why3doc index index
The graph is represented by a pair (vertices
, successor
)
vertices
: this constant is the set of graph vertices
successor
: this function gives for each vertex the set of vertices directly joinable from it
Program logic with reachable
predicate defined with an existential quantifier.
This proof does not use the access
predicate. Notice that x
is here blackened after the assertion. This is because the provers cannot prove the assertion within 15 seconds if x
was blackened before it.
module Dfs_nbtw use import int.Int use import list.List use import list.Append use import list.Mem as L use import list.Elements as E use import init_graph.GraphSetSucc (* inductive reachable vertex vertex = | Reachable_empty: forall x: vertex. reachable x x | Reachable_cons: forall x y z: vertex, l: list vertex. edge x y -> reachable y z -> reachable x z *) predicate reachable (x z: vertex) = exists l. path x l z lemma reachable_succ: forall x x'. edge x x' -> reachable x x' lemma reachable_trans: forall x y z. reachable x y -> reachable y z -> reachable x z predicate no_black_to_white (b g: set vertex) = forall x x'. edge x x' -> mem x b -> mem x' (union b g) lemma black_to_white_path_goes_thru_gray: forall g b. no_black_to_white b g -> forall x l z. path x l z -> mem x b -> not mem z (union b g) -> exists y. L.mem y l /\ mem y g
let rec dfs r g b variant {(cardinal vertices - cardinal g), (cardinal r)} = requires {subset r vertices} requires {subset g vertices} requires {no_black_to_white b g} ensures {subset b result} ensures {no_black_to_white result g} ensures {forall x. mem x r -> not mem x g -> mem x result} ensures {forall z. mem z result -> exists y. mem y (union b r) /\ reachable y z} if is_empty r then b else let x = choose r in let r' = remove x r in if mem x (union g b) then dfs r' g b else let b' = dfs (successors x) (add x g) b in assert{ forall z. mem z b' -> exists y. mem y (add x b) /\ reachable y z}; dfs r' g (add x b') let dfs_main roots = requires {subset roots vertices} ensures {forall z. mem z result <-> exists y. mem y roots /\ reachable y z} dfs roots empty empty
Thus the result of dfs_main
is exactly the set of nodes reachable from roots
end
Generated by why3doc 0.88.3