why3doc index index

DFS in graph - soundness of the whitepath theorem

The graph is represented by a pair (vertices, successor)

The algorithm is depth-first-search in the graph. It picks randomly the son on which recursive call is done.
This theorem refers to the whitepath theorem in Cormen et al.
The new visited vertices are reachable by a white path w.r.t the old visited set.
Fully automatic proof, with inductive definition of white paths.

Notice that this proof uses paths.

module DfsWhitePathGraySoundness
  use import int.Int
  use import list.List
  use import list.Append
  use import list.Mem as L
  use import list.Elements as E
  use import init_graph.GraphSetSucc

  predicate white_vertex (x: vertex) (v: set vertex) =
    not (mem x v)

  inductive wpath vertex (list vertex) vertex (set vertex) =
  | WPath_empty:
      forall x v. white_vertex x v -> wpath x Nil x v
  | WPath_cons:
      forall x y l z v.
      white_vertex x v -> edge x y -> wpath y l z v -> wpath x (Cons x l) z v

(*  predicate whitepath (x: vertex) (l: list vertex) (z: vertex) (v: set vertex) =
    path x l z /\ (forall y. L.mem y l -> white_vertex y v) /\ white_vertex z v

  predicate whiteaccess (roots b v: set vertex) =
    forall z. mem z b -> exists x l. mem x roots /\ wpath x l z v

  lemma whiteaccess_var:
    forall r r' s v. subset r r' -> whiteaccess r s v -> whiteaccess r' s v

  lemma whiteaccess_covar1:
    forall r s s' v. subset s s' -> whiteaccess r s' v -> whiteaccess r s v

  lemma wpath_covar2:
    forall x l z v v'. subset v v' -> wpath x l z v' -> wpath x l z v

  lemma whiteaccess_covar2:
    forall r s v v'. subset v v' -> whiteaccess r s v' -> whiteaccess r s v

  lemma wpath_trans:
    forall x l y l' z v. wpath x l y v -> wpath y l' z v -> wpath x (l ++ l') z v

  lemma whiteaccess_trans:
    forall r r' s v. whiteaccess r r' v -> whiteaccess r' s v -> whiteaccess r s v

  lemma whiteaccess_cons:
    forall x s v. mem x vertices ->
      white_vertex x v -> whiteaccess (successors x) s v -> whiteaccess (add x empty) s v


let rec dfs r g b
  variant {(cardinal vertices - cardinal g), (cardinal r)} =
  requires {subset r vertices }
  requires {subset b vertices }
  requires {subset g vertices }
  requires {inter b g == empty}
  ensures {subset result vertices }
  ensures {subset b result }
  ensures {inter result g == empty}
  ensures {whiteaccess r (diff result b) (union b g) }
  if is_empty r then b else
  let x = choose r in
  let r' = remove x r in
  let v = union b g in
  if mem x v then dfs r' g b else
  let v' = dfs (successors x) (add x g) b in
  assert {whiteaccess (add x empty) (diff v' (add x b)) v
    by whiteaccess (successors x) (diff v' (add x b)) (union b (add x g))
    by subset b (add x b) };
  assert {wpath x Nil x v };
  assert {whiteaccess (add x empty) (diff (add x v') b) v
    by diff (add x v') b == add x (diff v' b) };
  let v'' = dfs r' g (add x v') in
  assert {whiteaccess r' (diff v'' (add x v')) v
    by whiteaccess r' (diff v'' (add x v')) (union (add x v') g)
    by subset v (union (add x v') g) };
  assert {diff v'' b == union (diff v'' (add x v')) (diff (add x v') b) };


[session]   [zip]

Generated by why3doc 0.88.3