Finite Developments in the λ-calculus

Part 3

jean-jacques.levy@inria.fr ISR 2021 Madrid July 6, 2021

http://jeanjacqueslevy.net/talks/21isr

Labeled lambda-calculus

Exercise 1 Show that residuals of redexes keep same names by case inspection on occurrences of redexes.

Exercise 2 Show that $M \longrightarrow N$ implies $M^{\alpha} \longrightarrow N^{\alpha}$

Exercise 3 Show the parallel moves lemma (with Martin-Löf way) If $M \xrightarrow{\mathcal{F}} N$ and $M \xrightarrow{\mathcal{G}} P$, then $N \xrightarrow{\mathcal{G}/\mathcal{F}} Q$ and $P \xrightarrow{\mathcal{F}/\mathcal{G}} Q$ for some Q.

Exercise 4 Label Y_f , draw its reduction graph and show redexes families when $Y_f = (\lambda x.f(xx))(\lambda x.f(xx))$

Exercise 5 Same with $K_a Y_f$

Inside-out reductions

• **Definition:** The following reduction is **inside-out**

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all *i* and *j*, *i* < *j*, then R_j is not residual along ρ of some R'_i inside R_i in M_{i-1} .

• Theorem [Inside-out completeness, 74] Let $M \xrightarrow{*} N$. Then $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ for some P.

Exercise 6 Prove inside-out completeness

Hint: use Finite Development theorem.

Exercise 7 Prove the following diagrams

Proof [uniqueness of labeled standard]

Let ρ and σ be 2 distinct coinitial pure labeled standard reductions.

Take first step when they diverge. Call M that term. We make structural induction on M. Say ρ is more to the left. If first step of ρ contracts an internal redex, we use induction. If first step of ρ contracts an external redex, then:

$$M = ((\lambda x.P)^{\alpha} Q)^{\beta}$$

$$P^{\lceil \alpha \rceil \beta} \{ x := Q^{\lfloor \alpha \rfloor} \}$$
st
$$st$$

$$N^{\lceil \alpha \rceil \beta} \neq ((\lambda x.A)^{\alpha} B)^{\beta}$$

• **Corollary** [labeled prefix ordering]

Let $\rho: M \xrightarrow{\bullet} N$ and $\sigma: M \xrightarrow{\bullet} P$ be coinitial pure labeled reductions. Then $\rho \sqsubseteq \sigma$ iff $N \xrightarrow{\bullet} P$.

- Exercise 8 Show the following properties
 - (i) $\rho \sqsubseteq \rho$
 - (*ii*) $\rho \sqsubseteq \sigma \sqsubseteq \rho$ implies $\rho \simeq \sigma$
 - (iii) $\rho \sqsubseteq \sigma \sqsubseteq \tau$ implies $\rho \simeq \tau$
 - $(\textit{iv}) \quad \rho \sqsubseteq \sigma \quad \text{implies} \quad \rho / \tau \sqsubseteq \sigma / \tau$
 - (v) $\rho \sqsubseteq \sigma$ iff $\exists \tau, \rho \tau \simeq \sigma$
 - $(\textit{vi}) \quad \rho \sqsubseteq \rho \sqcup \sigma, \ \sigma \sqsubseteq \rho \sqcup \sigma$
 - $(\textit{vii}) \quad \rho \sqsubseteq \tau, \ \sigma \sqsubseteq \tau \quad \text{implies} \quad \rho \sqcup \sigma \sqsubseteq \tau$

• Exercise 9 Show the following diagrams

• **Corollary** [lattice of labeled reductions]

Labeled reduction graphs are upwards semi lattices for any pure labeling.

• **Corollary** [push-out category]

Prefix ordering on reductions is a push-out.

- Exercise 10 Try on $(\lambda x.x)((\lambda y.(\lambda x.x)a)b)$ or $(\lambda x.xx)(\lambda x.xx)$
- Exercise 11 Show that prefix ordering on reductions is not a pull-back.

Proof of the GFD theorem

Bound on heights of labels

• **Definition** The height of a label is its nesting of underlines and overlines

h(a) = 0 $h(\lceil \alpha \rceil) = h(\lfloor \alpha \rfloor) = 1 + h(\alpha)$ $h(\alpha\beta) = \max\{\alpha, \beta\}$

• Fact Let \mathcal{F} be a finite set of redex families, then there is an upper bound $H(\mathcal{F})$ on labels of subterms in reductions relative to \mathcal{F} .

When initial term is labeled with atomic letters, we have

 $H(\mathcal{F}) = \max \{h(\alpha) \mid \alpha \in \mathcal{F}\}$

- Notation $\tau(M^{\alpha}) = \alpha$ when *M* has an empty external label
- Lemma 1 Let $M \xrightarrow{\star} M'$, then $h(\tau(M)) \leq h(\tau(M'))$
- Lemma 2 Let $(\cdots ((M M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \xrightarrow{\star} (\lambda x.N)^{\alpha}$ Then $h(\tau(M)) \leq h(\alpha)$
- Lemma 3 [Barendregt] Let $M\{x := N\} \xrightarrow{*} (\lambda y.P)^{\alpha}$ There are 2 cases: $M \xrightarrow{*} (\lambda y.M')^{\alpha}$ and $M'\{x := N\} \xrightarrow{*} P$

$$M \longrightarrow (Xy.M')^{\alpha} \text{ and } M' \{x := N\} \longrightarrow P$$
$$M \longrightarrow M' = (\cdots ((x^{\beta} M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \text{ and } M' \{x := N\} \longrightarrow (\lambda y.P)^{\alpha}$$

• Lemma 1 Let $M \xrightarrow{\star} N$, then $h(\tau(M)) \leq h(\tau(N))$

Proof by induction on length of reduction. Let $M \xrightarrow{R} N$, $R = ((\lambda x.A)^{\alpha}B)^{\beta}$ If R is internal in M, then $\tau(M) = \tau(N)$. If $M = R = ((\lambda x.A)^{\alpha}B)^{\beta} \longrightarrow A\{x := B^{\lfloor \alpha \rfloor}\}^{\lceil \alpha \rceil \beta} = N$, then $h(\tau(M)) = h(\beta) \le h(\gamma\beta) = h(\tau(N))$ for some γ .

• Lemma 2 Let $(\cdots ((M M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \xrightarrow{\star} (\lambda x.N)^{\alpha}$ Then $h(\tau(M)) \leq h(\alpha)$

Proof by induction on *n*.

When n = 0, obvious by lemma 1. Otherwise $(\cdots ((M M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_{n-1})^{\beta_{n-1}} \xrightarrow{\star} (\lambda y.P)^{\gamma}$ and $((\lambda y.P)^{\gamma}Q)^{\beta_n} \longrightarrow P\{y := Q^{\lfloor \gamma \rfloor}\}^{\lceil \gamma \rceil \beta_n} \xrightarrow{\star} (\lambda x.N)^{\alpha}$ So $h(\tau(M)) \le h(\gamma) < h(\delta \lceil \gamma \rceil \beta_n) \le h(\alpha)$ by induction and lemma 1.

• Lemma 3 [Barendregt] Let $M\{x := N\} \xrightarrow{\star} (\lambda y.P)^{\alpha}$

There are 2 cases:

$$M \xrightarrow{\star} (\lambda y.M')^{\alpha} \text{ and } M'\{x := N\} \xrightarrow{\star} P$$
$$M \xrightarrow{\star} M' = (\cdots ((x^{\beta} M_1)^{\beta_1} M_2)^{\beta_2} \cdots M_n)^{\beta_n} \text{ and } M'\{x := N\} \xrightarrow{\star} (\lambda y.P)^{\alpha}$$

Proof Let $M^* = M\{x := N\}$. There are 3 cases on weak head reduction of M: it reaches an abstraction or a head variable which has to be x. More precisely, we consider the standard reduction from M^* to $(\lambda y.P)^{\alpha}$.

Case 1: $M = (\lambda y.M')^{\alpha}$ and we are done since $M^* = (\lambda y.M'^*)^{\alpha}$.

Case 2:
$$M = ((\cdots ((y^{\beta} M_1)^{\beta_1} M_2)^{\beta_2}) \cdots M_n)^{\beta_n}$$
. Then $y = x$ and $M' = M$.

Case 3:
$$M = (\cdots ((((\lambda z.A)^{\beta} B)^{\gamma} C_1)^{\beta_1} C_2)^{\beta_2} \cdots C_n)^{\beta_n}$$

Let $M_1 = (\cdots ((A\{z := B^{\lfloor \beta \rfloor}\}^{\lceil \beta \rceil \gamma} C_1)^{\beta_1} C_2)^{\beta_2} \cdots C_n)^{\beta_n}$
Then $M^* = (\cdots (((((\lambda z.A^*)^{\beta} B^*)^{\beta_1} C_1^*)^{\beta_1} C_2^*)^{\beta_2} \cdots C_n^*)^{\beta_n} \longrightarrow M_1^*$ is the first step of the standard reduction from M^* to $(\lambda y.P)^{\alpha}$. By induction on its length, we are done.

• Notation Let $SN_{\mathcal{F}}$ be the set of strongly normalizable terms w.r.t. reductions relative to \mathcal{F} .

• Lemma [subst] Let \mathcal{F} be a finite set of redex families. $M, N \in S\mathcal{N}_{\mathcal{F}}$ implies $M\{x := N\} \in S\mathcal{N}_{\mathcal{F}}$

Proof [van Daalen] by induction on $\langle H(\mathcal{F}) - h(\tau(N)), \text{ depth}(M), ||M|| \rangle$

• Theorem GFD Let \mathcal{F} be a finite set of redex families. Then $M \in S\mathcal{N}_{\mathcal{F}}$ for all M.

Proof by easy induction on ||M||

• Lemma [subst] Let \mathcal{F} be a finite set of redex families. $M, N \in S\mathcal{N}_{\mathcal{F}}$ implies $M\{x := N\} \in S\mathcal{N}_{\mathcal{F}}$

Proof [van Daalen] by induction on $\langle H(\mathcal{F}) - h(\tau(N)), \text{ depth}(M), ||M|| \rangle$

Cases M = x, M = y, $M = \lambda y.M_1$ are obvious or easy by induction on ||M||. Write M^* for $M\{x := N\}$ and consider case $M = (M_1M_2)^{\alpha}$. If all reductions are internal to M_1^* and M_2^* , then easy induction on ||M||. Otherwise, let $M_1^* \stackrel{\star}{\longrightarrow} (\lambda y.P)^{\beta}$ and $M_2^* \stackrel{\star}{\longrightarrow} Q$ and $((\lambda y.P)^{\beta}Q)^{\alpha} \stackrel{\bullet}{\longrightarrow} P\{y := Q^{\lfloor L\beta \rfloor}\}^{\lceil \beta \rceil \alpha}$ Then M_1^* and M_2^* are in $S\mathcal{N}_F$ by induction on ||M||, and $M_1^* \stackrel{\star}{\longrightarrow} (\lambda y.P)^{\beta}$ and $M_2^* \stackrel{\star}{\longrightarrow} Q$. So P and Q are in $S\mathcal{N}_F$. How is $P\{y := Q^{\lfloor \beta \rfloor}\}^{\lceil \beta \rceil \alpha}$?

By lemma 3, we have 2 cases:

Case 1: Then $M_1 \xrightarrow{\star} (\lambda y.M_1')^{\beta}$ and $M_1'^* \xrightarrow{\star} P$. Therefore $M_1'^* \{ y := M_2^{*\lfloor \beta \rfloor} \}^{\lceil \beta \rceil \alpha} \xrightarrow{\star} P\{y := Q^{\lfloor \beta \rfloor} \}^{\lceil \beta \rceil \alpha}$. But as $M = (M_1 M_2)^{\alpha} \xrightarrow{\star} ((\lambda y.M_1')^{\beta} M_2)^{\alpha} \longrightarrow M' = M_1' \{ y := M_2^{\lfloor \beta \rfloor} \}^{\lceil \beta \rceil \alpha}$, we have depth(M') < depth(M).

Thus by induction $M'^* = M_1'^* \{ y := M_2^{*\lfloor \beta \rfloor} \}^{\lceil \beta \rceil \alpha} \in SN_F$ and $P\{y := Q^{\lfloor \beta \rfloor} \}^{\lceil \beta \rceil \alpha} \in SN_F$.

Case 2:

$$M_{1} \stackrel{\star}{\longrightarrow} M_{1}' = (\cdots ((x^{\gamma} A_{1})^{\gamma_{1}} A_{2})^{\gamma_{2}}) \cdots A_{n})^{\gamma_{n}} \text{ and } M_{1}'^{*} = (\cdots ((N^{\gamma} A_{1}^{*})^{\gamma_{1}} A_{2}^{*})^{\gamma_{2}}) \cdots A_{n}^{*})^{\gamma_{n}} \stackrel{\star}{\longrightarrow} (\lambda y. P)^{\beta}$$
Therefore $h(\tau(N)) \leq h(\tau(N^{\gamma})) \leq h(\beta)$ by lemma 2.
So $M^{*} = (M_{1}^{*} M_{2}^{*})^{\alpha} \stackrel{\star}{\longrightarrow} ((\lambda y. P)^{\beta} Q)^{\alpha} \stackrel{\star}{\longrightarrow} P\{y := Q^{\lfloor \beta \rfloor}\}^{\lceil \beta \rceil \alpha}$
and $h(\tau(N)) \leq h(\beta) < h(\lfloor \beta \rfloor) \leq h(\tau(Q^{\lfloor \beta \rfloor})).$
We get by induction $P\{y := Q^{\lfloor \beta \rfloor}\}^{\lceil \beta \rceil \alpha} \in S\mathcal{N}_{\mathcal{F}}.$

