? https://
marc.info/?l=linux-kernel&m=138428080207125. (12 November 2013).

[89] Peter Zijlstra. 2013. Re: [PATCH v6 4/5] MCS Lock: Barrier corrections.
https://marc.info/?l=linux-mm&m=138514629508662&w=2. (2013).

[90] Peter Zijlstra. 2016. [tip:perf/urgent] perf/core: Fix
sys_perf_event_open() vs. hotplug. https://www.spinics.net/
lists/kernel/msg2421883.html. (14 January 2016).

https://marc.info/?l=linux-kernel&m=138427925823852
https://marc.info/?l=linux-kernel&m=138427925823852
https://marc.info/?l=linux-kernel&m=138428203211477
https://marc.info/?l=linux-kernel&m=138428203211477
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://lists.gt.net/linux/kernel/223665#223508
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://marc.info/?l=linux-mm&m=138540258209368
http://lkml.kernel.org/r/20160202120252.GI6719@linux.vnet.ibm.com
http://lkml.kernel.org/r/20160202120252.GI6719@linux.vnet.ibm.com
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://lwn.net/Articles/223752/
https://lwn.net/Articles/223752/
https://marc.info/?l=linux-kernel&m=138419150923282
https://patchwork.kernel.org/patch/9428001/
http://www.spinics.net/lists/linux-tip-commits/msg32905.html
http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com
http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com
https://patchwork.kernel.org/patch/8036201/
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://lkml.org/lkml/2017/6/27/1052
https://lkml.org/lkml/2017/6/27/1052
https://patchwork.kernel.org/patch/9535987/
https://patchwork.kernel.org/patch/9535987/
http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf
https://lwn.net/Articles/573497/
https://lwn.net/Articles/573436/
https://lwn.net/Articles/573436/
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0124r2.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0124r2.html
https://www.kernel.org/doc/core-api/atomic_ops.rst
https://marc.info/?l=linux-kernel&m=130021726530804
https://marc.info/?l=linux-mm&m=138513336717990&w=2
https://marc.info/?l=linux-kernel&m=149942365927828&w=2
https://marc.info/?l=linux-netdev&m=124839648220382&w=2
https://marc.info/?l=linux-netdev&m=124839648220382&w=2
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
https://gcc.gnu.org/ml/gcc/2012-02/msg00013.html
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com
https://lkml.org/lkml/2016/2/2/80
https://marc.info/?l=linux-kernel&m=145384764324700&w=2
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
https://lkml.org/lkml/2017/6/27/1052
http://lkml.iu.edu/hypermail/linux/kernel/0512.0/0976.html
http://lkml.iu.edu/hypermail/linux/kernel/0512.0/0976.html
https://marc.info/?l=linux-kernel&m=145263153305591&w=2
https://marc.info/?l=linux-kernel&m=145263153305591&w=2
https://marc.info/?l=linux-kernel&m=145280444229608&w=2
https://marc.info/?l=linux-kernel&m=145280444229608&w=2
https://marc.info/?l=linux-kernel&m=145280241129008&w=2
https://marc.info/?l=linux-kernel&m=145280241129008&w=2
https://marc.info/?l=linux-kernel&m=138428080207125
https://marc.info/?l=linux-kernel&m=138428080207125
https://www.spinics.net/lists/kernel/msg2421883.html
https://www.spinics.net/lists/kernel/msg2421883.html

	Abstract
	1 Introduction
	1.1 ``Still confusion situation all round'' [sic] zil13
	1.2 ``[I]t is your kernel, so what is your preference?'' mck16
	1.3 ``[P]ick a sane, maintainable memory model'' mol13
	1.4 Correctness of concurrent code
	1.5 Overview of the paper and contributions

	2 Programs and Candidate Executions
	3 The LK model's core
	3.1 Examples
	3.2 Formal definitions
	3.3 Summary

	4 Modeling Read-Copy-Update
	4.1 Formalising the fundamental law of RCU
	4.2 The RCU axiom

	5 Experiments
	5.1 Hardware results
	5.2 Comparison to C11

	6 Verifying an RCU implementation
	6.1 Description of the implementation
	6.2 Correctness statement
	6.3 Proof sketch

	7 Discussion
	References

