
Simulation and Verification of Asynchronous Systems
by means of a Synchronous Model∗

Nicolas Halbwachs and Louis Mandel†

Vérimag‡, Grenoble – France

c©IEEE Computer Society Press, ACSD’06

Abstract

Synchrony and asynchrony are commonly opposed
to each other. Now, in embedded applications, ac-
tual solutions are often situated in between, with syn-
chronous processes composed in a partially asynchronous
way. Examples of such intermediate solutions are GALS,
quasi-synchronous periodic processes, deadline-driven task
scheduling. . . In this paper, we illustrate the use of the syn-
chronous paradigm to model and validate such partially
asynchronous applications. We show that, through the use
of sporadic activation of processes and simulation of non-
determinism by the way of auxiliary inputs, the synchronous
paradigm allows a precise control of asynchrony. The ap-
proach is illustrated on a real case study, proposed in the
framework of the European Integrated project “Assert”.

1 Introduction

It is well admitted, now, that the synchronous
paradigm [4, 20] can significantly ease the modeling, pro-
gramming, and validation of embedded systems and soft-
ware. The synchronous parallel composition helps in struc-
turing the model, without introducing non-determinism.
The determinism of the model is also an invaluable advan-
tage for its validation: tests are reproducible, and model-
checking is not faced with the proliferation of states due to
non-deterministic interleaving of processes.

It is also recognized that the synchronous paradigm is
not the panacea, since it does not directly apply to intrinsi-
cally asynchronous situations, such as distributed systems,
or applications mixing long tasks and urgent sporadic re-
quests. This is why numerous works (see, e.g., [7] for a
synthesis) are devoted to combining synchrony with asyn-
chrony, or to extending the synchronous model towards less

∗This work was partially supported by the European Commission under
the Integrated Project Assert, IST 004033

†email:{Nicolas.Halbwachs, Louis.Mandel }@imag.fr
‡Verimag is a joint laboratory of Université Joseph Fourier, CNRS and

INPG associated with IMAG.

synchronous applications. For instance, “Communicating
reactive processes” [11] or “Multiclock Esterel” [10] are
extensions of the synchronous language Esterel [8] to cope
with non perfectly synchronous concurrency. On the other
hand, the paradigm of “Globally asynchronous, locally syn-
chronous systems” (GALS) has been proposed [16, 1, 9]
to describe general asynchronous systems, while keeping
as much as possible the advantages of synchronous com-
ponents. “Tag machines” [6, 5] are an even more general
and abstract attempt in the same direction. [17] mixes syn-
chronous (Signal) and asynchronous (Promela) models for
verifying GALS.

Another track of research addresses the compilation of
synchronous programs towards distributed or non strictly
synchronous code. While some distribution methods aim
at strictly preserving the synchronous semantics [13, 12],
other proposals only preserve the functional semantics [14,
15, 27, 26].

Finally, other works concern the modeling of asyn-
chronous systems within the synchronous paradigm. It
is well-known since [24, 25] that a synchronous formal-
ism can be used to express asynchrony. The only need
is to express sporadic activation (or stuttering) of pro-
cesses — which is allowed in all existing synchronous lan-
guages — and explicit non-determinism. The modeling
tool Model-Build [2, 3] — developed within the European
projects SafeAir and SafeAir2 — and the Polychrony work-
bench [23, 19, 18] are based on this idea. In this paper, we
report on our use of this kind of approach in the framework
of the Assert project.

Assert is a European Integrated Project devoted to the
design of embedded systems from the system architecture
level down to the code, with special emphasis on high-
level modeling, proof-based design, and component reuse.
Aerospace industry (avionics, launchers, and satellites) con-
stitutes the main application domain of Assert. In this
framework, we propose a methodology based on a high-
level behavioral modeling and verification of an application,
using a synchronous formalism. Since the automatic gener-
ation of distributed code is not an objective of the project,
the automatic code generation is only applied separately to



each software component of the model. Here, we report on
our experience on modeling non synchronous applications
using a synchronous formalism. The goal is to obtain an ex-
ecutable model of the whole application, allowing its early
simulation and testing, together with the formal verification
of its critical properties.

Such simulation of asynchronous systems within the
synchronous model has obvious advantages: It allows an
easy and precise description of the whole range of applica-
tions, from the pure synchronous to the completely asyn-
chronous ones, but also all the intermediate solutions. Con-
cerning GALS, the synchronous “islands” can be modeled
by their actual code. The model is naturally executable, for
early simulation and testing. As for synchronous programs,
properties can be expressed by observers in the same for-
malism, since the basic time scale is available for observing
the behavior of the processes exactly. These observers can
be used for verification and automatic testing. In the case of
verification by model-checking, the state explosion due to
non-deterministic interleaving is limited.

In the paper we will not use a particular formalism, but
rather an abstract notion of synchronous machines (Sec-
tion 2) in the style of [21]. In Section 3, we explain how we
express asynchrony in this framework, by allowing sporadic
activation, and “simulating” non-determinism by means of
auxiliary inputs. As an illustration, we use a case study
which is briefly presented in Section 4. The case study is
derived from an actual component of the “Automatic Trans-
fer Vehicle”, a spacecraft in charge of supplying the Inter-
national Space Station. This application contains two kinds
of non synchronous features:

• First it consists of two redundant components running
on so-called “quasi-synchronous” processors: such
processors are supposed to run with “almost” consis-
tent clocks, in the sense that their maximum instanta-
neous drift is precisely bounded.

• Second, each component involves three tasks, the first
two being periodic with different periods, and the third
one being sporadic and urgent.

Section 5 is devoted to the modeling of quasi-synchrony:
we show how to express the quasi-synchronous assumption
about the processors’clocks, and how to describe a sched-
uler satisfying this assumption in our synchronous formal-
ism. The approach is applied to the case study and al-
lows some distributed properties to be automatically ver-
ified. Then the modeling of multitasking is presented in
Section 6, and applied to the case study, where is allows to
prove the functional determinism of the system, in spite of
the non-deterministic scheduling.

2 The synchronous paradigm

In this section, we recall the only necessary features
about synchronous programming which are of interest for
our modeling activity. Externally, a synchronous program
behaves as a sequence of atomic steps, which can be peri-
odic or sporadic, according to the way the program is ac-
tivated. To perform one step of the program, the environ-
ment has to provide it with its current inputs; the step itself
consists in computing the current outputs, as a function of
the current inputs and the current internal state of the pro-
gram (which generally has remanent variables encoding this
state), and of updating the state for the next step.

The specific feature of synchronous programs is the way
internal components behave with each other: when several
components are composed in synchronous parallelism, one
step of the whole composition consists of a “simultaneous”
step of all the components, which can communicate with
each other during the execution of the step. This execution
is guaranteed to bedeterministic, a very important property
of synchronous programs, since it makes much easier the
understanding of programs, as well as their testing and ver-
ification.

To be more precise, and following the presentation
of [21], a synchronous component is a straightforward gen-
eralization of synchronous circuits (Mealy machines) to
work with arbitrary data-types: such a machine has a mem-
ory (a state), and a combinational part, computing the out-
put and the next state as a function of the current input and
the current state.

For instance, Fig. 1.a pictures a machine with two inputs,
x andy, one outputz and one state variables, and one can
define a step of the machine by the functions, sayfo andfs,
respectively giving the output and the next state from the
current inputs and the current state:

z = fo(x, y, s) , s′ = fs(x, y, s)

The behavior of the machine is the following: it starts
in some initial states0. In a given states, it determin-
istically reacts to an input valuation(x, y) by returning
the outputz = fo(x, y, s) and by updating its state into
s′ = fs(x, y, s) for the next reaction. When the set of states
(the domain ofs) is finite, we will sometimes specify such a
machine as an input/output automaton, whose states are the
possible values ofs, and where there is a transition from
s1 to s2, labeled byi/o, if and only if s2 = fs(i, s1) and
o = fo(i, s1).

These machines can be composed in parallel, with pos-
sible “plugging” of one’s outputs into the other’s inputs
(Fig. 1.b), as long as these wirings don’t introduce any com-
binational loop. Such a composition is shown by Fig. 1.b,
where the variables are defined by



(b)

s′1

z1

z2

s′2

s1

x1

x2

s2

f

g

(a)

f
x
y z

s s′

Figure 1. Synchronous machines and their
composition

z1 = fo(x1, z2, s1) , z2 = go(x2, z1, s2)
s′1 = fs(x1, z2, s1) , s′2 = gs(x2, z1, s2)

and where either the results offo(x1, z2, s1) should not de-
pend onz2, or the results ofgo(x2, z1, s2) should not de-
pend onz1, to avoid combinational loops.

To conclude this section, let us give two very simple ex-
amples of synchronous machines that we will use later. The
first one is a single “delay” machine (the “pre” operator of
Lustre): the machineδ receives an inputi of some typeτ ,
and returns its input delayed by 1 step; it has a state variable
s of typeτ and is defined by

fo(i, s) = s , fs(i, s) = i

Our second example is asamplerβ(b), with an inputi of
type τ and a Boolean inputb, which returns the value of
i whenb is true, or its previous output whenb is false (it
would be written “current(i when b)” in Lustre). It is de-
fined by

fo(i, s) = fs(i, s) = if b theni elses

3 Expressing asynchrony in the synchronous
model

Basically, the difference between synchrony and asyn-
chrony is that, in the synchronous model, each significant
“event” is precisely dated with respect to other events and
with respect to the sequence of steps. As soon as synchrony
is released, the date of some events becomes unknown, or
not precisely known, meaning that the temporal behavior
becomes non-deterministic.

According to our presentation of the synchronous model,
to express asynchrony, we need, on one hand, that compo-
nents don’t necessarily participate in all steps, and on the
other hand, to express non-determinism (which is on pur-
pose forbidden in synchronous languages!).

3.1 Sporadic activation: “activation condition”
vs. “clock enable”

All synchronous languages propose some ways of pre-
venting a component from reacting (the “suspend” state-
ment of Esterel, or the “clock” mechanism of Lustre and
Signal). However, we don’t want to bother about “absent”
values or signals, induced by these notions. In Scade, the
notion of “activation condition” allows a node to be acti-
vated sporadically, its output and state keeping their pre-
vious values when the activation condition is false; so, an
additional memory is implicitly requested to record the pre-
vious output. We can also consider a more basic — while
probably less intuitive — sporadic activation, inspired by
the behavior of circuits submitted to a “clock enable”: when
the condition is false (or 0), only the machine memory gets
frozen, and the combinational part continues computing
outputs. More precisely, ifM is a synchronous machine,
with input i, outputo, and states, defined by the functions
fo andfs:
• the clocked activationof M by b, notedM / b, is the

machine obtained by adding a new Boolean inputb to
M , and whose output and state functionsf ′o andf ′s are
as follows:

f ′o((i, b), s) = fo(i, s)

f ′s((i, b), s) =
{

s if b = 0
fs(i, s) if b = 1

• theconditional activationof M by b, notedMJb, has
alsob as a new input, its state is a pair(s, o−), and its
output and state functionsf ′o andf ′s are as follows:

f ′o((i, b), (s, o
−)) =

{
o− if b = 0
fo(i, s) if b = 1

f ′s((i, b), (s, o
−)) =

{
(s, o−) if b = 0
(fs(i, s), fo(i, s)) if b = 1

The conditional activationM J b can be built from the
clocked activation, by plugging the output ofM / b into a
samplerβ(b) (Fig. 2.a). Graphically, we shall note a “clock
enable”M / b (resp., an “activation condition”M J b) as
a white (resp., black) arrow input on top of the machine it
controls (Fig 2).

3.2 Non-determinism

We will classically model non-determinism by means of
additional inputs — often called “oracles” — to the model.



M

(b)

M

(a)

b

x
z

b

x
y

β(b) z

Figure 2. Modeling an “activation condition”
with a “clock enable”

These oracles will be used to control non-deterministic
choices. This way of expressing non-determinism has
some advantages over built-in non-deterministic constructs
of many specification languages:
• On one hand, the non-determinism is clearly local-

ized and controlled: one can replay the same execution
twice, just by providing the same oracles.

• On the other hand, the non-determinism can be re-
duced, by imposing some constraints on oracles. We
will make an intensive use of this feature, in particular
to express known scheduling constraints.

3.3 General principles

By combining sporadic activation and oracle-driven non-
determinism, we are able to express any non-synchronous
composition of synchronous processes. The general con-
struction is the following (see Fig. 3.a): the processes
are all sporadically activated according to activation con-
ditions emitted by a global scheduler. The scheduler is non-
deterministic: it receives one Boolean oracle for each con-
dition it has to elaborate. But it can restrict this complete
non-determinism by enforcing constraints among the con-
ditions it actually emits towards the processes.

For instance, in the example of Fig 3.a, the scheduler
could prevent the processes from being activated simulta-
neously, by setting

CP = ΩP , CQ = ΩQ ∧ ¬CP

This would simulate two asynchronous processes, commu-
nicating through a shared memory: since, whenP is not ac-
tivated, its outputs keep their last values, thenQ gets these
last written values just as it would read them in a shared
memory. More complex communication mechanisms can
be modeled as communication processes, which can need
their own activation conditions (see Fig 3.b and Section 6).

The modeling of a new composition mechanism then
consists in expressing constraints on activation conditions,
to be inserted in the scheduler. Since this task is quite diffi-
cult and error-prone, we would like to define, once and for

CQCP

P Q

CQCP

P Q

cpq

cqp

(a)

(b)

Sched.
ΩP

ΩQ

Sched.

ΩP
ΩQ

Ωpq
Ωqp

Figure 3. Modeling non synchronous execu-
tions

all, a library of such mechanisms to be simply instantiated
by the user, using a simple formalism to be defined.

4 The case study

The PFS (“Proximity Flight Safety”) case study was pro-
posed by EADS Space Transportation, and concerns an
equipment of the “Automatic Transfer Vehicle” (ATV) in
charge of supplying the International Space Station (ISS).
The role of the PFS is to ensure the safety of the approach
of the ATV to the ISS: when anything goes wrong, the PFS
is in charge of performing a “collision avoidance maneuver”
(CAM), i.e., to safely move the ATV apart from the ISS, and
to orient it towards the sun, waiting for new instructions.

The CAM is performed by two redundant units, called
“Monitoring and Safing Units” (MSU), running on two
computers. At each instant, one of them is the master,
but can resign this role if it detects its own failure, in
which case the other MSU becomes the master. However,
the master may not change when a CAM is in progress.
Once an MSU has given up its mastership, it never recovers.

Each MSU:
• detects anomalies, which can be failures of the main



computer (or “fault-tolerant computer pool”, FTCP),
abnormal state of the bus, erroneous position or speed
of the ATV, “red button” pressed from inside the ISS;

• detects its own failures, which can involve a master
change;

• is able to perform a CAM
The whole system is supposed to tolerate at most two faults:
the one which gives raise to a CAM, and a fault of one MSU.
As a consequence, one doesn’t have to consider the case of
two faulty MSUs.

The actual system was modified, in the framework of
the Assert project, in order to introduce more asynchronous
aspects: not only are the two MSUs running on separate,
so-called “quasi-synchronous” computers (see below), but
each of them is supposed to be made of three tasks, acti-
vated at different rates: two periodic tasks, with different
periods, and a sporadic, event-driven task. Each MSU is
described by a Scade model, which can be viewed as a syn-
chronous machine.

In the following sections, we consider the modeling of
quasi-synchrony and multitasking.

5 Quasi-synchrony

Quasi-synchrony is a very common composition mech-
anism for periodic processes. It has been formalized by
Paul Caspi in [14]. It consists in executing several periodic
processes on different processors, supposed to run with the
same clock. Now, instead of ensuring the exact synchro-
nization of clocks, using costly mechanisms, one prefers to
tolerate a small clock drift, as long as the following property
holds:

Between any two successive activations of one
periodic process, the process on any other proces-
sor is activated either 0, or 1, or at most 2 times.

In other words, in the case of two processes, the possible in-
terleaving of activations of the processes can be the one pic-
tured in Fig. 4. Notice that the difference between the abso-
lute numbers of activations on each processor can increase
unboundedly (e.g., one process can be activated twice more
often than the other), so it is not a very strong assumption.
The important property of quasi-synchronous composition
is that, if the processes communicate with each other sim-
ply by shared memory, each of them is guaranteed to miss
at most one sample of the other’s output in a row, and con-
versely, to “duplicate” (i.e., read twice the same) at most
twice one sample of the other’s output. Fig. 5 illustrate these
cases of imperfect communication: for instance, the sample
1 of P1’s output is read twice byP2, while the sample1 of
P2’s output is missed byP1.

P1

P2

Figure 4. Quasi-synchronous interleaving

P1

P2

1 2 3 4 5

1 2 3 4 5

Figure 5. Quasi-synchronous communication

5.1 Synchronous modeling of quasi-synchrony

For modeling the quasi-synchronous composition of two
processesP andQ, we have to activate them with two con-
ditionsCP andCQ, such that

between two occurrences ofCP there are at most
2 occurrences ofCQ, and conversely, between
two occurrences ofCP there are at most 2 occur-
rences ofCQ.

This informal specification contains some ambiguities,
mainly concerning the case where both conditions are true
at the same time. For the sake of generality, we consider
that these simultaneous occurrences are possible. Our inter-
pretation of quasi-synchrony will be the following:

Each condition cannot be truealone more than
twice, without the other being true meanwhile; if
a condition occurs twice alone in a row, the other
condition must follow alone.

We can represent this specification by an automaton pro-
ducing the “language” of correct behaviors: a “letter” in
this language is a Boolean monomial on the values of the
conditions, namely an element of

{CP .CQ , CP . CQ , CP .CQ , CP . CQ }

The states of the automaton represent the “advance” of one
condition over the other, i.e., the number of times it has been
true alone since the last time the other was true. So, we get
5 states:
• 1P : CP has been true alone once since the last occur-

rence ofCQ

• 2P : CP has been true alone twice since the last oc-
currence ofCQ

• conversely for1Q and2Q



0

1P1Q

2Q 2P

C P . C Q

CP . C Q

CP . C Q

C P .CQ

C P .CQ

CP .CQ

C P . C Q C P . C Q

C P . C QC P . C Q

CP . C Q C P .CQ

CP .CQ CP .CQ

C P .CQ

CP . C Q

Figure 6. Acceptor of quasi-synchronous ac-
tivations

0

1P1Q

2Q 2P

00/00

10/10

00/00

00/00

10/10

01/01
10/01
11/01

11/11

01/01

00/00

01/01

00/00

10/10
01/10
11/10

11/1111/11

01/01

10/10

Figure 7. Scheduler for quasi-synchrony

ΩP
ΩQ

P Q

Sched.
CQ

CP

Figure 8. Quasi-synchronous activation

• 0 : the initial state, and the one which is reached when-
ever both conditions are simultaneously true, since, in
such situation, none of them is “in advance”.

The corresponding automaton is represented in Fig 6.
This automaton can easily be transformed into a scheduler
(Fig. 7), receiving the oracles(ΩP ,ΩQ), and computing the
activation conditions(CP , CQ): in states0, 1P, 1Q, it just
copies its inputs, while in states2P , and2Q it transforms
forbidden inputs into (arbitrary) correct ones.

Now, the quasi-synchronous composition ofP and Q
consists just in composing in parallel this scheduler with
PJCP andQJCQ (Fig. 8).

5.2 Application to the case study

We used such a model in Lustre, first to perform ex-
tensive simulations, and then to apply the Lesar model-
checker [22] to verify some properties of the PFS case
study:

1. It was immediate to verify that at each instant, at most
one MSU is the master.

2. Now, when we try to prove the converse, i.e., that there
is one master at each instant, the verification fails and
provide an obvious counterexample: of course, since
the communication is not instantaneous, when a MSU
gives up its role of master there is an interval of time
before the other takes the mastership. This short inter-
val was taken into account by the designers of the PFS,
and considered acceptable. However, we were able to
verify a weaker property: if we callC1, C2 the activa-
tion conditions of the two MSUs, and if the first MSU
gives up its role of master at some tick ofC1, then at
the tick ofC2 following the next tick ofC1, the second
MSU is the master.

Notice that both properties only hold because, when an
MSU gives up the master role, it never changes its mind
later on; this implies that its decision is necessarily main-
tained for more than one step, so it is perceived by the other
MSU.

6 Multi-tasking

As a second example, we consider a processQ which is
activated on a multiple of the basic period of a main, priority
processP . Q is activated once everyn activations ofP , and
its execution can spread overn cycles ofP , thanks to some
preemptive scheduler. However, it is guaranteed to fit in its
period, i.e., to terminate within at mostn cycles of the basic
period. A possible scheduling of the computations is shown
in Fig. 9, withn = 3.



Q

P

21

1 2 3 4 5 6 7

Figure 9. Multitasking

This is a quite common situation of multi-tasking, which
happens, e.g., in the PFS case study. It could be generalized,
for instance, by imposing toQ a deadline different from its
period, or even by considering non periodic activations of
Q.

Here, we are faced with the problem of modeling tasks
with durations, which seems contradictory with the syn-
chronous abstraction. The obvious solution is just to con-
sider that the outputs ofQ are available later than its acti-
vation. So,Q will be activated at some conditionCQ, on
which its inputs will be sampled, and its outputs will be
available according to another conditionAQ. Notice that
this modeling still supposes thatQ samples its inputs syn-
chronously, and deposits its outputs also synchronously. On
one hand, releasing this assumption would make the model
much more complex, and on the other hand, a design which
would not respect this condition would be questionable.

6.1 Synchronous modeling of multi-tasking

As said before, a sporadic non instantaneous processQ
will be modeled by means of two conditions: an activation
conditionCQ, which triggers the atomic sampling of its in-
puts, and an availability conditionAQ which corresponds
to the simultaneous availability of its outputs. In the case
addressed here (which occurs in the PFS case study), the
activation condition occurs everyn cycles of a more prior-
ity processP , and the outputs are supposed to be available
at some instant during thesen cycles. In other words, ifQ is
activated at cyclek, it will deliver its outputs either at cycle
k, or k + 1, or. . . , ork + n− 1 at the latest.

So, we have two tasks:
• To defineCQ, we need an operator which “divides”

the activationCP of P by the parametern. Notice
that this operator is deterministic:CQ should happen
simultaneously with the1st, (n+1)th, (2n+1)th, . . . ,
occurrences ofCP .

• To defineAQ, we need to express the condition that
it happens exactly once (non-deterministically) inside
each interval starting at an occurrence ofCQ and end-
ing just before the next occurrence ofCQ.

Definition of the activation: The construction ofCQ is
deterministic, soCQ is not an oracle restricted by an asser-

C P

C P

CP ∧ k = n/CQ, k := 1

CP /CQ, k := 1

CP ∧ k < n/k := k + 1

Figure 10. “Division” of an activation condi-
tion

ΩQ

k = n

ΩQ ∧ k < n/AQ
k = n/AQ

1 2

Figure 11. Signaling the end of the task

tion, but the result of an operator, building it fromCP and
n. Obviously, the construction ofCQ involves a counting
of occurrences ofCP . A machinedivide(n) takingCP as
input and computingCQ can be defined by the very simple
automaton of Fig. 10.

Definition of the availability condition: The availability
condition is non-deterministic. It will be defined using an
oracle, sayΩQ: using the same counterk as for the division,
in each interval starting whenk is set to 1, and ending when
k reachesn − 1, the first occurrence ofΩQ is considered
as an occurrence ofAQ. If ΩQ does not occur during the
whole interval,AQ is sent at the last instant.

The automaton of Fig 11, supposedly clocked byCP ,
does the job: in State 1, ifΩQ happens before the end of
the interval (i.e., whenk < n), AQ is emitted, and the au-
tomaton moves to State 2 where it ignores subsequent oc-
currences ofΩQ until the end of the current interval; if the
end of the interval (i.e.,k = n) occurs in State 1,AQ is
emitted, if it occurs in State 2, the automaton moves back to
State 1.

Now, the whole model can be built as in Fig. 13: The
scheduler (Fig. 12) is the product of the automata of Fig. 10
and 11: it receivesCP and the oracleΩQ and computesCQ

andAQ. CP andCQ are the respective activation condi-
tions ofP andQ, andAQ is used to delay the outputs ofQ
by means of samplersβ(AQ). Q is activated byCQ, com-
puted fromCP , and the availability conditionAQ is used to
sample all outputs ofQ.



CP ∧ k < n ∧ Ω Q/
k := k + 1

AQ, k := n
CP ∧ k = n− 1/

CQ, k := 1
CP / CP ∧ k < n/

k := k + 1AQ, k := k + 1
CP ∧ k < n ∧ ΩQ/

CP ∧ k = n/
CQ, k := 1

C P C P C P

Figure 12. The whole scheduler

CQ

β(AQ)
Q

β(AQ)

Sched. AQ

ΩQ

CP

P

Figure 13. Model of multi-tasking

6.2 Application to the case study

The PFS case study presents such a situation of multi-
tasking, together with a purely sporadic task (i.e., non peri-
odic) which was just modeled with an activation condition.
On our model of this design, the verification of the proper-
ties considered in§5.2 did not raise any problem.

Now, interestingly, concerning the periodic tasks, the de-
signers of the case study were aware of the risk of func-
tional non-determinism involved by the multitasking. This
non-determinism was avoided by taking into account the re-
sults of the “slow” task at the latest: the results of the task
executed in some interval are only acquired by the “fast”
task at the beginning of the next interval1 (see Fig. 14), so
the non-deterministic termination date of the slow task has
no functional consequence. Notice that this is precisely the
condition assumed by [27] to generate deterministic multi-
task code from a synchronous program. We were able to
verify this functional determinism with the Lesar model-
checker, just by comparing the outputs of our model with
the ones of a purely synchronous version of the PFS (where
the slow task is completely executed at the beginning of the
interval, i.e.,AQ = CQ).

1With the previous notations, it means that the fast taskP does
not access directly the outputso of the slow taskQ, but reads instead
β(CQ)(δ(o)), i.e., the sampling onCQ of the delayed version ofo.

Q

P

Figure 14. Data communication between
tasks in the PFS

7 Conclusion

The modeling technique described in this paper is not
new. It is routinely used by many people in the commu-
nity of synchronous languages. For instance, it was used
in a very similar way by [15, 27] to validate the code gen-
eration towards quasi-synchronous architectures and multi-
tasking implementations. A very similar approach is also
systematized in the Model-build toolbox [2, 3]. It is also the
way [9] simulates Multi-clock Esterel in standard Esterel.
However, it is also a solution which is ignored by many peo-
ple outsidethe community of synchronous languages, who
consider that synchrony only works for centralized, sequen-
tial implementations. This is why we wanted to popularize
it in a wider community, taking advantage of a very good
case study provided in the Assert project.

The advantages of this modeling approach have been in-
dicated before: it provides a quite systematic way of model-
ing asynchronousor partially asynchronousbehaviors, and
to cleanly merge these behaviours with synchronous parts;
it provides an executable model, on which many tools can
be directly used, for simulation, testing, formal verification,
debugging. . . Moreover it allows a significant reduction of
the validation cost, since the synchronous description of the
synchronous parts generally involves a drastic reduction of
the number of states.

In this paper, we chose to present the approach indepen-
dently of any specific language. Now, the use of a real lan-
guage obviously makes the work easier: the real case study
was treated with Scade and Lustre, which provide conve-
nient features, like process abstraction (nodes) and param-
eterization, assertions to constrain the behaviors of oracles,
and allow actual Scade models of the synchronous parts to
be directly imported.

It remains to provide a library of standard components
(scheduling constraints, communication modules, . . . ) in
Scade, to alleviate the task of the user. It is one of our ob-
jectives in the Assert project.

References

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. Sangiovanni-Vincentelli. Metropolis:



An integrated electronic system design environment.
Computer — IEEE Computer Society,, 36(4):45–52, 2003.

[2] P. Baufreton. SACRES: A step ahead in the develop-
ment of critical avionics applications. In F. Vaandrager and
J. van Schuppen, editors,Hybrid Systems: Computation and
Control: Second International Workshop, HSCC’99. LNCS
1569, Springer-Verlag, 1999.

[3] P. Baufreton. Visual notations based on synchronous lan-
guages for dynamic validation of gals systems. InCCCT’04
Computing, Communications and Control Technologies,
Austin (Texas), Aug. 2004.

[4] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems.Proceedings of the IEEE,
79(9):1270–1282, Sept. 1991.

[5] A. Benveniste, B. Caillaud, L. Carloni, and A. Sangiovanni-
Vincentelli. Tag machines. InEMSOFT’2005, Sept. 2005.

[6] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and
A. L. Sangiovanni-Vincentelli. Heterogeneous reactive sys-
tems modeling: capturing causality and the correctness of
the loosely time-triggered architectures. In G. Buttazzo and
S. Edwards, editors,4th Int. Conf. on Embedded Software,
EMSOFT’04, Sept. 2004.

[7] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone. The synchronous languages 12
years later.Proceedings of the IEEE, 91(1), Jan. 2003.

[8] G. Berry and G. Gonthier. The Esterel synchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[9] G. Berry and E. Sentovich. Embedding synchronous circuits
in GALS-based systems. InSophia-Antipolis conference on
Micro-Electronics (SAME 98), Oct. 1998.

[10] G. Berry and E. Sentovich. Multiclock Esterel. InCorrect
Hardware Design and Verification Methods, CHARME’01,
Livingston (Scotland), Sept. 2001. LNCS 2144, Springer
Verlag.

[11] G. Berry, R. K. Shyamasundar, and S. Ramesh. Communi-
cating reactive processes. InProc. 20th ACM Conf. on Prin-
ciples of Programming Languages, POPL’93, Charleston,
Virginia, 1993.

[12] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,
and P. Niebert. From Simulink to Scade/Lustre to TTA: A
layered approach for distributed embedded applications. In
LCTES 2003, San Diego, CA, June 2003.

[13] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of
reactive systems for asynchronous networks of processors.
IEEE Transactions on Software Engineering, 25(3):416–
427, 1999. Research report INRIA 3491.

[14] P. Caspi, C. Mazuet, and N. Reynaud Paligot. About the
design of distributed control systems, the quasi-synchronous
approach. InSAFECOMP’01. LNCS 2187, 2001.

[15] P. Caspi and R. Salem. Threshold and bounded-delay voting
in critical control systems. InFTRTFT’2000, Pune, India,
Sept. 2000. LNCS 1926.

[16] D. Chapiro. Globally-asynchronous locally-synchronous
systems. Phd thesis, Stanford University, 1984.

[17] F. Doucet, M. Menarini, I. H. Kr̈uger, R. Gupta, and J.-P.
Talpin. A verification approach for GALS integration of syn-
chronous components. InFMGALS’2005, Verona (Italy),
July 2005.

[18] A. Gamatíe and T. Gautier. The signal approach to the de-
sign of system architectures. In10th IEEE Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS 2003), pages 80–88, Huntsville (Alabama), Apr.
2003.

[19] A. Gamatíe and T. Gautier. Synchronous modeling of avion-
ics applications using the signal language. In9th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS’2003), pages 144–151, Toronto, May 2003.

[20] N. Halbwachs.Synchronous programming of reactive sys-
tems. Kluwer Academic Pub., 1993.

[21] N. Halbwachs and S. Baghdadi. Synchronous modeling
of asynchronous systems. InEMSOFT’02. LNCS 2491,
Springer Verlag, Oct. 2002.

[22] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
verifying real-time systems by means of the synchronous
data-flow programming language LUSTRE. IEEE Transac-
tions on Software Engineering, Special Issue on the Specifi-
cation and Analysis of Real-Time Systems, pages 785–793,
Sept. 1992.

[23] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony
for system design.Journal for Circuits, Systems and Com-
puters, Special Issue on Application Specific Hardware De-
sign, Apr. 2003.

[24] R. Milner. On relating synchrony and asynchrony. Techni-
cal Report CSR-75-80, Computer Science Dept., Edimburgh
Univ., 1981.

[25] R. Milner. Calculi for synchrony and asynchrony.TCS,
25(3), July 1983.

[26] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specifications. In5th Int. Conf. on Applications of Con-
currency in System Design, ACSD’05, Saint-Malo (France),
2005.

[27] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. InEuromicro conference on Real-Time Systems
(ECRTS’04), Catania, Italy, June 2004.


