
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Executable Contracts for Incremental
Prototypes of Embedded Systems

Lionel Morel1

IRISA/INRIA, Projet Espresso - Campus de Beaulieu 35042 Rennes — France

Louis Mandel2

INRIA, Projet Moscova - Domaine de Voluceau 78153 Le Chesnay — France

Abstract

In this paper, we advocate for a seamless design-flow for embedded reactive programs. We particularly
concentrate on the use of assume-guarantee contracts (as a form of non-deterministic specification) and
present how these can be used for early execution of reactive specifications. We illustrate the approach on
a case-study taken from an avionic application, trying to show the implications of this simulation method
on the design-flow.

Keywords: Reactive systems, assume-guarantee contracts, early execution, embedded systems

1 Introduction

Reactive systems and the synchronous approach
Reactive systems, as defined in [11], are characterized by the interaction with

their environment being the prominent aspect of their behavior. Software embed-
ded in aircraft, nuclear plants or similar physical environments, is a typical exam-
ple. They interact with a non-collaborative environment, which may impose its
own rhythm: it does not wait, nor re-issue events. Synchronous languages [2] rep-
resent an important contribution to the programming of reactive systems. They
are all based on the synchronous hypothesis that establishes that communications
between different components of a system are instantaneous and, more importantly,
that computations performed by components are seen as instantaneous from their
environment’s point of view. Among these languages, the most significant ones are
Esterel [3], Lustre [8] and Signal [15]. They offer a strong formal semantics and

? This work was partly carried while both authors were working at Verimag, Gières, France.
1 Email: lionel.morel@irisa.fr
2 Email: louis.mandel@inria.fr

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:lionel.morel@irisa.fr
mailto:louis.mandel@inria.fr

Morel, Mandel

associated validation tools, and are now commonly used in highly-critical industry
for the design of control systems.

Prototyping and simulation
In software engineering in general, an answer to the increasing complexity of

systems has been the definition of complete design flows. These describe the differ-
ent steps in the development of a system, and associate to each of these steps some
informal or formal method to help validate the system as it is developed. An inter-
esting approach consists in following a continuous path from the early prototypes
towards the final product. Each new step in such a design flow can be automated,
or at least some form of consistency can be checked between successive versions. An
important validation feature of such methodologies is the use of simulation tech-
niques, by which a developer can observe the possible behaviors of the system in its
current status of development, without having a full implementation yet at hand.

Seamless design flow and incremental validation
In this work, we aim at proposing a formally-based seamless design flow for

reactive systems. The idea is to be able to start validating a system as soon as
possible during its development life. By validating, we mean simulating, testing or
verifying, although in the work presented here we are concentrating on simulation
aspects. As far as simulation or test are concerned, all we can do for the moment
is test the system when it is fully implemented (i.e. when it describes a fully
deterministic behavior [14]). This approach is the one classically adopted for black-
box testing. There, we assume the existence of an executable version of the system
under test, and have a non-deterministic description of the environment. We may
also provide observers for checking that the system satisfies desired properties P as
long as the environment satisfies the system’s assumptions H. That sort of “testing”
can only occur at the far end of the development process, by using the specification
of the environment to provide the system with inputs, and observing how the system
reacts against these inputs. Moreover, this is a monolithic approach: all we have
to perform the tests on is an executable version of the whole program. Of course,
one could also perform some unit tests on isolated components, even if the whole
system is not implemented yet. But this gives only a partial (even very small)
understanding of the system. Moreover, one would need to specify a meaningful
environment to each of these components. In earlier work [19], we advocate for
the use of local specifications (by mean of assume-guarantee contracts) for helping
the description of systems during their development. Contracts can be used as
a progressive description method: the programmer might first of all describe the
global structure of the system. Then he can describe “how components behave”
as far as their own environment is concerned, by writing a contract for each of
them. By gradual refinement, he might make more precise the description of each
component’s behavior, ending the development process by giving a deterministic
implementation. These contracts can also help the global understanding of the
system via some verification rules that are used to delegate proof objectives to
validation tools [18].

2

Morel, Mandel

Contracts for Early Simulation
As far as simulation is concerned, the introduction of contracts in the design

methodology has the following implications on: 1) modularity. Once the program-
mer has provided a component with a contract, this contract can be seen as a
specification of the component’s environment, and can thus be used for testing the
component alone, without depending on the implementation of the whole system.
Here, the standard test approach proposed in [22] can be used with the advantage
of the locality of the testing (the whole system need not be implemented entirely in
order to test one of its components); 2) early simulation of non-fully implemented
systems. Since contracts are given in an early stage of development, it is possible to
simulate the system without waiting for a complete implementation to be designed.
Here, we aim at providing a simulation framework that follows the latter view. The
method is based on generation of actual code for deterministic components and
connection to a constraint solver (as used in classic test approaches) for simulating
assume-guarantee contracts.

Content of the paper
Section 2 presents a subset of the Lustre language that we will use for describing

our running example. Section 3 introduces a system example. Through this we
illustrate the progressive design-flow that we introduced earlier. Starting from the
general description of the architecture of the application in 3.1, we gradually refine
parts of the system by giving contracts and final deterministic implementations
of some components (3.2). Section 4 introduces a formalization of components
and describes the approach we propose for simulating networks of deterministic
and non-deterministic components. Section 5 describes a simple implementation of
this framework that uses existing tools and discusses the practical problems raised.
Section 6 discusses related works while section 7 concludes and introduces possible
future work.

2 Mini-lustre

We first define a language for programming reactive systems. It is a light version
of the Lustre language [8]. Programs manipulate lists of variables. Given two such
lists V and V ′, we use V&V ′ as the concatenation of V and V ′. We will use this for
describing our running example.

Programs
A mini-Lustre program is a tuple N = (V i,Vo,V l,F):

• V i, Vo and V l are pairwise disjoint lists of variables for inputs, outputs and
local variables. They take their values in a domain D;

• F is a total function from Vo&V l to Exp(V i&Vo&V l), where Exp(V) is the
set of expressions over variables in V, defined by the following grammar: e ::=
c|x|op(e, ..., e)|pre(i, x)|N(x, ..., x). c represents constants on D; x represents
the name of a variable in V i&Vo&V l ; op represents for any combinatorial
operator; pre(i, x) stands for the preceding value of variable x (where the

3

Morel, Mandel

constant i is the value of the expression at the initial instant of the execution);
N(x, ..., x) represents a call to the program N with variable names as effective
parameters corresponding to the inputs of N . The usual concrete syntax, used
for the example is the one given in fig. 1.

node N (<list Vi of inputs with types>)

returns (<list Vo of outputs with types>)

var <list Vl of local variables with types>

let

- - for each x, local or output:

x = F(x);

tel.

Fig. 1. Usual concrete syntax of a Lustre
node.

preC2 o2i2

C3 o3
i3

i4
C1

i1 o1 oi

Fig. 2. An example of data-flow network.

In the example, we will also use specific Lustre operators, called iterators,
introduced in [21], that can be seen as limited higher-order operators. The syntax
map � N,n � defines a mapping operation of a node N that is applied on n-
elements arrays. red � N,n � defines a reduction (similar to fold in functional
languages) that iterates the node on n-elements arrays . In the current work, we
only use these iterators for making the presentation of the example clearer.

Trace semantics
Each variable name v in a mini-Lustre program describes a flow of values of its

type, i.e. an infinite sequence v0, v1, Given a sequence of inputs, i.e. the values
vn , for each v ∈ V i, and each n ≥ 0, we describe how to compute the sequences (or
traces) of local and output flows of the program: for all instants, the value of an
output or local variable v is computed according to its definition as given by F :

∀n > 0.∀v ∈ Vo&V l.∀x ∈ V i&Vo&V l.

vn = F(v)[xn/x][xn−1/pre(i, x)] and v0 = F(v)[x0/x][i/pre(i, x)].

We take the expression F(v), in which we replace each variable name x by its current
value xn, and each occurrence of pre(i, x) by the previous value xn−1 (except in
the initial instant of execution where we replace it by the value of initialization
expression associated, i). This yields an expression in which operators are applied
to constants. The set of equations we obtain for defining the values of all the flows
over time must be acyclic.

Synchronous composition
Components are arranged in a data-flow network such as the one of fig. 2.

There exist two kinds of connections between components: combinatorial (e.g. be-
tween i3 and o1) dependencies, made explicit by the ”wire” connections and non-
combinatorial dependencies (e.g. between i4 and o2) using the pre operator provided
in the language. We require that any circular dependency between the inputs and
the outputs of a same component is broken by a pre operator. This constraint allows
for simpler analysis techniques (e.g. used as a standard in the SCADE tool) and
separate compilation of Lustre nodes.

4

Morel, Mandel

Tolerant

System

3 x 4 Connections
each made of

2 wires

(4 x 3 x 2 inputs in total)

4 identical

physical devices

Pitch

Roll

Yaw

Fault

3 output values

Pitch

Roll

Yaw

Fig. 3. The gyroscopic system with its environ-
ment.

pre

channel

channel

channel

channel

Voter

resChannels

previousResChannels

A
xi

sV
al

u
e

4
co

u
p
le

s
o
f
va

lu
es

Fig. 4. Structure of one axis.

3 Example

3.1 General presentation

Throughout the rest of the paper, we will use a common example to serve our
purpose. This application is taken from the avionics industry and deals with the
treatment of position variations of an airplane. Figure 3 describes the system and
its physical environment. The system is connected to four gyroscopes, each of them
measuring the angle variations along the three axes named roll, pitch and yaw.
The values obtained for one axis by each physical device are transmitted to the
computing system along two wires vA and vB. Hence the system receives 4 × 3 ×
2 values. From these 24 values, it computes three secure values that are intended
for the rest of the command system of the airplane as references of the position
variation of the airplane.

The behavior of the three axes is the same. Let us concentrate on one axis
only, say roll. The internal structure of the system is as follows (see fig. 4): it is
made of four channel components each of them being in charge of the two wires
vA and vB (representing the same physical value) that come from one of the four
gyroscopes. Each channel delivers one output value defined by the roll value and
the local failure status. A voter computes one signal value (AxisValue) out of four
(resChannel), depending on current fault conditions: the value is the average of the
values transmitted by the channels that do not declare themselves “failed”. Three
or more channels having failed at the same time is supposed to have a very low
probability. This is determined by traditional fault-tolerance analysis that are not
the subject of this paper.

The system handles two kinds of faults: link faults, that are due to some bad
behavior of a physical link between the measurement devices and the computer; and
sensor faults, that are due to the measurement devices (sensors) themselves being
broken or not working properly for some time. Each channel compares the values
it receives on the two wires (vA and vB), and is able to detect local discrepancies.
This dual transmission of values from one gyroscope to the computer system is there
to detect link faults. For an error to be reported, the two values have to differ of

5

Morel, Mandel

more than ∆v, during more than ∆t units of time. Moreover, in order to support
sensor faults, channels talk to each other and exchange values, so that each of them
can compare its own value to the three other ones. If one of the gyroscopes is not
working, the value it delivers will probably differ from the values given by the three
other devices. Channels also have to exchange their failure status, because each one
should compare its value to the values of the other channels, but only those that do
not declare themselves failed (recall a channel may declare itself failed, due to the
local comparisons it performs).

Of course, recovery after detection of faults should be taken care of in the de-
scription of the system. But this is not the topic of the presented work and we will
not go into the details of this.

3.2 The Design-flow in practice

We propose a design-flow that we roughly decompose into three steps: architectural
design, description of local specifications and implementation of components.

Architectural design
During the first step, the user defines the global architecture of the application,

i.e. the components input/output interfaces and their connection. This is exactly
what we have done in 3.1. For example, we gave the following Lustre interface to
the component channel:

node channel(previousResChannel: Valid ChannelTˆ4;
nbInChannel: int; inChannel: Faulty ChannelT)

returns (nextResChannel: Valid ChannelTˆ4; outChannel: Valid ChannelT);

Local specifications
The second design step, is achieved by designing assume-guarantee contracts [19]

for each component. A contract is a couple (A,G) that can be used to describe a
partial behavior of a component. A is used to encode an assumption that the com-
ponent has on its environment. G is used to encode a property that the component
guarantees about its behavior. In practice, both the assumption and the guarantee
can be expressed by means of synchronous observers [9]. A relates to inputs of the
component, and G relates to both inputs and outputs of the component.

Our Channel component has the contract defined by the nodes assumeChannel
and guaranteeChannel (see fig. 5). Each channel assumes that at most 1 other
channel reports local discrepancies and that the channels that work properly provide
a value that is not far from some ideal value. When put in an environment satisfying
this assertion, the channel guarantees some temporal property stating that: “either
a local discrepancy is detected (which means the two values it receives as inputs
are too different for a period of time too long), or there is no local discrepancy
detected and the current output value is not too far from the two values it receives
as inputs.” In the program of fig. 5 , this behavior is represented by the boolean
variable normalProp.

Note that we also need an initialization property, because the guarantee de-
pends on some past values that are not available during the first instants of the
execution. The global guarantee of the channel is encoded by a call to node

6

Morel, Mandel

node assumeChannel(– – inputs of the channel component
previousResChannel: Valid ChannelTˆ4; nbInChannel: int;
inChannel: Faulty ChannelT)

returns (assumeOK: bool);
var unfailedChannels notFarFromIdeal: bool;
let

assumeOK = NbOtherFailures(previousResChannel, nbInChannel)<3
and unfailedChannels notFarFromIdeal;

unfailedChannels notFarFromIdeal = NotFarFromIdeal(previousResChannel,
nbInChannel, ideal, delta to ideal);

tel

node guaranteeChannel(– – inputs of the channel component
previousResChannel: Valid ChannelTˆ4; nbInChannel: int;
inChannel: Faulty ChannelT;
– – outputs of the channel component
nextResChannel: Valid ChannelTˆ4; outChannel: Valid ChannelT)

returns (guaranteeOK: bool);
var lastValidChannel: Faulty ChannelT;initProp, normalProp: bool;
let

normalProp = outChannel.local failure
or ((abs((lastValidChannel.valuea - outChannel.local value)) <= delta)
and (abs((lastValidChannel.valueb - outChannel.local value)) <= delta));

initProp = outChannel.local failure or ((abs((inChannel.valuea - outChannel.local value)) <= delta)
and (abs((inChannel.valueb - outChannel.local value)) <= delta));

lastValidChannel = lastValid(inChannel,delta);
guaranteeOK = during then (initProp, TIME, normalProp);

tel

node Voter(resChannels: Valid ChannelTˆ4)
returns (vote: int); var sum, nbValid: int;
let

nbValid = countValidChannels(resChannels);
sum = red�addIfValid;4�(0.0,resChannels);
vote = (globalSum / nbValid);

tel

Fig. 5. Definition of the contract of the channel component and of the implementation of the voter. Note
that delta, ideal and delta to ideal are global constants.

during then (initProp, TIME, normalProp) which states that initProp holds during
the first TIME instants (TIME is a constant) and then normalProp holds for the rest
of the execution. A contract for the Voter can also be designed, but we will not give
it here, for obvious space reasons.

Environment
We also give a description of the environment of the whole application to be able

to do simulations. The simplest environment env takes as inputs the AxisValue com-
puted by the Voter and gives some channel inputs back to the channels. Describing
such an environment is a complex part of the application design, but we will not
concentrate on it here. We will assume that such a description is given in the form
e.g. of a Lucky automaton [13] that randomly chooses channel inputs that satisfy
the desired specification for the environment.

Implementation
This last step is done by writing actual Lustre components that deterministi-

cally define their outputs (in contrast with the non-determinacy implied by con-
tracts). The Voter (fig. 5) actually computes an average of the values provided by
those channels that do not declare local discrepancies.

7

Morel, Mandel

4 Simulation methodology

We now give a language-independent formal definition of reactive components. We
start by presenting a formal semantics of components encompassing both determin-
istic components and assume-guarantee contracts. We then give the general idea of
our simulation method.

4.1 Variables, valuations, traces, components

We start with a set of variables V, taking their values in a domain D, intended to
represent the state of a dynamical system. The semantics of a reactive system is
given in terms of step-relations. Intuitively, a step-relation relates two valuations
of V, that are intended to represent the valuations at two successive instants in
time. Then we define components on top of step-relations. Variables may be typed.
However, we forget about the typing mechanism, which is necessarily particular to
the language in which step-relations are described.

Definition 4.1 A valuation σ of V is a total function from V to D; Let us denote by
Vals(V,D) the set of all such valuations. Then a step-relation on V relates valuations,
hence it is a subset of Vals(V,D)× Vals(V,D). The set of all step-relations on V is
Step-Rels(V,D) = P(Vals(V,D)× Vals(V,D)).

Definition 4.2 A step-relation R ∈ Step-Rels(V,D) is said to be deterministic
(resp. reactive) iff:

∀σ ∈ Vals(V,D). |{σ′ such that (σ, σ′) ∈ R}| ≤ 1 (resp. ≥ 1)

Definition 4.3 Traces(V) is the set of all possible traces on variables of V. If
t ∈ Traces(V), we note ti the i-th element of t, i.e. the value of the variables of V at
the i-th instant of execution, according to t. If t ∈ Traces(V) and V ′ ⊂ V, then the
trace t′ ∈ Traces(V ′) is the projection of t over V ′ (t′ = t ↓V ′) if and only if |t| = |t′|
and ∀x ∈ V ′, ∀n, tn(x) = t′n(x). This operation can be lifted to the set of traces.

Definition 4.4 A behavior B ∈ Behaviors(V,D) is a tuple (V,V l, σ, R) where V is a
set of variables which represents the interface of the behavior. V l is the set of local
variables such that V and V l are pairwise disjoint. σ ∈ Vals(V&V l,D) is the initial
valuation of the variables and R ∈ Step-Rels(V&V l,D) is a step-relation describing
the behavior after its initialization.

Definition 4.5 The semantics of a behavior B = (V, V l, σ,R) in terms of set of
traces over the variables of V is defined by:

T (B) = {t ∈ Traces(V&V l) | t0 = σ ∧ ∀n. 0 < n < |t| ∧ (t(n−1), tn) ∈ R} ↓V

Now we can define a notion of component, that will encompass assume-guarantee
contracts.

Definition 4.6 A component C is a tuple (V i,Vo, Ba, Bg) where:
• V i and Vo are the sets (pairwise disjoint) of inputs and outputs of the compo-

nent;
• Ba ∈ Behaviors(V i,D) (resp. Bg ∈ Behaviors(V i&Vo,D)) is a description of the

assertion (resp. guarantee) of the component.

8

Morel, Mandel

Definition 4.7 The semantics of a component described by its contract is given as
the set of traces T (C), defined as:

T (C) = {t ∈ Traces(V i&Vo) | t ↓Vi∈ T (Ba) ⇒ t ∈ T (Bg)}

A behavior B ∈ Behaviors(V i&Vo,D) is an implementation of a component C =
(V i,Vo, Ba, Bg) if T (B) ⊆ T (C).

4.2 Executing components

The previous semantics gives us a denotational characterization of our deterministic
components, as well as of assume-guarantee contracts. From a simulation point-of-
view, we need a way to describe operationally the generation of traces of values that
satisfy these specifications. Practically, we need to be able to describe a component
C by some functions initC(), computeOutC() and updateStateC() that can be used
to build those traces. The exact implementation of these functions depends on the
form of each component.

For deterministic components, they are obtained by classical compilation of the
source code. From a global point of view, however, we need to ensure separate
compilations of components. For that, we require, as explained before, that all
dependency cycles in the source code be broken by pre.

From assume-guarantee contracts, this correspondence is less trivial. The algo-
rithm of the computeOutC() function is given figure 6. The assertion can be seen as
a constraint that should be checked at each instant on input values. We thus define
a boolean function checkAssert() that takes current values of the input variables of
the component and checks whether those values satisfy the constraint it represents.
This test function can be compiled out and used whenever the component is to be
activated. The non-deterministic aspect of the assertion is left aside here since it is
not used to actually generate values.

If the assertion is violated a warning message should be addressed to the user.
Otherwise, if the assertion is satisfied, one can then use the guarantee to generate
valid outputs. Now the guarantee part of the contract basically represents a set of
constraints ϕ on the variables of V i&Vo. Realizing the corresponding computOut()
function means providing a function choose() that, given a value for V i will provide
a value for Vo by solving the constraint ϕ. It is of course not possible to compile this
choose function out of every contract. Rather, it is implemented by a constraint
solver that is asked to solve ϕ every time a step is asked from the corresponding
contract.

Solving such constraints is not decidable in general. In practice, the choose func-
tion can be delegated to a test case generation tool that is able to solve constraints
mixing boolean and linear relations on numerical variables. Since we require this
method to be fully automatic, it naturally requires restrictions on the nature of the
numerical constraints to be solved. For example, the Lurette tool we use in our
practical experiments (see sec. 5) requires those constraints to be linear: it uses
polyhedra to solve these constraints.

9

Morel, Mandel

if checkAssert()

then choose();

else EmitWarning();

Fig. 6. ComputeOut function of a
(A, G) component.

for j in 1..nbComponents

initCj
();

while(true)

for j in 1..nbComponents

computeOutCj
();

for j in 1..nbComponents

UpdateStateCj
();

Fig. 7. Simulation algorithm.

inChannel[1].vA . . . 5.38 5.25 4.77 . . .

inChannel[1].vB . . . 5.47 4.53 4.71 . . .

...

inChannel[4].vA . . . 5.24 5.28 4.94 . . .

inChannel[4].vB . . . 4.65 4.81 5.43 . . .

resChannel[1] . . . <ff,5.41> <ff,5.20> <ff,4.73> . . .

...

resChannel[4] . . . <ff,5.21> <ff,5.20> <ff,4.98> . . .

vote . . . 5.16 5.14 4.95 . . .

Fig. 8. Possible traces for the gyroscope application.

The system’s environment
The description of the environment is given in the form of a non-deterministic

automaton that is interpretable by the test case generation tool mentioned earlier.
We can also represent it as a reactive component that provides a computeOut()
function which realization is implemented as a call to the above-mentioned function
choose. The environment is thus to be seen as just another component from a
simulation perspective.

4.3 Executing networks of components

Now, we are able to associate to each component Cj a function computeOutCj() and
a function updateMemCj(). Whether the component is deterministic or not, there
is no difference in how we consider it in the writing of the simulation algorithm. The
only difference, as noted earlier, is in the way the computeOut will be implemented.

Our goal here is to be able to simulate networks of components such as the one
of fig. 2. The problem to solve is determining the order of execution of components
in such a network. This is done by following the method proposed in [10]. For the
sake of presentation, we assume that this order is the natural order on the indexes
of the components: C1 gets executed first, then C2, etc. Then the corresponding
simple simulation algorithm is shown in fig. 7.

Applying this simulation technique to our running example will yield traces like
the one of figure 8.

5 Implementation

To illustrate these propositions, we have implemented the example of section 3
using the languages ReactiveML (RML) [16] and Lucky [13]. The simulation of
the system is performed thanks to the connection existing between the ReactiveML

compiler and the Lurette tool [12].

The Lucky language and the Lurette tool
Lucky is a language dedicated to the description of environments of reactive

synchronous programs. It is designed to express sequences of testing scenarios in a
compact manner. Its main characteristics are that it allows non-determinism and

10

Morel, Mandel

probabilistic descriptions. It is the source language for the Lurette tool which per-
forms automatic generation of test sequences. It takes as input a Lucky description
of the environment, an executable version of the program to test and a description
of the properties to be checked for on the program. Lurette handles boolean but
also numerical aspects of the environment description.

ReactiveML
RML is a language designed for the implementation of reactive systems. It

combines the synchronous paradigm found in the Esterel with the classical features
found in asynchronous settings (such as dynamic creation of processes). It is built
on top of OCaml, and thus benefits from its power of expression. An extension
of RML has been recently developed in which one can describe the behavior of
a particular component in Lucky. This extension was first designed to allow the
description of non-deterministic environments for RML programs. The mechanism
used is as follows. At each time tick, the RML code is executed. When it comes
to executing the Lucky environment, the RML program calls the Lurette tool so
as to produce the environment new outputs. The solving of the non-deterministic
aspect of the environment is totally delegated to Lurette. In the paper, we have
kept a Lustre representation of the programs, in order not to introduce too many
notations, but the translation from Lustre to RML should be automated.

Building our example with RML and Lucky
We have used Lucky to describe non-deterministic behaviors of components,

and not only the environment. Each couple (A,G) of Lustre nodes forming a con-
tract has been translated by hand into two equivalent Lucky programs. The first
is then used to detect input values that violate the component’s assertion. The
second one is used as mentioned before to generate valid outputs. RML was then
used to describe both deterministic components (the translation from the Lustre

version was, there again, done by hand) and the global architecture of the applica-
tion. From this program, the RML compiler generates an executable that basically
implements the whole algorithm of fig. 7. The executable also implements each de-
terministic components (each deterministic computeOutCj

is compiled out to actual
executable code). For each non-deterministic component (described by contracts)
this code contains system calls to the Lurette tool implementing the calls of the
forms checkAssert and choose.

Comments
The whole system could be described in Lustre. Here we benefit of the existing

connections between the tools. The translation of Lustre contracts into Lucky

automata is not an obvious process, and was performed in an ad hoc manner here.
Full automation of this translation should be studied. Limitations would certainly
appear in the general case.

11

Morel, Mandel

6 Related Works

In the context of real-time reactive systems, there has been a lot of work around
simulation. The most important ones are maybe those implemented in Ptolemy [5],
which is a tool set for the design of heterogeneous systems. Simulation of this type
of system is particularly described in [6]. In [24], a simulation method is proposed
for the specific case of synchronous reactive systems. One important drawback of
this approach is that it proposes a simulation method of deterministic systems,
and thus can not be used in the early stages of development, as we propose to
do. In [20] Metzger and Queins propose a methodology for generating determinis-
tic prototypes from informal requirements of the application being designed. The
requirements are first translated into SDL [1] and non-determinism is compiled out
from the SDL program (thanks to a set of predefined SDL libraries). As pointed by
the authors themselves, the main difficulty of this approach unsurprisingly consists
in the semantic gap between natural language requirements and SDL formal specifi-
cations. Here, we do not claim to fill this gap. Rather, our proposal stand on a quite
different status, since we do not compile an executable from the non-deterministic
specifications, but we truly simulate them. Closer to our approach, but aimed at a
different type of applications is the Co-Java approach [4]. Co-Java is an extension
to Java in which certain part of the behavior of the system can be expressed using
constraints on program variable. Upon simulation, these constraints are interpreted
in a way similar to what Lucky does in our case. Finally, this work can be seen as
an attempt to propose a methodology impact of the work presented in [23]. There,
the author proposes a simulation framework for arbitrary synchronous data-flow
networks where non-deterministic components are expressed directly in the Lutin

language. Our approach is only different with respect to the language used (we use
assume-guarantee contracts which are a strict subset of Lutin). The exact same
simulation algorithm can used (the one implemented in Lurette). We are interested
in defining a particular usage of these simulation techniques in a contract-based
design flow. Probably, an interesting extension of this work would be to allow
description of contracts by couples of Lutin components.

7 Conclusions and Perspectives

We have proposed a simulation methodology for reactive embedded systems where
non-deterministic components can be described alongside with fully implemented
ones. The deterministic components are compiled to standard executables while the
non-deterministic ones, described by their contracts are interpreted by a standard
test tool. The main advantage of this approach is that it can be used in the earliest
stages of development, which can save enormous efforts usually spent on bug re-
trieval at the implementation level. The program itself, with all its components, can
be described with varying levels of detail, depending on the stage of development.

It was not shown in this example, but it is trivially possible to plug in additional
input generators or observers that are not directly part of the system itself but that
can significantly help in its development. These can be described as Lustre nodes
or observers and can then be simulated in the same manner. In that sense, this

12

Morel, Mandel

approach seems quite promising.
The whole methodology has been applied to the example described in this paper

with ad-hoc transformation techniques. It has been entirely re-written in RML by
hand and the translation of contracts into their Lucky counterpart was also done by
hand. Still, this has shown to be quite promising in the end: we were able to simulate
a partially defined version of the system and this allowed the discovery of several
features early in the design process, that could probably have saved development
effort afterward. However, the impact of the simulation on the global validation
of this particular example was somewhat limited by the fact that we had previous
running versions of the application that had already reached very stable statuses.
Applying this methodology to a brand new case-study would be very beneficial in
that sense.

We still would like to push it further in several directions. The first one concerns
tool support. As we mentioned earlier, the translation from Lustre to RML is
performed manually. We would like to either automate this translation or preferably
work directly in Lustre. One idea we would prefer would be to integrate the use of
the Lurettetool in a debugger like Ludic [17]. More important issues concern the
expressiveness of the languages used. First we would like to extend this approach
to consider the probabilistic part of Lucky. This is a feature which has proved very
useful in testing [23], and we believe it should be incorporated in our framework.
It would then mean finding a good way of expressing these probabilistic behaviors
as contracts. Second is the extension of this approach from purely synchronous
systems to GALS (Globally Asynchronous, Locally Synchronous) systems. From a
language point of view, it would be interesting to see how our contracts can be used
for specifying GALS systems (using the work of [7] as a basis). We will study the
application of our simulation method to these systems.

References

[1] Specification and description language (sdl), ITU-T Recommendation Z.100, International
Telecommunications Union (1999).

[2] Benveniste, A., P. Caspi, S. Edwards, N. Halbwachs, P. LeGuernic and R. de Simone, Synchronous
languages, 12 years later, Proceedings of the IEEE (2003).

[3] Berry, G. and G. Gonthier, The esterel synchronous programming language: Design, semantics,
implementation, Science of Computer Programming 19 (1992), pp. 87–152.

[4] Brodsky, A. and H. Nash, Cojava: a unified language for simulation and optimization, in: OOPSLA ’05:
Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (2005), pp. 194–195.

[5] Brooks, C., E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao and H. Zheng, “Heterogeneous Concurrent
Modeling and Design in Java (Volume 1: Introduction to Ptolemy II),” EECS, University of California,
Brekeley, CA USA 94720 (2005), memorandum UCB/ERL M05/21.

[6] Evans, B., A. Kamas and E. Lee, Design and simulation of heterogeneous systems using ptolemy (1994).

[7] Halbwachs, N. and S. Baghdadi, Synchronous modeling of asynchronous systems, in: EMSOFT’02
(2002).

[8] Halbwachs, N., P. Caspi, P. Raymond and D. Pilaud, The synchronous dataflow programming language
Lustre, Proceedings of the IEEE 79 (1991), pp. 1305–1320.

[9] Halbwachs, N., F. Lagnier and P. Raymond, Synchronous observers and the verification of reactive
systems, in: M. Nivat, C. Rattray, T. Rus and G. Scollo, editors, Third International Conference on
Algebraic Methodology and Software Technology, AMAST’93 (1993).

13

Morel, Mandel

[10] Halbwachs, N., P. Raymond and C. Ratel, Generating efficient code from data-flow programs, in: Third
International Symposium on Programming Language Implementation and Logic Programming, Passau
(Germany), 1991.

[11] Harel, D. and A. Pnueli, “On the Development of Reactive Systems,” Springer-Verlag New York, Inc.,
1985 pp. 477–498.

[12] Jahier, E., The lurette v2 user guide, Technical report, Verimag, Centre Équation, 38610 Gières (2004).

[13] Jahier, E. and P. Raymond, The lucky language reference manual, Technical report, Verimag, Centre

Équation, 38610 Gières (2004).

[14] Jahier, E., P. Raymond and P. Baufreton, Case studies with lurette v2, in: ISoLa 2004, First
International Symposium on Leveraging Applications of Formal Method, Paphos, Cyprus, 2004.

[15] Le Guernic, P. and A. Benveniste, The synchronous language signal, in: M. R. Barbacci, editor,
Proceedings from the Second Workshop on Large-Grained Parallelism (1987), pp. 56–57.

[16] Mandel, L. and M. Pouzet, Reactiveml, a reactive extension to ml, in: ACM International conference
on Principles and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, 2005.

[17] Maraninchi, F. and F. Gaucher, Step-wise + algorithmic debugging for reactive programs: Ludic, a
debugger for lustre, in: AADEBUG’2000 – Fourth International Workshop on Automated Debugging,
Munich, 2000.

[18] Maraninchi, F. and L. Morel, Arrays and contracts for the specification and analysis of regular
systems, in: Fourth International Conference on Application of Concurrency to System Design (ACSD),
Hamilton, Ontario, Canada, 2004.

[19] Maraninchi, F. and L. Morel, Logical-time contracts for reactive embedded components, in: 30th
EUROMICRO Conference on Component-Based Software Engineering T rack, ECBSE’04, Rennes,
France, 2004.

[20] Metzger, A. and S. Queins, Early prototyping of reactive systems through the generation of sdl
specifications from semi-formal development documents (2002).

[21] Morel, L., Efficient compilation of array iterators for lustre, in: F. Maraninchi, A. Girault and
E. Rutten, editors, Workshop on Synchronous Languages, Programming and Applications, SLAP’02
(2002).

[22] Raymond, P., D. Weber, X. Nicollin and N. Halbwachs, Automatic testing of reactive systems, in: 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

[23] Roux, Y., Description et simulation de systèmes réactifs non-déterministes, Phd thesis, Institut
National Polytechnique de Grenoble (2004).

[24] Whitaker, P., “The Simulation of Synchronous Reactive Systems in Ptolemy II,” Master’s thesis,
Department of Electrical Engineering and Computre Science, University of California at Berkley (2001).

14

	Introduction
	Mini-lustre
	Example
	General presentation
	The Design-flow in practice

	Simulation methodology
	Variables, valuations, traces, components
	Executing components
	Executing networks of components

	Implementation
	Related Works
	Conclusions and Perspectives
	References

